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1. Introduction. Let G be a group and suppose that every abelian subgroup of G
has finite rank. (For r a positive integer, a group G has finite (Prüfer) rank at most r if
every finitely generated subgroup of G is generated by r elements; if there is no such r
then G has infinite rank.) For certain classes of groups G this suffices to ensure that G
itself has finite rank. For example, this is the case for locally finite groups [14], locally
nilpotent groups (see [10, Theorem 6.36 and its corollaries]), and for hyperabelian (and
even radical) groups [1]. It is not the case for locally soluble groups, as shown in [9].
However, the following result was established in [4].

THEOREM 1. Let G be a locally (soluble-by-finite) group.
(i) If every locally soluble subgroup of G has finite rank then G has finite rank.

(ii) If every abelian subgroup of G has finite rank and there is a positive integer r such
that every torsion-free abelian subgroup of G has rank at most r then G has finite rank.

Our proof in [4] of part (i) of Theorem 1 involved an appeal to the Classification
Theorem for finite simple groups (CFSG), and one of our objectives in the present
article is to provide a CFSG-free proof of this result; for part (ii) one immediately
reduces to the case where G itself is locally soluble, using (i), and so no further appeal
to CFSG is required. Accordingly, we shall not re-prove part (ii) here. Proposition 1
below is quite straightforward to prove, and constitutes a major component of our
revised proof. We remark that our original proof in [4] also involved the establishing
of some interesting results on sequences of finite semi-simple groups.

Theorem 1 may be viewed as belonging to a larger family of results stating that a
group with “many” subgroups having a certain property P, or “few” subgroups not
having P, itself satisfies P. Among the many articles on this broad topic, in addition to
those referred to above, we mention here [5], [7] and [13]. For a property P of groups, a
group G satisfies the weak maximal condition for non-P subgroups if there is no infinite
ascending chain H0 < H1 < . . . of non-P-subgroups of G with each index |Hi+1 : Hi|
infinite. The weak minimal condition for non-P subgroups is defined similarly. Zaičev
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proved in [16] that a locally (soluble-by-finite) group G satisfying either the weak
maximal or the weak minimal condition for all subgroups is a soluble-by-finite minimax
group, that is, G has a normal soluble subgroup H of finite index which in turn has
a finite normal series whose factors are abelian and satisfy either max or min. In
particular, G has finite rank. Here we establish the following two results.

THEOREM 2. Let G be a locally (soluble-by-finite) group that satisfies the weak
minimal condition for locally soluble subgroups of infinite rank. Then G has finite rank.

THEOREM 3. Let G be a locally (soluble-by-finite) group that satisfies the weak
maximal condition for locally soluble subgroups of infinite rank. Then G has finite rank.

On the way to proving Theorems 2 and 3 we shall establish a further result,
presented as Theorem 4 below. Firstly we require some more notation. A locally
(nilpotent-by-finite) group G is (here) said to have finite 0-rank if there is an integer r
such that the rank of every finitely generated torsion-free nilpotent subgroup of G is
at most r; otherwise G has infinite 0-rank. Also, for a subgroup X of a group G, we say
that the isolator of X in G is G, written IG(X) = G, if every element of G has a nonzero
power in X . We may now state our result.

THEOREM 4. Let G be a locally (nilpotent-by-finite) group that has infinite 0-rank.
Then there are subgroups H and K of G, each of infinite 0-rank, and infinite chains
H = H0 < H1 < . . . and K = K0 > K1 > . . . . of subgroups of G such that each of the
indices |Hi+1 : Hi|, |Ki : Ki+1| is infinite. If G is countable then H and K may be chosen
so that IG(H) = G = IG(K).

A further avenue of investigation, and one pursued in (for example) [2], [12] and
[13], is the consideration of groups G in which there are “few” conjugacy classes of non-
P subgroups, one possible conclusion being that there are no such subgroups! Along
these lines, and using the contrapositive form of the implication suggested above, we
have the last of our main results.

THEOREM 5. Let G be a locally (soluble-by-finite) group and suppose that G has
infinite rank. Then G has infinitely many subgroups of infinite rank that are pairwise
non-conjugate.

Next, we present two results that are slightly stronger than we need and that will
serve to isolate a couple of steps in the subsequent argument. As usual, γi(X) denotes
the ith term of the lower central series of a group X , and the Fitting radical Fitt(X) of
X is the product of all normal nilpotent subgroups of X .

PROPOSITION 1. Let F be a finitely generated group, T the maximal normal torsion
subgroup of F, and let H/T = Fitt(F/T). Suppose that F/H has a normal torsion-free
abelian subgroup K/H of finite index, and that K/T has finite rank at most r. Then there is
a positive integer m depending only on r such that γr+1(((Fm)′)m) is periodic. Consequently,
if G is a group in which every finitely generated subgroup F has the structure described
above (where r is fixed ) then γr+1(((Gm)′)m) is periodic. (Thus G is “periodic-by-(nilpotent
of class at most r)-by-(exponent dividing m)-by-abelian-by-(exponent dividing m).”)

PROPOSITION 2. Let G be a finitely generated periodic-by-soluble group, with maximal
normal periodic subgroup T, let H/T = Fitt(G/T) and suppose that G/T has finite rank.

(i) If H/T has rank r then there is a positive integer d depending only on r such that
G/T has derived length at most d.
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(ii) If G/H is (free abelian of rank s)-by-finite then there is a positive integer m
depending only on s and a normal subgroup C of index at most m in G such that HC′/H
is finite.

Finally in this section we summarize some well-known results related to groups of
finite rank, results that we will have occasion to use in the subsequent section, often
without further reference.

(a) A finitely generated soluble group of finite rank is minimax [10, Theorem 10.38]
and hence nilpotent-by-abelian-by-finite [10, Theorem 3.25].

(b) A group of finite rank is locally soluble if and only if it has a characteristic
ascending abelian series [10, Lemma 10.39 and Theorem 10.38].

(c) A locally finite group of finite rank is almost locally soluble, that is, it has a
normal locally soluble subgroup of finite index [14]. Indeed, the same holds for locally
(soluble-by-finite) groups, by [3] (see also [4]).

2. Proofs. We begin by establishing the auxiliary results stated in the introduc-
tion. It will be evident that we have made no attempt to obtain “best possible” bounds.

Proof of Proposition 1. First we note that, since the claim is that the defined verbal
subgroup of G is periodic, we may as well assume that G = F . By [15, 9.33] there is
an integer m = m(r) such that every finite subgroup of GL(r, Q) has order at most m,
and it follows (in particular) that Gm centralizes K/H, so GmH/H is centre-by-finite,
from which it follows that L/H := (Gm)′H/H is finite. Now each upper central factor
A of H/T is G-invariant and torsion-free abelian of rank at most r, and as above it
follows that Lm centralizes every such factor and hence (using the fact that H/T also
has nilpotency class at most r) that H/T is contained in the rth term of the upper
central series of LmH/T . But this implies that γr+1(LmH/T) is finite [10, Corollary 2
to Theorem 4.21] and hence trivial. Since (Gm)′ ≤ L, the result follows.

Proof of Proposition 2. We may assume that T = 1, so that G is minimax and
hence nilpotent-by-abelian-by-finite. For part (i) we may apply the well-known result
of Zassenhaus on (locally) soluble linear groups [10, Theorem 3.23] to deduce that
there is a positive integer d = d(r) such that the dth term L of the derived series of G
centralizes each upper central factor of H. If LH/H is nontrivial then it has a nontrivial
G-invariant abelian subgroup M/H, but M is nilpotent and hence contained in H, so
we have a contradiction. Since H has nilpotency class at most r the result follows. For
part (ii) we may argue as in the proof of Proposition 1, with m as stated there, to obtain
the result.

Proof of Theorem 1(i). We may assume that G is countable and so is the ascending
union of finitely generated subgroups F1 < F2 < . . . . For each i let Si denote the soluble
radical of Fi, and set R = 〈Si : i ≥ 1〉. Then R is locally soluble and hence of finite rank
r, say, and so G satisfies the hypotheses and hence the conclusion of Proposition 1.
Every abelian subgroup of G has finite rank and so the periodic (and hence locally
finite) radical P of G has finite rank and hence has a locally soluble radical Q of finite
index. Since the centralizer of P/Q in G has finite index we may assume that P = Q.
As a locally soluble group of finite rank, P has a characteristic (and hence G-invariant)
ascending series with abelian factors. We proceed to work our way up the series given
by Proposition 1, showing that successive terms have finite rank. Let M be a normal
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subgroup of G such that P ≤ M and γr+1(M) ≤ P. Then M is a hyperabelian group all
of whose abelian subgroups have finite rank, and so M has finite rank and is therefore
locally soluble. Next, let L be a normal subgroup of G containing M such that L/M has
finite exponent. If S/M is a locally soluble subgroup of L/M then S is locally soluble
(since finitely generated subgroups of S are finite mod M) and so S and hence S/M has
finite rank, giving L/M of finite rank and hence L of finite rank. As before we may pass
to an appropriate subgroup of finite index in L and assume that L is locally soluble and
hence has an ascending G-invariant abelian series. If N/L is a normal abelian subgroup
of G/L then N is hyperabelian and therefore of finite rank. Finally, if G/N has finite
exponent then it is of finite rank, as was the case for L/M. The result follows.

It is clear that the hypotheses of Theorems 2 and 3 are inherited by subgroups and
by homomorphic images. We also observe that if a group G satisfies the weak maximal
or weak minimal condition for abelian subgroups of infinite rank then every abelian
subgroup of G is easily seen to have finite rank. By the remarks in the introduction we
may therefore state the following.

LEMMA 1. Let G be a group which satisfies either the weak maximal or the weak
minimal condition for subgroups of infinite rank. If G is locally finite or locally nilpotent
or hyperabelian then G has finite rank.

Our next prerequisite is quite trivial.

LEMMA 2. Let G be a group that is the ascending union of subgroups F0 < F1 < . . . ,

and for each i ≥ 1 let Ni be a normal subgroup of Fi. Let N be the subgroup generated by
the Ni, and suppose that Ni+1 ∩ Fi ≤ Ni for each i. Then N ∩ Fi = N1 . . . Ni for each i.

Proof. Firstly we note that Nj is normalized Ni whenever i ≤ j, and so the
subgroup generated by the Ni is indeed their product. Fix i and let j be greater
than i. Then (N1 . . . Nj) ∩ Fi = (N1 . . . Nj) ∩ Fj−1 ∩ Fi = ((N1 . . . Nj−1)(Nj ∩ Fj−1)) ∩
Fi = (N1 . . . Nj−1) ∩ Fi, since Nj ∩ Fj−1 ≤ Nj−1. Repeating this argument as often as
necessary we obtain (N1 . . . Nj) ∩ Fi = N1 . . . Ni, and the result follows easily.

Proof of Theorem 2. We may suppose that G is countable and, by Theorem 1,
locally soluble. Assuming the result false, we may further suppose that G has infinite
rank but that every subgroup of infinite index in G has finite rank. Let K be the
subgroup generated by all normal subgroups N of G that have finite rank. Each such
N has an ascending characteristic abelian series and so K is hyperabelian and hence,
by Lemma 1, of finite rank. Factoring, we may assume that K = 1, so every nontrivial
normal subgroup of G has infinite rank and hence finite index in G. Let R denote the
finite residual of G. If R is nontrivial then G/R is finite and R is a minimal normal
subgroup of G. But a chief factor of a locally soluble group is abelian [11, 12.5.1], and
we easily obtain the contradiction that G is finite. So G is residually finite.

Write G as an ascending union of finitely generated subgroups Fi, let Ti be the
torsion radical of Fi and Hi/Ti = Fitt(Fi/Ti), for each i. Observe that each Fi has
finite rank (for example, by Lemma 1). If there is a bound for the ranks of the Hi/Ti

then we deduce from Proposition 2 that F (d)
i ≤ Ti for all i, where d is some positive

integer independent of i, so that G(d) is periodic and hence locally finite. By Lemma 1
G(d) has finite rank and is therefore trivial, so G is soluble and Lemma 1 gives a
contradiction. Thus the ranks of the Hi/Ti are unbounded. Let H = H1H2 . . . and, for
each i, let Li = 〈Hi, Hi+1 . . .〉. Each Li has infinite rank and therefore has finite index
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in G. It is routine to show that Hi+1 ∩ Fi ≤ Hi for all i, and so H ∩ Fi = H1 . . . Hi,
by Lemma 2. In the same manner we have Li ∩ Fi = Hi (for example, by relabelling
so that the sequence begins at Fi). Thus Fi/Hi is finite for all i. Furthermore, each Fi

is minimax and residually finite, and so Ti is finite for all i, and thus Fi is finite-by-
nilpotent-by-finite and hence nilpotent-by-finite. We may now appply Theorem 4 to
obtain the contradiction that G has finite rank, and this completes the proof.

There is one further result that we shall need for the proof of Theorem 3; it appears
as [8, Lemma 2] and is recorded here for convenience. In any case it is easy to prove,
using the fact that the Hirsch length of a soluble minimax group is finite.

LEMMA 3. Let G be a group that is locally (soluble of finite rank) and suppose that
G is residually (torsion-free nilpotent). Then G is locally nilpotent.

Proof of Theorem 3. Again we may assume that G is countable and locally soluble,
also that G has no nontrivial normal subgroups of finite rank. If N is a nontrivial
normal subgroup of G then N has infinite rank and so G/N satisfies the weak maximal
condition for all subgroups and is therefore soluble minimax [16], so the finite residual
of G/N is radicable (or “divisible”) nilpotent, by [10, Theorem 9.31]. The intersection
V of all nontrivial normal subgroups N of G is trivial, for if not then V is a chief factor
of G and hence abelian and therefore of finite rank, a contradiction. We deduce from
this that the finite residual R of G is residually radicable nilpotent.

Suppose first that R is nontrivial. If S is a proper normal subgroup of finite index
in R then 1 �= U := Rm ≤ S for some positive integer m, and G/U is minimax, so its
finite residual R/U is radicable, a contradiction. Since R is also a counterexample to
the statement of the theorem we may assume that G itself has no proper subgroups
of finite index; thus G/N is minimax and radicable nilpotent for all nontrivial normal
subgroups N. Let W be the intersection of all nontrivial normal subgroups M of G such
that G/M is torsion-free. Each such G/M is a torsion-free locally nilpotent group of
finite rank and hence nilpotent, and Lemma 3 applies to give us G/W locally nilpotent
and therefore nilpotent (as W �= 1, by Lemma 1). If L is a G-invariant subgroup of W
with G/L radicable nilpotent and minimax then the torsion subgroup W/L of G/L is
also radicable [10, Theorem 9.23] and hence abelian. Since the intersection of all such
L is trivial we deduce that W is abelian, and we have a contradiction as before. Thus
G is residually finite.

Now G is the ascending union of finitely generated soluble minimax subgroups
F0 < F1 < . . . , where each Fi has finite torsion radical Ti since G is residually finite.
Let Hi/Ti = Fitt(Fi/Ti) and let Ki/Hi be a normal free abelian subgroup of finite index
in Fi/Hi. If there is an upper bound for the ranks of the Hi/Ti then we may apply
Proposition 2 to deduce that G(d) is locally finite for some positive integer d, and then
Lemma 1 gives the contradiction that G has finite rank. Thus H := 〈H1, H2 . . .〉 has
infinite rank.

Suppose next that there is an upper bound s for the ranks of the factors Ki/Hi.
Again by Proposition 2, there is a positive integer m such that, for each i, ((Fi)m)′

is finite modulo Hi. Thus (Gm)′ is locally (finite-by-nilpotent-by-finite) and hence
locally (nilpotent-by-finite). Theorem 4 and Lemma 1 now give the contradiction
that G has finite rank, and so the ranks of the Ki/Hi are unbounded. By passing to a
subsequence of the Fi if necessary we may assume that, for all i, the rank of Ki+1/Hi+1

is greater than that of Fi. If |HFi+1 : HFi| is finite for some i then, using Lemma 2, we
have |HFi+1 : HFi| = |Fi+1 : Fi(H ∩ Fi+1)| = |Fi+1 : Fi(H1 . . . Hi+1)| = |Fi+1 : FiHi+1|,
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which is infinite. By this contradiction, each index in the chain HF1 < HF2 < . . . is
infinite, and the result follows.

For the proof of Theorem 4 we need two more preliminary results. It is well-known
that if X is a polycyclic-by-finite group and Y is a subgroup of X then the intersection
of all subgroups of finite index in X that contain Y is exactly Y . (For the case where
X is polycyclic, see [11, 5.4.16]; the same proof holds in the polycyclic-by-finite case.)
Thus, if W is a normal subgroup of finite index in Y then there is a subgroup M of
finite index in X with M ∩ Y = W (as may be seen by considering a transversal to W
in Y ). Passing to the core of M in X , we see that there is a normal subgroup N of finite
index in X such that N ∩ Y ≤ W. For finitely generated nilpotent-by-finite groups we
also have the following.

LEMMA 4. Let X be a finitely generated nilpotent-by-finite group and let U be a
normal torsion-free nilpotent subgroup of finite index in X (such always exists). Let Y
be a subgroup of infinite index in X and let n be a positive integer. Then there is an
X-invariant subgroup V of finite index in U such that |U : U ∩ YV |(= |U : V (U ∩ Y )|)
is divisible by n.

Proof. Let W = Y ∩ U , which has infinite index in U . If there is a normal subgroup
M of finite index in U such that |U : MW | is divisible by n then V := CoreX (M) has
finite index in U and |U : U ∩ YV | = |U : VW | is also divisible by n, and we are
done. Let Z be the centre of U ; if WZ/Z has infinite index in U/Z then an easy
induction gives such an M, so suppose that |U : WZ| is finite. Then WZ/W is finitely
generated abelian and infinite, so there is a subgroup S/W of index n in WZ/W .
Setting M = CoreU (S) we have the result.

Our other requirement is a trivial one, and we omit the proof.

LEMMA 5. Let X be a group, π a set of primes, and let M, N be normal subgroups of
X such that M ≤ N and N/M is a finite π -group. Also, let S ≤ R ≤ X, where |R : S| is
a finite π -number. Then |RN : SM| is a finite π -number.

Proof of Theorem 4. We may suppose that G is countable and hence that G is an
ascending union of finitely generated subgroups Fi of increasing Hirsch length. For
each i there is a normal torsion-free nilpotent subgroup Ki of finite index in Fi, and
(since Fi is polycyclic-by-finite) we may choose the Ki so that Ki+1 ∩ Fi ≤ Ki for all i.
Let p1 be a prime and let V1 be an arbitrary F1-invariant subgroup of finite index in K1

such that n1 := |K1 : V1| is divisible by p1 – such exists, setting Y = 1 in Lemma 4. Let
p2 be a prime not dividing n1. Again by Lemma 4, there is an F2-invariant subgroup
V2 of finite index in K2 such that n2 := |K2 : K2 ∩ V1V2| is divisible by n2

1p2, and V2

may be chosen so that V2 ∩ F1 ≤ V1. Continue, so that at the (i + 1)st step (and with
the obvious notation) there is an Fi+1-invariant subgroup Vi+1 of finite index in Ki+1

such that Vi+1 ∩ Fi ≤ Vi and such that ni+1 := |Ki+1 : Ki+1 ∩ (V1 . . . Vi+1)| is divisible
by n2

i pi+1. Let H = 〈Vi : i ≥ 1〉 (which is the product of the Vi since Vi � Fi for each
i), and note that H ∩ Fi = V1 . . . Vi for each i, by Lemma 2 and the choice of the Vi.

Now let l be a fixed positive integer and (with the above notation) let π1 =
{p1, . . . , pl−1}(= φ if l = 1), π2 = π1 ∪ {pl}. For each i ≥ 1, let Ji/Vi denote the
π1-radical of the finite nilpotent group Ki/Vi, and let Li/Vi denote the π2-radical.
Certainly Ji and Li are normal in Fi, and Ji ≤ Li.

Claim (i) For each i, |L1 . . . Li : J1 . . . Ji| is a (finite) power of pl, and |J1 . . . Ji :
V1 . . . Vi| is a finite π1-number.
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First note that the result holds for i = 1, by the definition of J1 and L1.

Supposing true for i − 1 we may apply Lemma 5 (with (M, N), (S, R) = (Ji, Li), (Vi, Ji)
respectively) to establish the claim by induction.

Claim (ii) There is no upper bound for either of the indices |L1 . . . Li : J1 . . . Ji|,
|J1 . . . Ji : V1 . . . Vi|.

First consider |L1 . . . Li : J1 . . . Ji|, which we know is a power of pl (for all i). Let
k be a positive integer. By construction, |Ki : Ki ∩ (V1 . . . Vi)| is divisible by pk

l for all
sufficiently large i. For such an i, consider the subnormal series Vi ≤ Ki ∩ (V1 . . . Vi) ≤
Ki ∩ (J1 . . . Ji) ≤ Ki ∩ (L1 . . . Li) ≤ Ki, where of course Ki/Vi is a finite nilpotent
group. Since Ki/Li is a p′

l-group, the index |Ki : Ki ∩ (L1 . . . Li)| is not divisible by
pl. Also, since |J1 . . . Ji : V1 . . . Vi| is a π1-number (by Claim (i)), so is |Ki ∩ (J1 . . . Ji) :
Ki ∩ (V1 . . . Vi)|. It follows that |Ki ∩ (L1 . . . Li) : Ki ∩ (J1 . . . Ji)| is divisible by pk

l , and
therefore so is |L1 . . . Li : J1 . . . Ji|. The argument for |J1 . . . Ji : V1 . . . Vi| is similar: let
m be an arbitrary π1-number and choose i so that |Ki : Ki ∩ (V1 . . . Vi)| is divisible by
m, then use the fact that |Ki : Ki ∩ (J1 . . . Ji)| is a π ′

1-number.
We are now in a position to complete the proof of the theorem. With J and L as

above we see that J = ∪∞
i=1H(J1 . . . Ji) (where each term is indeed a subgroup of G).

But |H(J1 . . . Ji) : H| = |(J1 . . . Ji) : (J1 . . . Ji) ∩ H| = |(J1 . . . Ji) : (J1 . . . Ji) ∩ Fi ∩ H| =
|(J1 . . . Ji) : (V1 . . . Vi)|, and this increases with i and so |J : H| is infinite. Similarly
|L : J| is infinite, and by successive application of these facts we obtain an infinite
chain of subgroups H = H0 < H1 < H2 < . . . , where each index |Hi+1 : Hi| is infinite
(and, in addition, every element of Hi+1 has a nonzero pi-power in Hi). On the other
hand, by letting K = 〈Ki : i ≥ 1〉 and taking direct complements Mi/Vi, Ni/Vi in Ki/Vi

for subgroups such as Ji/Vi and Li/Vi and forming the subgroups of K generated
by the Mi, Ni respectively, we can obtain a descending series of subgroups of K ,
each of infinite index in the preceding one and each of infinite rank. We omit the
details. It is clear from the construction that IG(H) = G = IG(K), and the proof is
complete.

It remains only to establish Theorem 5. Our final lemma is again easy to prove
(although our proof appeals to another substantial result on groups of finite rank).

LEMMA 6. Let G be a locally soluble-by-finite group with just finitely many conjugacy
classes of subgroups. Then G is finite.

Proof. Clearly there is an integer r such that every finitely generated subgroup of G
is r-generated, that is, G has rank at most r. By [3] G is almost locally soluble and hence
almost soluble, since there is a finite upper bound for the derived length of soluble
subgroups. Since our hypothesis is inherited by homomorphic images we may assume
by induction that G is abelian-by-finite. But the hypothesis is also inherited by normal
subgroups of finite index, and since an abelian group with this property is clearly finite,
the result follows.

Proof of Theorem 5. Suppose the result false, so that G has exactly k conjugacy
classes of subgroups of infinite rank, for some positive integer k; note that every
homomorphic image of G has at most k such conjugacy classes. If N is a normal
subgroup of G of infinite rank then G/N has just finitely many conjugacy classes of
subgroups and is therefore finite, by Lemma 6. Let R denote the finite residual of G.
As G has only finitely many normal subgroups of finite index, G/R is finite, and since
R inherits the hypotheses on G (with perhaps a different “k”) we may assume that
R = G, that is, G has no proper subgroups of finite index. Thus every proper normal
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subgroup of G has finite rank. If G′ < G then G/G′ has just finitely many subgroups
of infinite rank and hence no such subgroups (as an abelian group of infinite rank has
a proper subgroup of infinite rank), and we obtain the contradiction that G has finite
rank. Hence G is perfect.

Let N be a proper normal subgroup of G. As N has finite rank it has a locally
soluble radical L of finite index, and since N/L is finite its centralizer in G has finite
index and hence equals G; thus N is locally soluble and has an ascending characteristic
abelian series. The subgroup K generated by all such N is hyperabelian and locally of
finite rank, so it is locally soluble. Assume first that K = G and let A be an arbitrary
G-invariant abelian factor that has finite rank and is either torsion-free or a (finite)
elementary abelian p-group for some prime p. By the result of Zassenhaus referred to
earlier, some finite term of the derived series of G centralizes A, so A is central since
G is perfect. Thus every proper normal subgroup of G is contained in the hypercentre,
giving G hypercentral and hence trivial (as it is perfect), a contradiction. Hence K < G
and, factoring, we may assume that G is simple.

Next, suppose that every locally finite group satisfying our hypotheses has finite
rank; so G is not locally finite. Choose an element x of infinite order in G and let U
be a countable subgroup of G that contains x and has infinite rank. Since G is simple
we may embed U in a countable simple subgroup of G [6, Theorem 4.4], so we may
assume that U is itself simple. Write U as the ascending union of finitely generated
subgroups Fi and let Si be the soluble radical of Fi for each i, so that Fi/Si is finite.
Let R = 〈Si : i ≥ 1〉 and let Xi = 〈R, Fi〉 for each i. Then Xi = RFi, since Fi normalizes
Sj for all j ≥ i, and |Xi : R| is clearly finite. If R has infinite rank then the Xi fall into
finitely many conjugacy classes, and so there is an upper bound n for the index in Xi of
its locally soluble radical. Then Xn!

i is locally soluble for all i, so Un! is locally soluble.
But U is simple and infinite, so it is not locally soluble, and it follows that Un! = 1 and
U is locally finite, a contradiction. Thus R has finite rank and so, by [10, Lemma 10.39],
R(d) is locally finite, for some positive integer d. Now R/R(d) has finite Hirsch length r,
say, that is, the sum of the 0-ranks of a finite normal abelian series of R/R(d) is r. Thus
the Hirsch length of any soluble section of each Fi is at most r. Let Ti be the torsion
radical of Fi, Hi/Ti = Fitt(Fi/Ti), and let Ki/Hi be a normal free abelian subgroup of
finite index in Fi/Hi. Then Ki/Ti has rank at most r, and Proposition 1 applies to give
us a finite normal series for U with factors periodic or nilpotent. But U is simple and
hence locally finite, a contradiction.

It remains only to deal with the case where G is locally finite. By [14] G has an
abelian subgroup A of infinite rank, and since A in turn has an infinite descending
chain of subgroups of infinite rank it follows easily that there is a subgroup C of A
such that Cg is a proper subgroup of C for some g in G. But g has finite order n,
say, and since Cgi

< Cgi−1
for each positive integer i we obtain the contradiction that

C = Cgn
< C. This completes the proof.
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