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Rigid irregular connections on P1

D. Arinkin

Abstract

Katz’s middle convolution algorithm provides a description of rigid connections on P1

with regular singularities. We extend the algorithm by adding the Fourier transform to
it. The extended algorithm provides a description of rigid connections with arbitrary
singularities.

1. Introduction

In [Kat96], Katz suggested a new method of studying a local system L on an open subset
U = P1 − {x1, . . . , xn}: the middle convolution algorithm. He defined the middle convolution of
local systems on P1, and showed that for a Kummer local system K, the operation of middle
convolution with K is invertible:

L= (L ?mid K) ?mid K−1.

Here ?mid is the middle convolution. Usually, rk(L ?mid K) 6= rk L.

To apply Katz’s middle convolution algorithm to L, one looks for a rank-one local system `1
and a Kummer local system K1 such that the middle convolution

L1 = (L ⊗ `1) ?mid K1

has strictly smaller rank. The process is repeated until one arrives at the local system Lk whose
rank can no longer be decreased by this operation. Note that L can be reconstructed from a
smaller rank local system Lk and the sequence of rank-one local systems {(`1,K1), . . . , (`k,Kk)}
used in the algorithm. The isomorphism class of L is encoded by the isomorphism class of Lk
and the monodromies of `i and Ki.

Katz applied the algorithm to rigid local systems (a local system is rigid if it is determined
up to isomorphism by the conjugacy classes of its local monodromies). He showed that any rigid
irreducible local system L is reduced by the algorithm to a rank-one system Lk. This describes
rigid irreducible local systems using collections of numbers (the monodromies of Lk, `i, and Ki).
Since then, the algorithm has found numerous applications to both rigid and non-rigid local
systems, see [Sim09] for a summary.

Katz’s middle convolution algorithm applies to the following ‘flavors’ of local systems:

– representations of the fundamental group of π1(P1
C − {x1, . . . , xn}) (‘Betti flavor’);

– tamely ramified l-adic local systems on P1
k − {x1, . . . , xn} for any field k, where l is a prime

distinct from char(k);
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– vector bundles with connections on P1
k − {x1, . . . , xn} with regular singularities at the

punctures x1, . . . , xn for any field k of characteristic zero (‘de Rham flavor’); in classical
language, one works with linear ordinary differential equations with Fuchsian singularities.

In this paper, we take the de Rham point of view. We extend the middle convolution algorithm
to connections with irregular singularities by using two operations: the middle convolution and
the Fourier transform. We call this extension the irregular Katz’s algorithm. It is described in
§ 4, but a short summary is given here.

For a bundle with connection L on an open set U ⊂ A1, denote its Fourier transform by L∧.
The Fourier transform is a bundle with connection L∧ on an open subset U∧ ⊂ A1; usually
U∧ 6= U and rk L∧ 6= rk L.

On the each step of the irregular Katz’s algorithm, we try to lower the rank of L by one of
the following two operations:

(i) replacing L with the middle convolution

L1 = (L ⊗ `) ?mid Kλ

for appropriate choices of a line bundle with connection ` and a Kummer local system Kλ;

(ii) replacing L with the Fourier transform

L1 = (L ⊗ `)∧

for appropriate choice of a line bundle with connection ` and the choice of the infinity
∞∈ P1 (the point ∞∈ P1 plays a special role in the Fourier transform, and we use it as a
parameter in the operation).

Both operations (i) and (ii) are invertible, so L is determined up to isomorphism by L1 and
the numerical parameters used in the operation. We repeat this procedure to decrease the rank
of L as much as possible.

In this paper, we work with rigid irreducible bundles with connections L. By definition,
irreducible L is rigid if it is determined up to isomorphism by the formal types of its singularities.
The main result is that the irregular Katz’s algorithm always reduces such L to a rank-one bundle
with connection; this yields a recursive description of irreducible rigid connections.

Our result answers the question posed by Katz in [Kat96, p. 10]. Also, in the introduction
to [BE04], Bloch and Esnault express hope that their result (see Theorem 2.4) can be used to
classify rigid connections with irregular singularities; our paper provides such a classification.

We hope that the irregular Katz’s algorithm has other applications. Two examples are
discussed in §§ 5.1 and 5.2.

2. Main results

Fix the ground field k, which is algebraically closed of characteristic zero.

2.1 Connections and rigidity
By definition, a bundle with connection on a non-empty open set U ⊂ P1 is a pair L= (EL,∇L),
where EL is a vector bundle on U and the connection ∇L : EL→ EL ⊗ ΩU is a k-linear map that
satisfies the Leibniz identity

∇L(fs) = f∇L(s) + s⊗ df (f ∈ OU , s ∈ EL).
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Rigid irregular connections on P1

We simply say that L is a connection on U . In this paper we use the ‘de Rham’ point of view,
so the terms ‘local system on U ’ and ‘connection on U ’ are interchangeable.

For a closed point x ∈ P1, let Kx denote the ring of formal Laurent series at x. A choice
of local coordinate z identifies Kx with k((z)). Let Hol(DKx) be the category of holonomic D-
modules on the punctured formal neighborhood of x. Explicitly, objects of Hol(DKx) are pairs
V = (EV ,∇V), where EV is a finite-dimensional vector space over Kx and

∇V : EV → EV ⊗ ΩKx = V dz

is a k-linear map satisfying the Leibniz identity. We sometimes call V a connection on the
punctured formal disk.

For two connections L, L′ on an open set U ⊂ P1, we denote by Hom(L, L′) the local
system of morphisms from L to L′; equivalently, Hom(L, L′) = L′ ⊗ L∨. By definition, End(L) =
Hom(L, L). We use similar notation Hom(V,W), End(V) for V,W ∈Hol(DKx), x ∈ P1.

A connection L on U yields an object Ψx(L) ∈Hol(DKx) for any x ∈ P1. Essentially, Ψx(L)
is the restriction of L to the punctured formal neighborhood of x: Ψx(L) = L ⊗Kx. One can
view Ψx(L) as the nearby cycles of L.

Definition 2.1. The formal type [Ψx(L)] of L at x ∈ P1 is the isomorphism class of Ψx(L). The
formal type of L is the collection

{[Ψx(L)]}x∈P1 .

Remark . For x ∈ U , the restriction Ψx(L) is trivial, so [Ψx(L)] is given by rk(L). Therefore, the
formal type of L is determined by the collection

{[Ψx(L)]}x∈P1−U

(excluding the case when U = P1 and L is trivial).

Definition 2.2. A connection L on U is rigid if L is determined by its formal type up to
isomorphism: any bundle with connection L′ on U such that Ψx(L)'Ψx(L′) for all x ∈ P1 is
isomorphic to L.

Example 2.3. Suppose k = C and that L has regular singularities; that is, L= (EL,∇L) can be
extended to a vector bundle EL on P1 equipped with a connection ∇L that has first-order poles:

∇L : EL→ EL ⊗ ΩP1(x1 + · · ·+ xn),

where {x1, . . . , xn}= P1 − U . Then [Ψx(L)] is determined by the monodromy of ∇L around x.
The monodromy is defined up to conjugation, for instance, it can be given in the Jordan form.
Therefore, for regular connections on P1

C, Definition 2.2 reduces to the notion of rigidity given
in the introduction.

2.2 Fourier transform

Recall the Fourier transform for DA1-modules. We can identify DA1-modules with modules over
the algebra of polynomial differential operators k〈z, d/dz〉 (the Weyl algebra). Here z is the
coordinate on A1. Consider the Fourier automorphism

F : k
〈
z,

d

dz

〉
→ k

〈
z,

d

dz

〉
: F (z) =− d

dz
, F

(
d

dz

)
= z.
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It yields an autoequivalence of the category of k〈z, d/dz〉-modules (the Fourier transform)

M 7→ F(M),

where F(M) is isomorphic to M as a vector space, but k〈z, d/dz〉 acts on it through F .
Now let L be a connection on an open set U ⊂ A1. Assume that L is irreducible. Viewing

L as a DU -module, we obtain the Goresky–MacPherson extension j!∗L, where j : U ↪→ A1 is the
open embedding. Here j!∗L is an irreducible DA1-module, therefore its Fourier transform F(j!∗L)
is also irreducible.

The DA1-module F(j!∗L) is smooth on a non-empty open subset U∧ ⊂ P1; that is, it gives a
connection L∧ on U∧. Let us exclude the (essentially trivial) case when L has rank one and its
only singularity is a second-order pole at infinity: in this case, F(j!∗L) is supported at a single
point, and L∧ = 0. Then

F(j!∗L) = j∧!∗(L∧), j∧ : U∧ ↪→ A1

and L∧ is an irreducible connection on U∧. When it does not cause confusion, we call L∧ the
Fourier transform of L.

Fourier transform preserves rigidity. In l-adic settings, this was proved by Katz using the local
Fourier transform constructed by Laumon in [Lau87]. In the settings of bundles with connections,
the local Fourier transform was constructed by Bloch and Esnault in [BE04].

Theorem 2.4 (Bloch and Esnault [BE04]). Suppose that L is irreducible and rigid. Then so is
its Fourier transform L∧. 2

2.3 Middle convolution
Fix λ ∈ k− Z. The corresponding Kummer local system is

Kλ =
(
OA1−{0}, d+ λ

dz

z

)
.

Up to isomorphism, Kλ depends only on the image of λ in k/Z.
Let L be an irreducible connection on an open subset U ⊂ P1. Shrinking U if necessary, we

may assume that U ⊂ A1. We then define the middle convolution L ?mid Kλ to be the inverse
Fourier transform of L∧ ⊗K−λ:

(L ?mid Kλ)
∧

= L∧ ⊗K−λ. (2.1)

This definition uses the isomorphism (Kλ)∧ =K−λ to rewrite the convolution as a tensor product.

Remark . [Kat96] contains a direct definition of middle convolution that does not use the Fourier
transform. The equivalence between this definition and (2.1) is [Kat96, Proposition 2.10.5].
Another approach to middle convolution (2.1) is sketched in § 6.1.

Let us make (2.1) explicit. Consider again the Fourier transform F(j!∗L). It is a DA1-module.
The tensor product F(j!∗L)⊗K−λ is a D-module on A1 − {0}. Consider j0 : A1 − {0} ↪→ A1, and
take

F−1(j0,!∗(F(j!∗L)⊗K−λ)).

This is a DA1-module, and L ?mid Kλ is the corresponding connection.
Again, exclude the essentially trivial case when L is a rank-one connection which is either

trivial or has two simple poles at ∞ and some point x ∈ A1 with residues equal to λ and −λ,
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respectively. Then L ?mid Kλ is again an irreducible connection. Theorem 2.4 immediately implies
that L is rigid if and only if so is L ?mid Kλ. Clearly,

L ' (L ?mid Kλ) ?mid K−λ.

2.4 Main theorem
Here is the main result of this paper, which is proved in § 4.

Theorem A. Let L be a connection on an open subset U ⊂ P1. Suppose that L is irreducible
and rigid, and that rk(L)> 1. Then at least one of the following conditions hold:

(i) for appropriate λ 6∈ Z and a rank-one connection ` on U − {∞}, the middle convolution
Hom(`, L) ?mid Kλ has rank smaller than L;

(ii) for appropriate choice of ∞∈ P1 − U and a rank-one connection ` on U , the Fourier
transform of Hom(`, L) has rank smaller than L.

Remark . The Fourier transform can be thought of as a middle convolution on the multiplicative
group. In this way, both cases (i) and (ii) involve middle convolution.

In case (ii), we use Fourier transform corresponding to some choice of ∞∈ P1; the choice
depends on L. Equivalently, we might fix ∞∈ P1, and use Möbius transformations to shift the
connection L. We then reformulate case (ii) as follows:

(ii′) there is a rank one connection ` on U and a Möbius transformation φ : P1 →̃P1 such that

rk(φ∗ Hom(`, L))∧ < rk(L).

Theorem A yields a connection L1 given by one of the two rules

L1 =

{
Hom(`, L) ?mid Kλ, case (i) of Theorem A
Hom(`, L)∧, case (ii) of Theorem A

such that rk(L1)< rk L. Note that L1 is again irreducible and rigid (by Theorem 2.4), so either
rk(L1) = 1, or rk(L1) can be decreased further by Theorem A. Iterating, we eventually get to a
rank-one connection. This proves the following claim.

Corollary 2.5. Any rigid connection L on an open subset U ⊂ P1 can be reduced to the trivial
connection (O, d) by iterating the following three operations:

– tensor multiplication by a rank-one connection `: L 7→ L ⊗ `;
– change of variable by a Möbius transformation φ: L 7→ φ∗L;

– Fourier transform: L 7→ L∧.

Of course, L can also be obtained from (O, d) by these operations. 2

3. Connections and Fourier transform

In this section, we recall the necessary statements about bundles with connections.

3.1 Euler–Poincaré formula
Fix a point x ∈ P1. For V ∈ Hol(DKx), we denote by irreg(V) the irregularity of V and by

slope(V) =
irreg(V)
rk(V)
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the slope of V. It is also convenient to introduce the following quantity:

δ(V) = irreg(V) + rk(V)− rk(Vhor), (3.1)

where Vhor ⊂ V is the maximal subbundle on which the connection is trivial. In other words,

rk(Vhor) = dimk H
0
dR(Kx, V), H0

dR(Kx, V) = ker(∇V : EV → EV ⊗ Ω).

Let L be a connection on an open subset U ⊂ P1. Consider the DP1-module j!∗(L) for
j : U ↪→ P1. Denote by H i

dR(P1, j!∗(L)) its de Rham cohomology groups and by

χ(j!∗(L)) =
2∑
i=0

(−1)i dimH i
dR(P1, j!∗(L))

its Euler characteristic.
We need the Euler–Poincaré formula for the Euler characteristic.

Proposition 3.1. Let L and j : U ↪→ P1 be as above. Then

χ(j!∗(L)) = 2rk(L)−
∑

x∈P1−U

δ(Ψx(L)). 2

3.2 Rigidity index
Definition 3.2. For L as above, the rigidity index of L is given by

rig(L) = χ(j!∗ End(L)).

Remark 3.3. It is well known that rig(L) is even. Indeed, by the Verdier duality the vector spaces
H0

dR(P1, j!∗(End(L))) and H2
dR(P1, j!∗(End(L)) are dual (and therefore have equal dimension),

while H1
dR(P1, j!∗(End(L))) carries a symplectic form (and therefore has even dimension).

The following statement is an extension of [Kat96, Theorem 1.1.2] to the case of irregular
singularities.

Proposition 3.4 [BE04, Theorems 4.7 and 4.10]. An irreducible connection L is rigid if and
only if rig(L) = 2. 2

Remark . For irreducible L, we have

rig(L) = 2− dimH1
dR(P1, j!∗(End(L)).

Therefore, two is the largest possible value of rig(L) (and the only positive value). In [Kat96], local
systems satisfying rig(L) = 2 are called cohomologically rigid, while those satisfying Definition 2.2
are physically rigid.

3.3 Rank of the Fourier transform
Suppose now that L is a connection on an open subset U ⊂ A1. Consider the Fourier transform
F(j!∗(L)) for j : U ↪→ A1. We want to find the (generic) rank of the Fourier transform, that is,
rk L∧.

Proposition 3.5 [Mal91, Proposition V.1.5]. Denote by Ψ∞(L)>1 ⊂Ψ∞(L) the maximal
submodule of L whose irreducible components all have slopes greater than one. Then

rk(L∧) =
∑

x∈A1−U

δ(Ψx(L)) + irreg(Ψ∞(L)>1)− rk(Ψ∞(L)>1). 2
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Similarly, we have a formula for the rank of the middle convolution. In the case of regular
singularities, this is [Kat96, Corollary 3.3.7] (in l-adic settings).

Proposition 3.6. Denote by Kλ∞ ∈Hol(DK∞ ) the ‘Kummer local system at infinity’ given by

Kλ∞ =
(
K∞, d+ λ

dζ

ζ

)
,

where ζ is a local coordinate at ∞∈ P1. Note that the residue of Kλ∞ is λ, so Kλ∞ 'Ψ∞(K−λ).
Then

rk(L ?mid Kλ) =
∑

x∈A1−U

δ(Ψx(L)) + δ(Ψ∞(L)⊗K−λ∞ )− rk L.

Proof. For any point x ∈ U , the fiber of L ?mid Kλ over x equals

(L ?mid Kλ)x =H1
dR(P1, j!∗(L ⊗ s∗x(Kλ))), (3.2)

where j : U ↪→ P1 is the embedding and sx : P1 →̃P1 is given by y 7→ y + x is the shift (so s∗xKλ
has regular singularities at x and ∞). The formula (3.2) is essentially [Kat96, Corollary 2.8.5].
It is easy to prove if one views the middle convolution as an integral transform, as in § 6.1.

Clearly, H i(P1, j!∗(L ⊗ s∗x(Kλ))) = 0 for i= 0, 2, so

rk(L ?mid Kλ) =−χ(j!∗(L ⊗ s∗x(Kλ))).

It remains to apply Proposition 3.1. 2

4. Proof of Theorem A

4.1 Outline of proof
For every singular point x ∈ P1 − U , consider the formal type Ψx(L) ∈Hol(DKx) of L at x.
Choose an irreducible connection Vx ∈Hol(DKx) that minimizes

δ(Hom(Vx,Ψx(L)))
rk(Vx)

(this choice is described in Corollary 4.4).

Example 4.1. Suppose that L has regular singularities. Then rk(Vx) = 1, and Vx has regular
singularities. Therefore, Vx ' (Kx, d+ λ(dz/z)), where λ is chosen so as to maximize
dim Hom(Vx,Ψx(L)). Here z is a local coordinate at x. Explicitly, we can write Ψx(L)'
(Kr

x, d+R(dz/z)), where R is an r × r matrix with constant coefficients such that no two
eigenvalues of R differ by a non-zero integer. Then λ is the eigenvalue of R with maximal
geometric multiplicity (that is, the eigenspace of λ has maximal dimension).

If k = C, we can simply say that Vx is given by the eigenvalue of the monodromy of L with
maximal geometric multiplicity.

Case I: Suppose rk(Vx) = 1 for all x ∈ P1 − U . (By Example 4.1, this is true if L has regular
singularities, so this is the only case appearing in the middle convolution algorithm of [Kat96].)
It makes sense to talk about res(Vx) ∈ k/Z.

Case Ia: Suppose
∑

x res(Vx) ∈ Z. Then one can find a local system ` on U such that Ψx(`)' Vx.
One can easily see from the Euler–Poincaré formula that either Hom(L, `) or Hom(`, L) is non-
zero (Proposition 4.5). Since L is irreducible, this implies L ' `, so rk(L) = 1, which contradicts
the assumptions.
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Case Ib: Suppose λ=
∑

x res(Vx) 6∈ Z. Shrinking U if necessary, we may assume that ∞ 6∈ U .
Then there is a rank-one connection ` on U such that

Ψx(`)'

{
Vx, x ∈ A1 − U
V∞ ⊗K−λ∞ , x=∞,

(4.1)

for Kλ∞ as in Proposition 3.6. It follows from Proposition 3.6 that L satisfies Theorem A(i) for
this ` (Proposition 4.6).

Case II: Suppose that rk(Vx)> 1 for some x ∈ P1 − U . We show (Proposition 4.10) that there
is unique x with this property. Choose it as ∞. Then choose ` to be a rank-one connection on
U that satisfies Ψx(`)' Vx for x ∈ A1 − U , and such that

Hom(Ψ∞(`), V∞) ∈Hol(DK∞ )

has non-integer slope. It follows from Proposition 3.5 that L satisfies Theorem A(ii) for this `
(Proposition 4.11). 2

Remark 4.2. Let us discuss the condition on ` in Case II. Choose `∞ ∈Hol(DK∞ ) to be a
rank-one connection which is the ‘best approximation’ of V∞ in the sense that it minimizes

slopeHom(`∞, V∞).

It is clear that the minimal slope is not an integer. Note that `∞ is not unique; in particular, it
can be tensored by a rank-one bundle with regular connection. This means that res(`∞) is
unrestricted, and so `∞ can be chosen so that

res `∞ +
∑

x∈A1−U

res Vx ∈ Z.

We can then find ` with Ψx(`)' Vx for x ∈ A1 − U and Ψ∞(`)' `∞.
More explicitly, let ζ be a local coordinate at ∞, and r = rk(V∞). We apply the well-

known description of connections on a punctured formal disk (see, for instance, [Mal91,
Theorem III.1.2]). Since V∞ is irreducible, there exists a ramified extension

k((ζ1/r))⊃ k((ζ)) =K∞

and a differential form µ ∈ k((ζ1/r)) dζ such that

V∞ ' (k((ζ1/r)), d+ µ).

Choose a differential form µ` ∈ k((ζ)) dζ as a ‘best approximation’ of µ in the sense that the
leading term of µ− µ` is a fractional power of ζ. Then take

`∞ = (K∞, d+ µ`).

4.2 Details of the proof: Case I
Let us fill in the gaps in the above outline. We start with some local calculations. Fix x ∈ P1.

Recall that for V ∈ Hol(DKx), δ(V) is defined by (3.1). It is obvious that δ is semiadditive.

Lemma 4.3. For a short exact sequence

0→V1→V →V2→ 0

in Hol(DKx), we have

δ(V)> δ(V1) + δ(V2).
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Proof. Indeed,

rk(V) = rk(V1) + rk(V2),
irreg(V) = irreg(V1) + irreg(V2),

dimH0
dR(Kx, V)6 dimH0

dR(Kx, V1) + dimH0
dR(Kx, V2). 2

Corollary 4.4. For any V ∈ Hol(DKx), there is irreducible V ′ ∈Hol(DKx) such that

δ(End(V))>
rk(V)
rk(V ′)

δ(Hom(V ′, V)).

Proof. Let V1, . . . , Vk be the irreducible components of V (with multiplicity). Take V ′ to be the
Vi that minimizes

δ(Hom(V ′, V))
rk V ′

. (4.2)

Semiadditivity of δ implies that

δ(End(V))>
∑
i

δ(Hom(Vi, V)),

and Corollary 4.4 follows. 2

Remark . It is easy to see that this choice of V ′ actually minimizes (4.2) over all V ′ ∈Hol(DKx).
Also, if irreducible V ′ ∈Hol(DKx) minimizes (4.2), then V ′ is a component of V.

Now let L be as in Theorem A; for every x ∈ P1 − U , Corollary 4.4 yields an irreducible object
Vx ∈Hol(DKx) such that

δ(End(Ψx(L)))>
rk(L)
rk Vx

δ(Hom(Vx,Ψx(L))).

It remains to prove the following statements.

Proposition 4.5 (Theorem A, Case Ia). Suppose that there is a rank-one local system ` on U
such that Vx = Ψx(`) for every x ∈ P1 − U . Then either Hom(`, L) or Hom(L, `) is non-zero.

Proof. It suffices to show that χdR(j!∗(Hom(`, L)))> 0. Indeed, by Proposition 3.1, we have

χdR(j!∗(Hom(`, L))) = 2rk(L)−
∑

δ(Hom(Vx,Ψx(L)))

> 2rk(L)− 1
rk(L)

∑
δ(End(Ψx(L)))

=
rig(L)
rk L

=
2

rk(L)
> 0. 2

Proposition 4.6 (Theorem A, Case Ib). Suppose that there is λ ∈ k− Z and a rank-one
connection ` on U satisfying (4.1). Then rk(Hom(`, L) ?mid Kλ)< rk(L).

Proof. By Proposition 3.6, we have

rk(Hom(`, L) ?mid Kλ) =
∑

x∈P1−U

δ(Hom(Vx,Ψx(L)))− rk(L)

6
1

rk(L)

∑
δ(End(Ψx(L)))− rk(L)

= rk(L)− rig(L)
rk(L)

= rk(L)− 2
rk(L)

< rk(L). 2
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4.3 Details of the proof: Case II
Again, we start with some local results at fixed x ∈ P1.

Lemma 4.7. Suppose that V,W ∈Hol(DKx) are irreducible.

(i) If slope(V) 6= slope(W), then

slope(Hom(V,W)) = max(slope(V), slope(W)),
δ(Hom(V,W))

rk(V) rk(W)
= 1 + max(slope(V), slope(W)).

(ii) If slope(V) = slope(W) has denominator d, then

slope(Hom(V,W))>
(

1− 1
d

)
slope(W),

δ(Hom(V,W))
rk(V) rk(W)

> 1− 1
d2

+
(

1− 1
d

)
slope(W).

Proof. We use classification of connections on a formal disk (see, for instance, [Mal91,
Theorem III.1.2]). There exists a ramified extension

K̃x = k((z1/r))⊃Kx = k((z))

and isomorphisms

V ⊗ K̃x ' (K̃rk V
x , d+ diag(µ(1)

V , . . . , µ
(rk V)
V )), µ

(i)
V ∈ Ω

K̃x
= k((z1/r)) dz;

W ⊗ K̃x ' (K̃rkW
x , d+ diag(µ(1)

W , . . . , µ
(rkW)
W )), µ

(j)
W ∈ Ω

K̃x
.

Let us denote by ord(µ) the order of µ ∈ Ω
K̃

in z (which might be fractional). Then

ord(µ(i)
V ) =−1− slope(V) (i = 1, . . . , rk(V)),

ord(µ(j)
W ) =−1− slope(W) (j = 1, . . . , rk(W)).

Then

irreg(Hom(V,W)) =
∑
i,j

max(−1− ord(µ(j)
W − µ

(i)
V ), 0). (4.3)

Proof of (i). The leading terms of µ(j)
W − µ

(i)
V do not cancel, so

ord(µ(j)
W − µ

(i)
V ) = min(ord(µ(j)

W ), ord(µ(i)
V )).

Now (4.3) implies the formula for slope(Hom(V,W)). To prove the formula for δ(Hom(V,W)),
we note that H0(Kx,Hom(V,W)) = Hom(V,W) = 0, so

δ(Hom(V,W)) = irreg(Hom(V,W)) + rk(Hom(V,W)).

Proof of (ii). Now cancellation in the leading terms of µ(j)
W − µ

(i)
V is possible. However, V ⊗ K̃x

carries an action of the Galois group Gal(K̃x/Kx). In particular, leading terms of µ(j)
V come in

d-tuples of the form

{ζaz−1−slope(V) dz : ζ ∈ k, ζd = 1}
for some fixed a ∈ k− {0}. Therefore, among the differences µ

(j)
W − µ

(i)
V , not more than one

out of every d has cancellation. Now (4.3) implies the formula for slope(Hom(V,W)). Finally,
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dim Hom(V,W)6 1, and so

δ(Hom(V,W))
rk(V) rk(W)

>
rk(V) rk(W)− 1

rk(V) rk(W)
+ slope(Hom(V,W))

> 1− 1
rk(V) rk(W)

+
(

1− 1
d

)
slope(W).

It remains to note that rk(V), rk(W)> d. 2

Lemma 4.8. Suppose V,W ∈Hol(DKx), and that V is irreducible.

(i) If rk(V)> 1, then δ(Hom(V,W))> rk(V) rk(W).

(ii) If slope(V)> 2 is not an integer, then δ(Hom(V,W))> 2rk(V) rk(W).

Proof. By semiadditivity of δ, we may assume that W is irreducible without losing generality.

(i) Without loss of generality, we may assume that slope(V) is not an integer. Indeed, we can
replace V and W with Hom(`, V) and Hom(`,W) for any ` ∈Hol(DK) of rank one, and we
can choose ` so that slope(Hom(`, V)) is not an integer (as in Remark 4.2). Now the statement
follows from Lemma 4.7(i) if slope(V) 6= slope(W) or from Lemma 4.7(ii) if slope(V) = slope(W).

(ii) If slope(V) 6= slope(W), the statement follows from Lemma 4.7(i). Assume slope(V) =
slope(W). Then slope(W)> 2 + 1/d, where d is the denominator of slope(W). Lemma 4.7(ii)
implies

δ(Hom(V,W))
rk(V) rk(W)

> 1− 1
d2

+
(

1− 1
d

)
·
(

2 +
1
d

)
= 2 +

d2 − d− 2
d2

> 2. 2

Lemma 4.9. Suppose that V ∈ Hol(DKx) is irreducible and slope(V)< 2 is not an integer. Then
for any W ∈Hol(DKx),

δ(Hom(V,W))> (irreg(W>1)− rk(W>1)) rk(V) + rk(V) rk(W).

(Recall that W>1 is the maximal submodule of W whose components all have slopes greater
than one.)

Proof. By semiadditivity of δ, we can assume thatW is irreducible (the right-hand side is additive
inW). The statement follows from Lemma 4.8(i) if slope(W)6 1, so assume slope(W)> 1. Then
W =W>1, and we have to show that

δ(Hom(V,W))
rk(V) rk(W)

> slope(W).

If slope(V) 6= slope(W), this follows from Lemma 4.7(i). Suppose therefore that slope(V) =
slope(W). Then by Lemma 4.7(ii), we have

δ(Hom(V,W))
rk(V) rk(W)

− slope(W)> 1− 1
d2
− slope(W)

d
> 1− 1

d2
− 1
d

(
2− 1

d

)
= 1− 2

d
> 0.

Here we have used that slope(V) = slope(W)6 2− 1/d. 2

Let us return to the second case of Theorem A. We need to verify the following two claims.
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Proposition 4.10. There is at most one x ∈ P1 − U such that rk(Vx)> 1.

Proof. Indeed, by Lemma 4.8(i), whenever rk(Vx)> 1, we have

δ(End(Ψx(L)))>
rk(L)
rk(Vx)

δ(Hom(Vx,Ψx(L)))> rk(L)2.

However, by rigidity, ∑
x

δ(End(Ψx(L))) = 2rk(L)2 − rig(L)< 2rk(L)2. 2

Proposition 4.11 (Theorem A, Case II). Suppose that for ∞∈ P1 − U , rk(V∞)> 1. Choose
a rank-one connection ` on U such that Vx 'Ψx(`) for x ∈ A1 − U , and the slope of
Hom(Ψ∞(`), V∞) is not an integer. Then rk(Hom(`, L)∧)< rk(L).

Proof. Indeed, by Proposition 3.5, we have

rk(Hom(`, L)∧) =
∑

x∈A1−U

δ(Hom(Vx,Ψx(L)))

+ irreg(Ψ∞(Hom(`, L))>1)− rk Ψ∞(Hom(`, L))>1.

It suffices to prove the inequality

irreg(Ψ∞(Hom(`, L))>1)− rk Ψ∞(Hom(`, L))>1

6
δ(Hom(V∞,Ψ∞(L)))

rk(V∞)
− rk(L), (4.4)

and then use the argument of Proposition 4.6.
To prove (4.4), take

V =Hom(Ψ∞(`), V∞), W =Hom(Ψ∞(`),Ψ∞(L)).

By the argument used to prove Proposition 4.10, δ(Hom(V,W))< 2rk(V) rk(W). We then see
that slope(V)< 2 by Lemma 4.8(ii). Finally, (4.4) follows from Lemma 4.9. 2

5. Applications

5.1 Irregular Deligne–Simpson problem
Irregular Katz’s algorithm can be applied to the ‘irregular Deligne–Simpson problem’ for rigid
local systems. In the case of regular singularities, this is explained in [Kat96, § 6.4], and the
irregular case is quite similar.

Definition 5.1. A formal type datum is a collection of isomorphism classes

{[Vx]}x∈P1

of connections Vx ∈Hol(DKx) such that the following conditions hold:

(i) r = rk Vx does not depend on x;

(ii) for all but finitely many x, Vx is trivial, Vx ' (Kr
x, d);

(iii)
∑

x res(
∧r Vx) ∈ Z (since

∧r Vx ∈Hol(DKx) has rank one, its residue makes sense as an
element of k/Z).
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A solution of the (irregular) Deligne–Simpson problem corresponding to {[Vx]} is an
irreducible connection L on an open subset of P1 with prescribed formal type: Ψx(L)' Vx for
all x.

The rigidity index of {[Vx]} is

rig{[Vx]}= 2r2 −
∑
x∈P1

δ(End(Vx)),

where δ is defined by (3.1).

Suppose that L solves the Deligne–Simpson problem for {[Vx]}. By Proposition 3.1, rig(L) =
rig{[Vx]}. In particular, rig{[Vx]}6 2.

Let L∧ be the Fourier transform of L, and let {[V∧x ]} be the formal type of L∧: V∧x = Ψx(L∧).
One can check that {[V∧x ]} is determined by {[Vx]}; essentially, V∧x is given by the local Fourier
transform of [BE04] (this is discussed in more detail in [Ari08]). In other words, we obtain a
notion of the Fourier transform for formal type data, and {[V∧x ]} is the Fourier transform of
{[Vx]}.

For arbitrary formal type datum {[Vx]}, its Fourier transform {[V∧x ]} might be undefined.
Actually, [V∧x ] (for x 6=∞) is constructed from {[Vx]} in two steps: the local Fourier
transform describes the quotient V∧x /(V∧x )hor modulo the maximal trivial subconnection, while
Proposition 3.5 gives a formula for dim(V∧x ). This determines the isomorphism class [V∧x ],
assuming the obvious compatibility condition dim(V∧x /(V∧x )hor)6 dim V∧x . If the compatibility
condition fails, the Fourier transform of {[Vx]} is undefined.

The Fourier transform L→L∧ provides a one-to-one correspondence between solutions to the
Deligne–Simpson problems for {[Vx]} and {[V∧x ]}. If {[V∧x ]} is undefined, the Deligne–Simpson
problem for {[Vx]} has no solutions.

The situation for middle convolution L ?mid Kλ is similar to that for the Fourier transform.
Again, it makes sense for formal type data, but it is not always defined. If the formal type data
are related by the middle convolution, their Deligne–Simpson problems are equivalent. If the
middle convolution of a formal type datum is undefined, its Deligne–Simpson problem has no
solutions.

Now let us analyze the Deligne–Simpson problem for a formal type datum {[Vx]} in the case
rig{[Vx]}= 2. We can run an irregular Katz’s algorithm on the level of formal type data. On
each step, we decrease the rank of the formal type datum using either the middle convolution
or the Fourier transform, assuming that they are defined. After finitely many steps, we arrive at
one of the two situations.

– The irregular Katz’s algorithm decreases the rank of the formal type datum to one. Then the
Deligne–Simpson problem for {[Vx]} is equivalent to the Deligne–Simpson problem for a
formal type datum of rank one, which is clearly solvable.

– The output of a step of irregular Katz’s algorithm is undefined, and then the Deligne–
Simpson problem for {[Vx]} has no solutions.

Remark . In [Sim09], Simpson uses Katz’s algorithm to analyze the (regular) Deligne–Simpson
problem without restrictions on the rigidity index. We do not know whether the irregular Katz’s
algorithm can be used for a similar analysis in the irregular case.
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5.2 Rigidity index zero and Lax pairs for Painlevé equations
The irregular Katz’s algorithm can also be used to classify connections L of rigidity index 0; the
details will be given elsewhere. In the case of regular singularities, such a classification was proved
by Kostov [Kos01, Lemma 17].

We claim that the proof of Theorem A can be modified for such L. It is not true that the
rank of L can always be decreased to one, however, the algorithm’s stopping points (that is,
the connections whose rank cannot be decreased) can be described.

Let us study the moduli spaces of connections. For a fixed formal type datum {[Vx]}, consider
the moduli space M = M{[Vx]} of irreducible connections of this formal type. Equivalently, points
of M are solutions to the Deligne–Simpson problem. Then

dim M =−2− rig({[Vx]});

in particular, if rig({Vx}) = 0, then M is a surface.
If {[V∧x ]} is the Fourier transform of {[Vx]}, we obtain an isomorphism

M{[Vx]} →̃M{[V∧
x ]} : L 7→ L∧.

Similarly, middle convolution L 7→ L ?mid Kλ induces an isomorphism between moduli spaces.
Therefore, the space M does not change as we apply the irregular Katz’s algorithm to {[Vx]}. In
this way, we can always reduce to the case when the formal type Vx is a stopping point of the
algorithm.

Important examples are spaces M for rk Vx = 2. Assume rig{[Vx]}= 0, so dim(M([Vx])) = 2.
Note that {[Vx]} is automatically a stopping point of the algorithm, because its rank cannot be
decreased to one, as all rank-one systems are rigid. The surface M is the space of initial conditions
of a Painlevé equation P∗, where index ∗= I, II, . . . ,VI depends on {[Vx]}. Geometrically, P∗
controls the isomonodromy deformation of connections. The isomorphisms induced by the Fourier
transform and the middle convolution respect the isomonodromy deformations. Therefore, if
generalized Katz’s algorithm reduces formal type datum {[Wx]} to {[Vx]}, the isomonodromy
deformation of connections of type {[Wx]} is also given by P∗. In other words, {[Wx]} gives
another Lax pair for P∗. In this manner, irregular Katz’s algorithm in the case of rigidity index
zero can be viewed as a reduction algorithm for Lax pairs for Painlevé equations.

Remark . Only the sixth Painlevé equation PVI appears in the classification of [Kos01,
Lemma 17]; the other Painlevé equations correspond to irregular formal types.

6. Remarks

6.1 Middle convolution via twisted differential operators
The middle convolution with Kummer local system is naturally formulated in terms of rings of
twisted differential operators (TDOs).

Denote by D1 the TDO ring acting on OP1(1) (see [BB93] for the definition of a TDO ring).
Let us ‘scale’ D1 by a fixed number λ ∈ k, denote the resulting TDO by Dλ. Informally, Dλ is
the ring of differential operators on OP1(λ).

Remark . Consider the natural projection p : A2 − {0}→ P1. We can interpret holonomic Dλ-
modules as D-modules M on A2 − {0} such that the restriction of M to any fiber p−1(x) is a
sum of several copies of Kλ. Informally, we require that M is a monodromic D-module whose
restriction to each fiber has ‘monodromy e2πiλ’.
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Suppose that λ ∈ k− Z. In [DE03], D’Agnolo and Eastwood present an equivalence R (the
Radon transform) between the category of Dλ-modules and that of D−λ-modules. (One should
keep in mind that up to equivalence, the category of Dλ-modules depends only on the image
of λ in k/Z.) Here R can be viewed as a twisted version of the transform defined by Brylinski
in [Bry86]. In a sense, it is also a particular case of the Radon transform defined by Braverman
and Polishchuk, who consider monodromic sheaves whose monodromy need not be scalar [BP98].

Explicitly, R can be defined as the integral transform whose kernel is a rank-one Dλ �
Dλ-module on P1 × P1 with a simple pole along the diagonal (and no other singularities).
Alternatively, if one interprets Dλ-modules as monodromic D-modules on A2 − {0}, the
equivalence is simply the Fourier transform on A2.

We can view the middle convolution with Kummer local system as a composition of the
Goresky–MacPherson extension and the Radon transform as follows. A connection L on an open
set U ⊂ A1 can be viewed as a Dλ|U -module using the trivialization Dλ|A1 =DA1 . We then extend
it to a Dλ-module j!∗L for j : U ↪→ P1. The Radon transform R(j!∗L) is a holonomic D−λ-module
that is smooth on U . Its restriction to U is a connection which equals L ?mid Kλ.

The first case of Theorem A can be reformulated.

(i′) There is a rank-one D−λ|U -module ` such that

rkR(j!∗ Hom(`, L))< rk(L).

Note that the point ∞ plays no special role in this formulation. Similarly, if one rewrites
Proposition 3.6 using the Radon transform, the special treatment of ∞ is not necessary,
essentially because it plays no special role in the definition of R.

Remark . In [Sim09], Simpson studies the middle convolution via the so-called ‘convoluters’. One
can rewrite Theorem A(i) using the de Rham version of convoluters [Sim09, § 3.3] with irregular
singularities. From the viewpoint of TDO rings, the convoluter encodes the D−λ-module ` from
case (i′).

6.2 The l-adic version of the irregular Katz’s algorithm
The following observation is due to Deligne.

Most of the proof of Theorem A remains valid in the settings of l-adic sheaves. The only
exception is Lemma 4.7. Its first statement still holds (see [Kat88, Lemma 1.3]), but the second
statement requires the additional assumption that d (the denominator of the slope) is not divisible
by the characteristic of the ground field. Let us make the statement precise.

Let K be the fraction field of a Henselian valuation ring whose residue field is perfect of finite
characteristic p. Denote by I ⊂Gal(Ksep/K) the inertia group of K and by P ⊂ I its Sylow’s
p-group. For a continuous finite-dimensional representation V of P (over a fixed l-adic field), we
denote its break decomposition by

V =
⊕
s∈Q

V (s).

One can check the following statement.

Lemma 6.1. Let V and W be continuous finite-dimensional representations of Gal(Ksep/K).
Fix s ∈Q with denominator d, and suppose that p does not divide d. Then

dim(Hom(V, W )(s))> dim V (s) dimW (s)
(

1− 1
d

)
. (6.1)
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Remark . Since Lemma 6.1 holds for all V and W , one can replace them by V (s) and W (s).
In other words, in (6.1) one can replace Hom(V, W )(s) with the image of Hom(V (s), W (s)) in
this space.

In particular, (6.1) holds if either dim(V ) or dim(W ) is less than p. This implies that the
extension of Katz’s algorithm works for wild l-adic local systems whose rank does not exceed
the characteristic p of the ground field.

Acknowledgements

I am very grateful to P. Belkale for igniting my interest in Katz’s middle convolution algorithm
and to V. Drinfeld for sharing his views on the middle convolution. When I gave a talk on this
subject at the Institute for Advanced Study, I learned that the extension of Katz’s algorithm is
also presented in a letter by P. Deligne to N. Katz. I would like to thank P. Deligne for a copy of
the letter. I discussed these results with many mathematicians. In addition to those mentioned
above, I would also like to thank S. Bloch, P. Boalch, and A. Varchenko. I am also grateful to
the referee for useful comments.

References

Ari08 D. Arinkin, Fourier transform and middle convolution for irregular D-modules, Preprint (2008),
arXiv:math/0808.0699.
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