
8 Technicolor: a first attempt to explain hierarchies

In Chapter 5 we learned a great deal about quantum chromodynamics. In Section 4.5 we
argued that the hierarchy problem is one of the puzzles of the Standard Model. The grand
unified models of Chapter 6 provided a quite stark realization of the hierarchy problem. In
an SU(5) grand unified model we saw that it is necessary to adjust carefully the couplings
in the Higgs potential in order to obtain light doublet and heavy color triplet Higgs. This is
already true at tree level; loop effects will correct these relations, requiring further delicate
adjustments.

Attempts to understand the hierarchy problem in a manner consistent with ’t Hooft’s nat-
uralness principle fall into three broad categories: the dynamical breaking of electroweak
symmetry, supersymmetry (in which it is still possible that the breaking of electroweak
symmetry is dynamical), geometric approaches (large extra dimensions or warped space–
times) and supersymmetry. The present chapter gives a brief introduction to dynamical
models; Chapters 9–16 will deal with supersymmetry both as a possible new symmetry
of nature and a possible solution to the hierarchy problem. We will discuss geometric
solutions in Chapter 29 after we have learned about theories of space–time, i.e. general
relativity and string theory.

The first proposal to resolve the hierarchy problem goes by the name technicolor. The
technicolor hypothesis exploits our understanding of QCD dynamics. It elegantly explains
the breaking of the electroweak symmetry. It has more difficulty accounting for the masses
of the quarks and leptons, and simple versions seem incompatible with precision studies
of the W and Z particles and now the discovery of a Standard-Model-like Higgs boson.
In this chapter we will introduce the basic features of the technicolor hypothesis. We will
not attempt to review the many models that have been developed to try to address the
difficulties of flavor and precision electroweak experiments. It is probably safe to say that,
as of this writing, none is totally successful nor particularly plausible. But it should be
kept in mind that this may reflect the limitations of theorists; experiment may yet reveal
that nature has chosen this path. In any case, the study of these theories will deepen our
understanding of the Standard Model and of strongly coupled quantum field theories and
will open our eyes to possibilities for new physics.

We will then turn briefly to dynamical alternatives to technicolor. One of the most inter-
esting of these is the possibility that the Higgs particle is itself an approximate Goldstone
particle, the result of the breaking of some accidental global symmetry. By itself this
approach does not completely solve the hierarchy problem, but it suppresses the problem of
quadratic divergences to higher orders and one might imagine that the phenomenon might
arise in some more complete dynamical framework. It has the virtue that in it the Higgs is
to a good approximation a fundamental field, as appears to be the case experimentally.
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127 8.1 QCD in a world without Higgs fields

8.1 QCD in a world without Higgs fields

Consider a world with only a single generation of quarks and no Higgs fields. In such a
world the quarks would be exactly massless. The SU(2)L × SU(2)R symmetry of QCD
would be, in part, a gauge symmetry; SU(2)L would correspond to the SU(2) symmetry of
the weak interactions. The hypercharge Y would include a generator of SU(2)R and baryon
number:

Y = 2T3R + B. (8.1)

The quark condensate,

〈qf q̄f ′ 〉 = �3δf f ′ , (8.2)

would break some of the gauge symmetry. Electric charge, however, would be conserved,
so SU(2)× U(1) → U(1).

In Appendix C it is shown that the quark condensate conserves a vector SU(2) symmetry,
ordinary isospin. This SU(2) symmetry is generated by the linear sum

Ti = TiL + TiR. (8.3)

So, the SU(2) gauge bosons transform as a triplet of the conserved isospin. This guarantees
that the successful tree level relation

MW = MZ cos θ (8.4)

is satisfied. The SU(2) which accounts for this relation is called a custodial symmetry (the
Higgs potential of the Standard Model possesses, in fact, an approximate O(4) symmetry
which has a suitable SU(2) subgroup).

To understand the masses of the gauge bosons remember that, for a broken symmetry
with current jμ, the coupling of the Goldstone boson to the current is

〈0| jμ|π(p)〉 = ifπpμ. (8.5)

This means that there is a non-zero amplitude for a gauge boson to turn into a Goldstone,
and vice versa. The diagram of Fig. 8.1 is proportional to

g2f 2
πpμ

i
p2 pν . (8.6)

As the momentum tends to zero, this tends to a constant – the mass of the gauge boson.
For the charged gauge bosons the mass is just

m2
W ± = g 2f 2

π , (8.7)

W W
νμ

π

Fig. 8.1 Diagrammatic representation of technicolor.
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128 Technicolor: a first attempt to explain hierarchies

while for the neutral gauge bosons we have a mass matrix

fπ2

(
g 2 gg ′
gg ′ g ′ 2

)
, (8.8)

giving one massless gauge boson and one with mass-squared (g 2 + g ′2)f 2
π .

All this can be nicely described in terms of the non-linear sigma model used to describe
pion physics. Recall that the pions could be described in terms of a matrix field,

� = |〈ψψ〉|ei�π ·�τ/2, (8.9)

which transforms under SU(2)L × SU(2)R as follows:

� → UL�U†
R. (8.10)

Changes in the magnitude of the condensate are associated with excitations in QCD that
are much more massive than the pion fields (the σ field of our linear sigma model of
Section 2.2). So, it is natural to treat this as a constant. The field � is then constrained to
take values on a manifold. As in our examples in two dimensions, a model based on such
a field is called a non-linear sigma model. The Lagrangian is

L = f 2
π Tr(∂μ�†∂μ�). (8.11)

In the context of the physics of light pseudo-Goldstone particles, the virtue of such a model
is that it incorporates the effects of broken symmetry in a very simple way. For example,
all the results of current algebra can be derived by studying the physics of such a theory
and its associated Lagrangian.

In the case of the σ -model we have an identical structure except that we have gauged
some of the symmetry, so we need to replace the derivatives by covariant derivatives:

∂μ� → Dμ� = ∂μ� − i
Aa
μσa

2
� − i�

σ3

2
Bμ. (8.12)

Again, we can choose a unitary gauge; we just set � = 1. The Lagrangian in this gauge is
simply

L = Tr
(Aa

μσa

2
� +�σ3

2
Bμ

)2
. (8.13)

This yields exactly the mass matrix as we wrote down before.

8.2 Fermion masses: extended technicolor

In technicolor models, the Higgs field is replaced by new strong interactions which break
SU(2)×U(1) at a scale Fπ = 1 TeV. However, the Higgs field of the Standard Model gives
mass not only to the gauge bosons but to the quarks and leptons as well. In the absence of
the Higgs scalar there are chiral symmetries which prohibit masses for any of the quarks
and leptons. While our simple model can explain the masses of the Ws and Zs, it has no
mechanism to generate mass for the ordinary quarks and leptons.
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129 8.2 Fermion masses: extended technicolor

If we are to avoid introducing fundamental scalars, the only way to break these
symmetries is to introduce further gauge interactions. Consider first a single generation
of quarks and leptons. Enlarge the gauge group to SU(3)×SU(2)×U(1)×SU(N+1). The
technicolor group will be an SU(N) subgroup of the last factor. Take each quark and lepton
to be part of an N + 1 or N + 1 representation of this larger group. To avoid anomalies, we
will also include a right-handed neutrino. In other words, our multiplet structure is:(

Q
q

)
,

(
Ū
ū

)
,

(
D̄
d̄

)
,

(
L
�

)
,

(
Ē
ē

) (
N̄
ν̄

)
. (8.14)

Here q, ū, d̄, �, etc., are the usual quarks and leptons; the fields denoted by capital letters
are the techniquarks. Now suppose that the SU(N+1) is broken to SU(N) at a scale�etc �
�tc by some other gauge interactions, in a manner similar to that of technicolor. Then there
is a set of massive gauge bosons with mass of order �etc. Exchanges of these bosons give
rise to operators such as

L4f = 1
�2

etc
Qσμq∗Ūσμū∗ + h.c. (8.15)

Using the following identity for the Pauli matrices,∑
μ

(σμ)αα̇(σ
μ)β̇β = δβα δ

β̇
α̇ , (8.16)

permits us to rewrite the four-fermion interaction as

L4f = 1
�ETC

QŪq∗ū∗ + h.c. (8.17)

We can replace QŪ by its expectation value, which is of order �3
tc. This gives rise to a

mass for the u quark. The other quarks and leptons gain mass in a similar fashion.
This particular extended technicolor (ETC) model is clearly unrealistic on many counts:

it has only one generation; there is a massive neutrino; there are relations among the masses
which are unrealistic; there are approximate global symmetries which lead to unwanted
pseudo-Goldstone bosons. Still, it illustrates the basic idea of extended technicolor models:
additional gauge interactions break the unwanted chiral symmetries which protect the
quark and lepton masses from radiative corrections.

One can try to build realistic models by considering more complicated groups and
representations for the extended technicolor (ETC) interactions. Rather than attempt this
here, we will consider some issues in a general way. We will imagine that we have a model
with three generations. The extended technicolor interactions generate a set of four-fermion
interactions which break the chiral symmetries acting on the separate quarks and leptons.
In a model of three generations, there are a number of challenges which must be addressed.

1. Perhaps the most serious is the problem of flavor-changing neutral currents. In addition
to four-fermion operators which generate mass, there will also be four-fermion operators
involving just the ordinary quarks and leptons. These operators will not, in general,

https://doi.org/10.1017/9781009290883.013 Published online by Cambridge University Press

https://doi.org/10.1017/9781009290883.013


130 Technicolor: a first attempt to explain hierarchies

respect flavor symmetries. They are likely to include terms like

L�S=2 = 1
�etc

s̄d̄s∗d∗, (8.18)

which violate strangeness by two units. Unless �etc is extremely large (of order
hundreds of TeV), this will lead to unacceptably large rates for K0 ↔ K̄0.

2. Generating the top quark mass is potentially problematic; it is larger than the W and Z
masses. If the ETC scale is large, it is hard to see how to achieve this.

3. The problem of pseudo-Goldstone bosons is generic to technicolor models, in just the
fashion we saw for the simple model.

The challenge of technicolor model building is to construct models which solve these
problems. We will not attempt to review the various approaches which have been put
forward here. Models which solve these problems are typically extremely complicated.
Instead, we briefly discuss another serious difficulty: the precision measurement of
electroweak processes.

8.3 The Higgs discovery and precision electroweak measurements

In Section 4.5 we stressed that the parameters of the electroweak theory have been mea-
sured with high precision and compared with detailed theoretical calculations, including
radiative corrections. One naturally might wonder whether a strongly interacting Higgs
sector could reproduce these results. The answer is that it is difficult. There are two
categories of corrections which one needs to consider. The first are, in essence, corrections
to the relation

MW = MZ cos θW. (8.19)

In a general technicolor model these will be large. But we have seen why this relation holds
in the minimal Standard Model: there is an approximate global SU(2) symmetry. This is in
fact the case of the simplest technicolor model we encountered above. So this problem is
likely to have solutions.

There are, however, other corrections as well, resulting from the fact that in these
strongly coupled theories the gauge boson propagators are quite different from those in
weakly coupled field theories. They have been estimated in many models and are found
to be far too large to be consistent with the data. More details about this problem, and
speculations on possible solutions, can be found in the suggested reading.

The discovery of a Higgs particle behaving very much as a simple fundamental doublet
poses further challenges. In analogy with QCD, in general we would not expect to find
scalars much lighter than the TeV scale, and would expect that any such scalars would
be quite broad resonances. There is no reason to expect that they should be narrow, with
couplings close to those of the Standard Model, never mind couplings as expected in the
Minimal Supersymmetric Standard Model.
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8.4 The Higgs as a Goldstone particle

An attractive possibility which has received much attention over the years is that the
Higgs doublet is a pseudo-Goldstone particle of some approximate global symmetry. If
the characteristic scale of the underlying theory is �, so that the next lightest excitations
have masses of this order while the parameters of the Higgs potential are loop suppressed,
we might hope that the doublet will behave like an elementary field up to terms suppressed
by powers of �.

Necessarily this symmetry is broken by the gauge interactions. This is important, as such
symmetry breaking is necessary to obtain a potential for the Higgs field. As an example,
we might imagine that the underlying global symmetry is SU(3), and the Goldstone bosons
of this SU(3) symmetry can be described by a non-linear sigma model with a field� living
on the coset SU(3)/SU(2). The components of � include the Higgs field. The difficulty
with the simplest version is that the scales f (the Goldstone decay constant) and � are
not appreciably separated. At one loop there are quadratically divergent corrections to the
Higgs mass from gauge loops. These are cut off at some scale �. From considerations of
unitarity – the scale � should be such that loop corrections are at most of order one – one
expects that �2 < 4π f 2. This is insufficient to explain precision electroweak breaking or
the Higgs width.

To avoid this difficulty, models have been constructed with more intricate symmetries.
Often, a phenomenon known as collective symmetry breaking is invoked. The basic idea
is that there are several gauge interactions and only collectively do they break enough
symmetry that one can generate a Higgs potential. In the resulting “little Higgs” theories
the symmetries prevent a one-loop contribution to the Higgs mass at one-loop order, and
the Higgs field appears to be elementary to the required precision.

It is important that the fermions also respect these larger symmetries. This requires,
at a minimum, additional vector-like fields. At a more microscopic level one expects
that these global symmetries are accidents of the underlying structure. Non-Abelian
symmetries acting both on scalars and fermions in the required, rather intricate, ways may
be challenging to discover. Some existing models invoke supersymmetry to achieve this.

Suggested reading

An up-to-date set of lectures on technicolor, including the problems of flavor and elec-
troweak precision measurements, are given in the online article of Chivukula (2000). An
introduction to the analysis of precision electroweak physics is provided by Peskin (1990);
for an application to technicolor theories, see Peskin and Takeuchi (1990). The Particle
Data group summary of technicolor theories surveys the status of dynamical models for
electroweak symmetry breaking, in light of the Higgs discovery. Little Higgs theories are
described in the reviews of Perelstein (2007) and Schmaltz and Tucker-Smith (2005).
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Exercises

(1) Determine the relations between the quark and lepton masses in the extended techni-
color model above.

(2) What are the symmetries of the extended technicolor model in the limit where we
turn off the ordinary SU(3) × SU(2) × U(1) gauge interactions? How many of these
symmetries are broken by the condensate? Each broken symmetry gives rise to an
appropriate Nambu–Goldstone boson. Some of these approximate symmetries are
broken explicitly by the ordinary gauge interactions. The corresponding Goldstone
bosons will then gain mass, typically of order αi�etc. Some will not gain mass of this
order, however. Which symmetry (or symmetries) will be respected by the ordinary
gauge interactions?
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