A NOTE ON GROUPS OF REE TYPE

BY

PETER LORIMER

The nonsolvable *R*-groups as defined by Walter [3] are groups of orders $(q^3+1)q^3(q-1), q=3^{2n+1}, n\geq 0$. These are the groups of Ree type discussed by Ward [4] together with the Ree group R(3) of order 28.27.2. The *R*-group with parameter q has a doubly transitive representation of degree q^3+1 but in this note we will prove that it cannot contain a sharply doubly transitive subset. This result is of interest in the theory of projective planes for if such a subset existed in the *R*-group of order $(q^3+1)q^3(q-1)$ there would be a projective plane with q^3+2 points on a line, see for example [1, p. 140].

If G is a group of permutations on a finite set Σ and U is a subset of G then U is said to be sharply doubly transitive on Σ if $1 \in U$ and if whenever a, b, c, $d \in \Sigma$, $a \neq b$, $c \neq d$ there is a unique permutation $u \in U$ with u(a)=c, u(b)=d. If G has degree n such a subset has n(n-1) members.

THEOREM. Let G be an R-group of order $(q^3+1)q^3(q-1)$, $q=3^{2n+1}$, $n\geq 0$, represented as a doubly transitive group on a set Σ containing q^3+1 members. Then G does not have a subset which is sharply doubly transitive on Σ .

Proof. Let G be an R-group as mentioned in the theorem. We will make use of the following properties of G, see [4, pp. 62–3] and [3, pp. 332–5].

(1) G has one class of involutions.

(2) A Sylow 2-subgroup of G is elementary abelian of order 8.

(3) The stabilizer of any two points of Σ in G contains a unique involution.

(4) Each involution of G fixes q+1 points and apart from the identity the involutions are the only members of G fixing more than 2 symbols.

(5) If t is an involution of G, $C(t) = \{1, t\} \times K$ where K is isomorphic to PSL(2, q) and acts on the q+1 points fixed by t as PSL(2, q) in its usual representation.

Suppose now that U is a sharply doubly transitive subset of G.

Let α , β be any two points of Σ , H the stabilizer of α and β in G and t the (unique) involution of H. t fixes q+1 points of Σ , say those in the subset Ω of Σ .

Let a, b be any two members of Ω . We show now that

$$C(t) = \{g \in G | g(a) \in \Omega, g(b) \in \Omega\}.$$

If g is any member of G, gtg^{-1} is an involution of the stabilizer of g(a) and g(b) in G. If g(a), $g(b) \in \Omega$, t is also an involution of this subgroup and because there is

PETER LORIMER

only one such involution we get $gtg^{-1} = t$ or $g \in C(t)$. The converse result is straightforward.

Now consider the representation of C(t) as a permutation group on Ω . It is clear from the preceding paragraph that C(t) is doubly transitive on Ω and that the set $U \cap C(t)$ is sharply doubly transitive on Ω . From the properties of *R*-groups we have $C(t)=\{1, t\} \times K$ where *K* is isomorphic to the group PSL(2, q). Consideration of this group shows that the representation of *K* on Ω is the usual representation of PSL(2, q). Because of this no member of *K* except 1 fixes more than two symbols of Ω . Hence the kernel of the representation we are considering is $\{1, t\}$ and we may take the image of the representation as PSL(2, q) in its usual representation. The image of $U \cap C(t)$ is then a sharply doubly transitive subset of PSL(2, q). This contradicts the result of [2] except when q=3.

If q=3, G has order 28.27.2 and every involution of G fixes four symbols. U has 28.27 members and as U is sharply doubly transitive, $r^{-1}s$ cannot be an involution for $r, s \in U$. But this is impossible as the Sylow 2-subgroups of G are elementary abelian of order 8.

This proves the theorem.

References

1. P. Dembowski, Finite geometries, Springer-Verlag, Berlin, 1968.

2. P. Lorimer, A note on doubly transitive groups, J. Austral. Math. Soc. 6 (1966), 449-451.

3. J. H. Walter, *Finite groups with abelian Sylow 2-subgroups of Order 8*, Invent. Math. **2** (1967), 332–376.

4. H. N. Ward, On Ree's series of simple groups, Trans. Amer. Math. Soc. 121 (1966), 62-89.

UNIVERSITY OF AUCKLAND,

AUCKLAND, NEW ZEALAND

452