
TPLP 24 (1): 57–109, 2024. c© The Author(s), 2023. Published by Cambridge University Press.

This is an Open Access article, distributed under the terms of the Creative Commons Attribution-

ShareAlike licence (http://creativecommons.org/licenses/by-sa/4.0/), which permits re-use, distri-

bution, and reproduction in any medium, provided the same Creative Commons licence is used to

distribute the re-used or adapted article and the original article is properly cited.

doi:10.1017/S1471068423000340 First published online 31 August 2023

57

Compositional Verification in Rewriting Logic∗

ÓSCAR MARTÍN, ALBERTO VERDEJO and NARCISO MARTÍ-OLIET
Facultad de Informática, Universidad Complutense de Madrid, Madrid, Spain

(e-mails: omartins@ucm.es, jalberto@ucm.es, narciso@ucm.es)

submitted 7 April 2022; revised 31 May 2023; accepted 1 August 2023

Abstract

In previous work, summarized in this paper, we proposed an operation of parallel composition
for rewriting-logic theories, allowing compositional specification of systems and reusability of
components. The present paper focuses on compositional verification. We show how the as-
sume/guarantee technique can be transposed to our setting, by giving appropriate definitions
of satisfaction based on transition structures and path semantics. We also show that simulation
and equational abstraction can be done componentwise. Appropriate concepts of fairness and
deadlock for our composition operation are discussed, as they affect satisfaction of temporal
formulas. We keep in parallel a distributed and a global view of composed systems. We show
that these views are equivalent and interchangeable, which may help our intuition and also has
practical uses as, for example, it allows global-style verification of a modularly specified system.
Under consideration in Theory and Practice of Logic Programming (TPLP).

KEYWORDS: rewriting logic, modularity, verification, assume/guarantee, abstraction, simula-
tion, Maude

1 Introduction

Rewriting logic (Meseguer 1992) is a well established, logic-based formalism, useful, in

particular, for the specification of concurrent and nondeterministic systems. There are

ways, in this context, in which modularity can be achieved. The language Maude (Clavel

et al . 2022), for example, strongly based on rewriting logic, includes a powerful system

of modules which promotes a good organization of the code. Besides, multicomponent

or distributed systems are sometimes modeled as a multiset of objects and messages.

However, a truly compositional specification was not possible. By that, we mean one in

which each component is an independent rewrite system and composition is specified

separately, allowing, for example, reusability of components. In previous work (Mart́ın

et al . 2020), we proposed an operation of parallel composition of rewrite systems to

∗ Work partially supported by project S2018/TCS-4339 (BLOQUES-CM) co-funded by EIE Funds of the
European Union and Comunidad de Madrid, and project PID2019-108528RB-C22 (ProCode-UCM)
funded by Ministerio de Ciencia e Innovación (Spanish Government). The authors want to thank
David de Frutos for his important remark on the correct way to define compatibility of paths, and the
anonymous referees for improving this paper with their hard and very useful work.

https://doi.org/10.1017/S1471068423000340 Published online by Cambridge University Press

http://creativecommons.org/licenses/by-sa/4.0/
https://doi.org/10.1017/S1471068423000340
https://orcid.org/0000-0001-8212-5074
mailto:omartins@ucm.es
mailto:jalberto@ucm.es
mailto:narciso@ucm.es
http://crossmark.crossref.org/dialog?doi=https://doi.org/10.1017/S1471068423000340&domain=pdf
https://doi.org/10.1017/S1471068423000340

58 Ó. Mart́ın et al.

achieve precisely that. In the present paper, we show how a compositional specification

written according to our proposal can be the object of compositional verification. Note

that, in this work we often use rewrite system as a shorthand for system specified using

rewriting logic.

The reasons for the convenience of a compositional approach to verification are well

known: to avoid the state-explosion problem; because some systems are inherently com-

pounds and it makes all sense to specify and verify them as such; because verified systems

can be safely reused as library components.

There are two alternative views on the meaning of compositional specification, which

lead to different needs for compositional verification. In one, a composed specification

is seen as modeling a distributed system, of which probably only one component is

under our control, and the aim of verification is to ensure that our component behaves

appropriately in an appropriate environment. Global states are out of the question, and

the behavior we focus on is that of our component. The assume/guarantee technique (see

Section 9) is designed to be helpful here.

In the other view, in contrast, the whole system is under our control, but working com-

positionally still makes sense for modular engineering. Then, the aim of compositional

verification is to prove that each component behaves appropriately, not in a general,

unknown environment, but in the particular one given by the rest of the components

that we have also specified. The abstraction technique (see Section 8.2) helps here: given

a component and its environment, we can abstract either or both, and perform verifi-

cation on the abstracted, simplified component and/or environment. Assume/guarantee

may also help. For example, we use both techniques in the mutual exclusion example

introduced in Section 2.2.

We consider special kinds of atomic and composed rewrite systems which we call egal-

itarian and were introduced in our previous work (Mart́ın et al . 2020). They are egali-

tarian in the sense that they give the same status to transitions and states. A composed

egalitarian system is a set of independent but interacting atomic ones. We see them as

modeling a distributed system. An egalitarian rewrite system, atomic or composed, can

be translated into a standard rewrite system (called plain in this work) by the operation

that we call the split. This allows to specify a system componentwise, translate the com-

pound into a single plain system and, then, execute and verify the result monolithically

using existing tools (the ones in Maude’s toolset, for example). The relation between

this monolithic verification and the compositional one using assume/guarantee is our

Theorem 5.

We are interested in rewriting logic and, in this paper, in verifying systems specified

using that logic. The underlying expectation is that a firm logical basis makes it easier

to define, study, and implement modularity and composition. However, satisfaction of

temporal formulas is defined on the transition structures which represent the semantics

of the logical specifications. Thus, transition structures play a fundamental role in this

paper, even if only as proxies for the main characters.

This is the plan of the paper. In Section 2 we show and explain the compositional

specification of three simple but illustrative examples. They are revisited later in the

paper, but here they are meant as an informal introduction to our previous work on

composition. Section 3 contains a quick and mainly formal overview of our previous

work. In Section 4, we study execution paths, needed to define satisfaction of formulas.

https://doi.org/10.1017/S1471068423000340 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068423000340

Compositional verification in rewriting logic 59

We consider paths in atomic components, sets of compatible paths from different compo-

nents, and global paths, representing, respectively, local, distributed, and global behav-

iors. The contrast and equivalence between a local view and a global one is a constant

throughout the paper. In Section 5, we describe the variant of the temporal logic LTL

against which we verify our systems. In Section 6, we define basic satisfaction of temporal

formulas based on paths, and show the relation between the distributed and the global

views of satisfaction. In Section 7, we discuss the concepts of fairness and deadlocks, and

their importance for compositional verification. In Section 8, we consider the componen-

twise use of simulation and abstraction: simulating or abstracting a component induces

the same on the whole system, with a potentially reduced effort. In addition, the ab-

stracted system may be easier to verify. In Section 9, we consider the assume/guarantee

technique, which allows the verification of isolated individual components, ensuring thus

that the result holds for whatever appropriate environment the component is placed in,

and we show how it can be adapted to our setting. In Section 10, we briefly present

two additional examples of compositional specification and verification (fully discussed

in (Mart́ın 2021a)) which are more complex and realistic than the toy ones used through-

out this paper. Finally, Section 11 discusses related and future work and contains some

closing remarks.

These are the points we think may be of special interest in this paper:

• We show how to work compositionally in rewriting logic, expanding and strength-

ening our previous work.

• We keep in parallel, all throughout the paper, the distributed and the global (mono-

lithic) views of satisfaction and related concepts, and show the equivalence of both

views. We claim that keeping both views is worth the effort, both for our intuition

and in practice.

• We show how simulation and abstraction can be performed compositionally.

• We show that the assume/guarantee technique can be transposed to our setting.

• Our definition of assume/guarantee satisfaction (inductive, but not relying on the

next temporal operator) is new, to the best of our knowledge.

• We give path-based definitions of deadlock and fairness, discuss how they impact

the verification tasks, and show how to deal with them in our setting.

2 Examples

We introduce here three examples of compositional specification. They are meant as a

quick introduction to Maude and to our previous work (Mart́ın et al . 2020), especially to

compositional specification with the extended syntax we proposed. The formal definitions

and results are in Section 3. Also, these examples set the base on which we later illustrate

the techniques for compositional verification and simulation. They have been chosen to

be illustrative, so they are quite simple. We are using Maude because of its availability,

its toolset, and its efficient implementation. All the concepts and examples, however, are

valid for rewriting logic in general.

The first example presents three buffers assembled in line. The second shows how to

exert an external mutual exclusion control on two systems, provided they inform on

when they are visiting their critical sections. Later, this gives us the opportunity of

https://doi.org/10.1017/S1471068423000340 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068423000340

60 Ó. Mart́ın et al.

using componentwise simulation and a very simple case of assume/guarantee. The third

example concerns the well-known puzzle of a farmer and three belongings crossing a

river. We compose a system implementing the mere rules of the puzzle with several other

components implementing, in particular, two guidelines which prove to be enough to

reach a solution. The assume/guarantee technique is later used on this system.

The complete specification for all the examples in this paper is available online (Mart́ın

2021b). Our prototype implementation, able to deal with these examples, is also available

there, though the reader is warned that, in its current state, it is not a polished tool but,

rather, a proof of concept.

2.1 Chained buffers

We model a chain of three buffers. We describe the system top-down. This is the speci-

fication of the composed system:
sync BUFFER1 || BUFFER2 || BUFFER3

on BUFFER1$isSending = BUFFER2$isReceiving
/\ BUFFER2$isSending = BUFFER3$isReceiving .

The sync...on... sentence is not standard Maude, but part of our extension. That sen-

tence expects three Maude modules to exist, called BUFFER1, BUFFER2, and BUFFER3, each

defining the values of the so-called properties mentioned in the on part of the sentence:

isSending and isReceiving. We use the $ sign to access a property defined in a Maude

module. In words, that models a composed system in which the three buffers synchronize

so that when one sends the next receives. The properties are assumed to be Boolean in

this example, modeling the passing of tokens. Synchronizing on more complex values is

also possible, as shown in other examples.

We call the result of the composition above 3BUFFERS. For this to be a complete model,

we need to provide the specification of the internal workings of the three buffers, including

the definition of the properties. There is no reason for the three buffers to be specified

exactly the same. In principle, they even could be coded in different languages, as long

as there is a way to access the values of the properties defined inside each of them. For

the sake of simplicity, in this example the three modules are identical. This is the very

simple code for each of them:
sort State Trans .
ops idle gotToken : -> State .
ops receiving sending : -> Trans .
rl idle =[receiving]=> gotToken .
rl gotToken =[sending]=> idle .

There are two states, represented by the State constants idle and gotToken, and two

transitions between them, represented by the Trans constants receiving and sending. The

keyword ops introduces the declaration of operators with their arities. The singular op

can be used when only one operator is being declared. In this code, we are declaring

constants, so the argument sorts are absent. The keyword rl introduces each rewrite rule

and the symbols =[and]=> separate the terms. We assume throughout the paper that

the sort representing the states of the system is called State and the one representing

transitions is called Trans. Also, it is convenient to have a supersort of both (not shown

above), which we call Stage. Usually, we omit declarations of sorts and operators when

they are clear from context.

https://doi.org/10.1017/S1471068423000340 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068423000340

Compositional verification in rewriting logic 61

Readers knowledgeable of rewriting logic and Maude would expect the rules above to

be written instead as:
rl [receiving] : idle => gotToken .
rl [sending] : gotToken => idle .

Here, receiving and sending are rule labels. The syntax we use does not only consists of

moving the label to the middle of the rule. In our case, receiving and sending are not

labels, but algebraic terms of sort Trans, in the same way that idle and gotToken are

terms of sort State. In general, both States and Transs can be terms of any algebraic

complexity. Other examples below make this clearer.

We call these rules egalitarian, because transitions are represented by terms, the same

as states. The rewrite systems which include them are also called egalitarian. More pre-

cisely, each buffer is an atomic egalitarian rewrite system. The result of their composition

is still called egalitarian, but not atomic.

As illustrated above, the way we have chosen to specify composition of systems is by

equality of properties. These are functions which take values at each state and transition

of each component system. The properties of a system provide a layer of isolation between

the internals of each component and the specification of the composition. This is similar

to the concept of ports in other settings. It is important that properties are defined not

only on states, but also on transitions, because synchronization is more often than not

specified on them. That is why we have developed egalitarian systems in which transitions

are promoted to first-class citizenship.

We declare and define two properties in each buffer:
ppt isReceiving isSending : -> Bool .
eq isReceiving @ receiving = true .
eq isReceiving @ G = false [owise] .
eq isSending @ sending = true .
eq isSending @ G = false [owise] .

The sentence introduced by the keyword ppt is part of our extended syntax, as is the

symbol @ representing the evaluation of a property on a state or transition. Thus, these

lines declare two Boolean properties and define by means of equations (introduced by

the keyword eq) their values at each state and transition. The fact that receiving and

sending are algebraic terms allows their use in equations.

The attribute owise (short for otherwise) in two of the equations is an extralogical

feature of Maude: that equation is used whenever the term being reduced matches the

left-hand side and the case is not dealt with by other equations. The variable G, whose

declaration is not shown, has sort Stage, so that all properties evaluate to false except

in the two cases explicitly set to true.

Any property defined in a component can be used as well as a property for the resulting

composed system. In this case, the properties isReceiving in BUFFER1 and isSending in

BUFFER3 are defined but not used for synchronization. Those properties can be useful if

the composed module 3BUFFERS is used in turn as a component to be synchronized with

other modules.

It is a common case that a property is defined to be true exactly at one state or

transition and false everywhere else, as above. This calls for some syntactic shortcut

to help the user. We do not discuss in this paper how to implement such shortcuts (of

which this is not at all the only possible one), and our prototype implementation does

not include them.

https://doi.org/10.1017/S1471068423000340 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068423000340

62 Ó. Mart́ın et al.

The execution of the composed system 3BUFFERS consists in the independent execution

of each of its three components, restricted by the need to keep the equality between

properties. To that composed system, the operation we call the split can be applied to

obtain an equivalent standard rewrite system. The resulting split system has as states

triples like < idle, gotToken, idle >, formed from the states of the components, and has

rewrite rules like
rl < idle, gotToken, idle > => < idle, sending, receiving > .

The split is named after this translation of each rule into two halves. The term split is

also used later to describe related translations, though in some of those cases there is

nothing split in the literal sense. The split is formally defined in Section 3.3. We usually

do not care to show the internal appearance of a split system, but are only interested in

the fact that it represents in a single system the global behavior of the composition.

2.2 Mutual exclusion

Consider a very simple model of a train, which goes round a closed railway in which there

are three stations and a crossing with another railway. We use the three stations as the

states of our model, and there are three transitions for moving between them. Using our

extended syntax, we model it with the rule:
crl atStation N =[comingFrom N]=> atStation (N + 1) if N < 2 .

The keyword crl introduces a conditional rewrite rule. We omit the needed declarations

for the integer variable N and the constructors atStation and comingFrom.

The stations are numbered 0–2. But the transit from station 2 to 0 is different, because

it passes through the crossing:
rl atStation 2 =[crossing]=> atStation 0 .

Indeed, we have two trains, modeled in this example by the same specification, but

as two separate components. They share the crossing, so we need safety in the access to

it. To this aim, we define for each train a Boolean property isCrossing to be true at the

transition crossing and false everywhere else:
ppt isCrossing : -> Bool .
eq isCrossing @ crossing = true .
eq isCrossing @ G = false [owise] .

We call the two systems thus defined TRAIN1 and TRAIN2.

The mutex controller for safe access to the crossing is specified by these two rules:
rl idle =[grants 1]=> idle .
rl idle =[grants 2]=> idle .

We call this system MUTEX and define in it the parametric Boolean property isGranting,

which is defined to be true at the respective transitions and false everywhere else:
ppt isGranting : Nat -> Bool .
eq isGranting(I) @ (grants I) = true .
eq isGranting(I) @ G = false [owise] .

The final system is the composition of the two trains and MUTEX so that each isCrossing

property is synchronized with the corresponding isGranting one:
sync TRAIN1 || TRAIN2 || MUTEX

on TRAIN1$isCrossing = MUTEX$isGranting(1)
/\ TRAIN2$isCrossing = MUTEX$isGranting(2) .

https://doi.org/10.1017/S1471068423000340 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068423000340

Compositional verification in rewriting logic 63

In due time, in Sections 8.3 and 9.2, we will show how we can use simulation to work

with even simpler models of the trains, and how we can justify that mutual exclusion

holds for the composed system.

We want to insist in the value of modularity in our examples. The system MUTEX with

its two properties can be used unchanged to control any two given systems, as long as

they inform, by means of properties, of their being in their critical section. For general

systems, the synchronization instruction would look something like
sync ONE-SYSTEM || ANOTHER-SYSTEM || MUTEX

on ONE-SYSTEM$isInCS = MUTEX$isGranting(1)
/\ ANOTHER-SYSTEM$isInCS = MUTEX$isGranting(2) .

Mutual exclusion between the two systems, whatever they are, is guaranteed by MUTEX

satisfying the appropriate formula – see Section 9.2.

We find cases like this of particular interest. We mean a component controlling others

and imposing its behavior (mutual exclusion in this case) on the compound. This is the

idea behind strategies, controllers, coordination, etc. In contrast, in the example of the

chained buffers in Section 2.1, the composed behavior is emergent. Our next example

involves both techniques.

2.3 Crossing the river

For a quick reminder, this is the statement of the puzzle. A farmer has got a wolf, a goat

and a cabbage, and needs to cross a river using a boat with capacity for the farmer and,

at most, one of the belongings. The wolf and the goat should not be left alone, because

the wolf would eat the goat. In the same way, the goat would eat the cabbage if left

unattended. The goal is to get the farmer and the three belongings at the opposite side

of the river safely.

Our specification consists of two rules: one encompasses all possible ways the farmer

can cross the river; the other represents eating. This is the rule for a crossing, explained

below:
rl farmer B? II1 |~| II2

=[II1 | B? > II2]=>
II1 |~| farmer B? II2 .

Each state term contains the symbol |~| representing the river. To each side of this

symbol there is a set of items, which may include the farmer and the three belongings,

respectively represented by the constants farmer, wolf, goat, and cabbage. Also, there is

always a special item mark which marks the side that the farmer is trying to reach with

her belongings. Thus, the initial state is defined like this:
eq init = farmer wolf goat cabbage |~| mark .

The variables II1 and II2 are sets of items which, in particular, may be empty. The

sort of the variable B? is MaybeBelong, that is, either one of the three belongings or the

special value noBelong. Indeed, noBelong is also the identity element for sets of items.

In this way, the transition term II1 | B? > II2 represents all possible crossings, with

B? = noBelong interpreted as the farmer crossing alone. The symbol |~| is formally a

commutative operator, so that the same rule represents movements from any side to

the other. That rule is rather terse. Alternative specifications, using more than one rule,

would probably be easier to grasp. That is not important for the main purpose of this

paper, which has to do with composition.

https://doi.org/10.1017/S1471068423000340 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068423000340

64 Ó. Mart́ın et al.

The rule for eating is this one:
rl goat B II1 |~| farmer II2

=[eating B II1 |~| farmer II2]=>
survivor(B) II1 |~| farmer II2 .

Thus, when the goat and some other belonging are at one side with the farmer at the

other side, eating can take place. The function survivor is defined by these equations:
eq survivor(cabbage) = goat .
eq survivor(wolf) = wolf .

Thus, the goat survives if the other belonging is the cabbage, but it dies (disappears from

the state term) if the other belonging is the wolf.

Our specification does not require that eating happens as soon as it is possible, but

only that it can happen. So our aim is to avoid all danger and ensure a safe transit.

This was the specification of the rules of the game. We propose now two guidelines

for the farmer to follow. The first is to avoid all movements which lead to a dangerous

situation, that is, one with the goat and some other belonging left by themselves. The

second is to avoid undoing the most recent crossing: for example, after crossing one way

with the goat, avoid going back the other way with the goat again. These are both quite

obvious guidelines to follow, and we hypothesize that they are enough to ensure that

the farmer reaches the goal. As it turns out, the hypothesis is false, and we will need to

strengthen the second guideline; but let us work with this for the time being.

The guidelines are enforced by avoiding certain transitions to be triggered. For that,

we need to identify said transitions. First, the dangerous ones:
ppt danger : -> Bool .
eq danger @ (goat B II1 | B? > II2) = true .
eq danger @ G = false [owise] .

The variable B represents a belonging, while B?, as before, can be either a belonging or

noBelong. In words: there is danger if the farmer is in the boat and the goat has been left

alone with some other belonging.

We need to restrict the execution of RIVER so that RIVER$danger = false at all times.

This is another instance where a syntactic shortcut would help, but also this requirement

can be enforced by a composition with an appropriate controller.

Let us call the following system AVOID. It is as simple as a system can possibly be:
op init : -> State .
ppt avoid : -> Bool .
eq avoid @ init = false .

There is a single state, called init, no transitions and no rules, and the property avoid

is always false. Thus, the composed system
sync RIVER || AVOID

on RIVER$danger = AVOID$avoid .

indeed avoids all situations at which danger is true.

Implementing the other guideline, avoidance of the undoing of movements, requires

one more step, because we need to, somehow, store the previous movement so as to be

able to compare it with the potential new one. We are after a composed system like this
sync RIVER || PREVIOUS

on PREVIOUS$move = RIVER$move .

where RIVER informs the new system PREVIOUS about the moves being made, and PREVIOUS

stores at each moment the latest move. We name this composed system RIVER-W-PREV.

https://doi.org/10.1017/S1471068423000340 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068423000340

Compositional verification in rewriting logic 65

The new component PREVIOUS needs only this rule:
rl B? =[B? > B?’]=> B?’ .

Its state sort is MaybeBelong, that is, either actually one of the three belongings or the

value noBelong. In this case they are representing movements: the farmer crossing either

with the specified belonging or alone. The transition term includes two such movements:

the previous one and the new one. In this way, we can check them for equality when

needed. To synchronize with the main system RIVER, we use this property in PREVIOUS:
ppt move : -> MaybeMove .
eq move @ (B? > B?’) = B?’ .
eq move @ B? = noMove .

Correspondingly, we need this property in RIVER:
ppt move : -> MaybeMove .
eq move @ (II1 | B? > II2) = B? .
eq move @ G = noMove [owise] .

We need to include the new constant noMove for when, indeed, no move is taking place.

Storing information about the past execution of the system is called instrumenta-

tion and is a common technique in system analysis. This is another instance calling for

syntactic sugar. As shown with the RIVER || PREVIOUS example, it can be achieved by

composition of atomic rewrite systems.

Whenever RIVER is executing a crossing, PREVIOUS is showing, in its transition term, the

previous and the current moves, giving us the possibility of checking if they are equal:
ppt undoing : -> Bool .
eq undoing @ (B? > B?) = true .
eq undoing @ G = false [owise] .

Now, we need to restrict RIVER-W-PREV so as to avoid undoing movements. For that, we

can use AVOID, as above. But we need two instances of that system, one to avoid danger,

the other to avoid undoings, to which we refer as AVOID1 and AVOID2.

At the end, the system we are interested in is
sync RIVER-W-PREV || AVOID1 || AVOID2

on RIVER$danger = AVOID1$avoid
/\ PREVIOUS$undoing = AVOID2$avoid .

This completes the specification of the system. Later in the paper, in Section 9.3, we

show how to verify that it leads to a solution. . . or, rather, that it does not. But we will

also show a sufficient strengthening of the concept of undoing.

As in the previous examples, we want to draw the reader’s attention to the mod-

ularity of our specification. Some previous treatments of this problem in rewriting

logic (Palomino et al . 2005; Rubio et al . 2021) used several rules to model the different

ways of crossing. But this is irrelevant to us, because any specification that defines the

properties move and danger will do as well.

3 Background

This section is a formal summary of our previous work on the synchronous composition

of rewrite systems (Mart́ın et al . 2020). Detailed explanations and proofs can be found

there. This whole section is quite theoretical, consisting of many definitions and a few

propositions, to complement the informal and example-based introduction in Section 2.

We define below a number of structures and systems. This is a list of them with the

abbreviations we use to refer to them:

https://doi.org/10.1017/S1471068423000340 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068423000340

66 Ó. Mart́ın et al.

Fig. 1. The types of systems we use and their relations.

atEgRwSys: atomic egalitarian rewrite systems

EgRwSys: egalitarian rewrite systems

RwSys: plain rewrite systems

atEgTrStr: atomic egalitarian transition structures

EgTrStr: egalitarian transition structures

TrStr: plain transition structures

The polyhedron in Figure 1 shows the whole set of structures and systems with their

related maps. Slanted dashed arrows represent the several concepts of split, that is,

of obtaining plain transition structures or rewrite systems from egalitarian ones. Double

horizontal arrows represent synchronous composition of systems or structures: composing

systems or structures of the same kind produces another one of the same kind. Down-

ward snake arrows represent semantic maps, assigning transition structures to rewrite

systems. The two horizontal hooked arrows on the left represent inclusion: atomic sys-

tems and structures are particular cases of general systems and structures, respectively.

All the elements in the diagram are defined below, and better explained in our previous

paper (Mart́ın et al . 2020).

3.1 Egalitarian structures and systems

As we mentioned above, we use transition structures (of particular types) as semantics for

our rewrite systems. In due time, we define execution paths for transition structures, and

satisfaction based on those paths. In this section we define atomic egalitarian transition

structures, atomic egalitarian rewrite systems, the semantic relation between them, and

their compositions.

Definition 1 (atomic egalitarian transition structure)

An atomic egalitarian transition structure is a tuple T = (Q,T,→, P, g0), where:

• Q is the set of states;

• T is the set of transitions;

https://doi.org/10.1017/S1471068423000340 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068423000340

Compositional verification in rewriting logic 67

• → ⊆ (Q× T) ∪ (T ×Q) is the bipartite adjacency relation;

• P is the set of properties, each one a total function p from Q ∪ T to some codomain

Cp;

• g0 ∈ Q ∪ T is the initial state or transition.

We refer to the elements of Q ∪ T as stages. The class of atomic egalitarian transition

structures is denoted by atEgTrStr.

The adjacency relation allows for several arrows in and out of a transition, as well as

a state. The egalitarian goal also mandates that not only an initial state is possible, but

also an initial transition. We use variables typically called g, with or without ornaments,

to range over stages.

The definition of an atomic egalitarian transition structure is almost identical to that

of a Petri net. The difference, however, is in the semantics: we are interested in a simple

path semantics, instead of sets of marked places. This is better explained in Section 4.

In the definitions below, for a given signature Σ, we denote by TΣ the set of terms on

Σ, by TΣ(X) the terms with sorted variables from the set X, and by TΣ,s and TΣ(X)s
the terms of sort s from the respective sets. Finally, Σ|s = {f : s→ s′ | for some s′ ∈ S}
denotes the set of totally defined unary operators in Σ with domain s ∈ S.

Definition 2 (atomic egalitarian rewrite system)

An atomic egalitarian rewrite system is a tuple R = (S,≤,Σ, E,R), where:

• (S,≤) is a poset of sorts. We assume State, Trans, Stage ∈ S with State ≤ Stage and

Trans ≤ Stage. The terms of sort Stage are called stages.

• Σ is a signature of operators (and constants) f : ω → s for some ω ∈ S∗ and s ∈ S.

We assume there is a constant init ∈ Σ of sort Stage.

• E is a set of left-to-right oriented equations

t = t′ if C

where t, t′ ∈ TΣ(X)s for some s ∈ S and the condition C (which may be absent)

is a conjunction
∧

i ui = u′i of equational conditions, for ui, u
′
i ∈ TΣ(X)si for some

si ∈ S.

• The set R contains egalitarian rules, that is, rules of the form

u −
[
t
]
→ u′ if C

where u, u′ ∈ TΣ(X)State, t ∈ TΣ(X)Trans and C (which may be absent) is as

above.

We also refer as signature to the triple (S,≤,Σ). A property is any element of Σ|Stage,
that is, any unary operator in Σ totally defined on Stage terms.

The main point in which we depart from the standard definitions of rewrite system

(often called rather rewrite theory) (Meseguer 1992) is that our rules are egalitarian,

by which we mean that they include an explicit transition term. Properties are also a

nonstandard ingredient. As a passing note, we have shown (Mart́ın 2021a, Section 6.2.4)

that requiring properties to be totally defined, as we do, is not a meaningful restriction.

In Maude, and in our examples in this paper, equations are introduced by the keywords

eq or ceq, and rules by rl or crl; in each case the c form is used when conditions are

https://doi.org/10.1017/S1471068423000340 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068423000340

68 Ó. Mart́ın et al.

present. The signature is represented by sentences with keywords sort, subsort, and op

or ops, though we often omit such sentences in the examples in this paper.

Some of the definitions and results that follow are very similar for transition structures

and for rewrite systems. In particular, the synchronization mechanism is the same for

one and the other. To minimize repetition, we deal with both of them jointly as much as

possible. We refer to them in abstract as systems and with the letter S.
We compose atomic systems and structures to create complex ones. In all this paper

we consider each system to be its own namespace, so that the sets of properties, sorts

and operators from different systems are disjoint.

Definition 3 (suitable synchronization criteria)

Given a set of atomic structures or systems, one for each n = 1, . . . , N , either all of

them in atEgTrStr or all of them in atEgRwSys, each with set of properties Pn, a set of

synchronization criteria for them is a set Y ⊆
⋃

n Pn ×
⋃

n Pn.

We say that a set Y of synchronization criteria is suitable if it satisfies the following

conditions. For transition structures, we require that, if (p, p′) ∈ Y ∩ (Pm × Pn), for

some m,n ∈ {1, . . . , N}, with p : Qm ∪ Tm → C and p′ : Qn ∪ Tn → C ′, then

the elements in C and C ′ can be compared for equality. Correspondingly, for rewrite

systems Rn = (Sn,≤n,Σn, En, Rn), we require that, if (p, p′) ∈ Y ∩ (Pm × Pn), with

p : Stagem → s and p′ : Stagen → s′, then there exists a sort s0, common to Rm and Rn,

with sm ≤m s0 and sn ≤n s0, and an equational theory E0 of s0, included as subtheory

in both Rm and Rn, in which the values of p and p′ can be checked for equality.

To be precise, we should require that E0 be embedded (rather than included) by means

of injective maps into the equational theories of Rm and Rn. In that way, the names-

paces of different systems are kept disjoint. While it is technically imprecise, we use the

shorthand of saying that E0 is the common equational theory of s0.

Definition 4 (synchronous composition)

The synchronous composition of Sn for n = 1, . . . , N , either all of them in atEgTrStr

or all of them in atEgRwSys, with respect to the suitable synchronization criteria Y is

denoted by ‖Y {Sn | n = 1, . . . , N}, or usually just ‖Y Sn. From now on, whenever we

write ‖Y Sn, we are assuming Y is suitable. When only two components are involved, we

usually write S1‖Y S2.

Definition 5 (egalitarian structures and systems)

We define the classes of egalitarian transition structures, denoted by EgTrStr, and, re-

spectively, of egalitarian rewrite systems, denoted by EgRwSys, as the smallest ones that

contain atEgTrStr or, respectively, atEgRwSys, and are closed with respect to the syn-

chronous composition operation described above.

We need to consider a notion of equivalence: the one given by the different ways

of composing the same components. For example, (S1‖Y S2)‖Y ′S3 is equivalent to

‖Y ∪Y ′{S1,S2,S3}.

Definition 6 (equivalent structures and systems)

The set of atomic components of an egalitarian transition structure or rewrite system is:

• atoms(S) = {S} if S is atomic,

• atoms(‖Y Sn) =
⋃

n atoms(Sn).

https://doi.org/10.1017/S1471068423000340 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068423000340

Compositional verification in rewriting logic 69

The total set of criteria of an egalitarian transition structure or rewrite system is:

• criteria(S) = ∅ if S is atomic,

• criteria(‖Y Sn) = Ỹ ∪
⋃

n criteria(Sn),

where Ỹ = {{p, q} | (p, q) ∈ Y } (so that (p, q) and (q, p) represent the same criterion).

Two egalitarian structures or systems S1 and S2 are said to be equivalent iff

atoms(S1) = atoms(S2) and criteria(S1) = criteria(S2).

Proposition 1 (equivalence to composition of atoms)

Every egalitarian transition structure or rewrite system is equivalent to one of the form

‖Y Sn where each Sn is atomic.

Namely, S = ‖Y Sn is equivalent to ‖Y ′ atoms(S), where Y ′ = {(p, q) | {p, q} ∈
criteria(S)}.
In our previous work (Mart́ın et al . 2020; Mart́ın 2021a) we showed that equivalent sys-

tems represent the same behavior, as given by paths and satisfaction of temporal formu-

las. This allows us to group the atomic components in the most suitable way for a modular

design. Thus, in the example in Section 2.3, we first composed RIVER || PREVIOUS to obtain

RIVER-W-PREV, which was then used in the composition RIVER-W-PREV || AVOID1 || AVOID2.

In short, the compound ‖Y Sn is a set of atomic components linked by synchronization

criteria. The behavior it models is that in which each component evolves according to its

internal specification, with the added restriction that all synchronization criteria have to

be satisfied at all times.

Definition 7 (signature and properties of a compound)

Let Rn = (Sn,≤n,Σn, En, Rn) ∈ atEgRwSys for n = 1, . . . , N . Let Y be a set of suit-

able synchronization criteria. The set of properties for Rn has already being defined as

Σ|Stagen
. The set of properties for ‖Y Rn is defined to be

⊎
n Pn. Also, the signature for

‖Y Rn is defined to be (
⋃

n Sn,
⋃

n ≤n,
⋃

n Σn).

This definition, as was the case for Definition 3, is not technically precise, because

we require at the same time that the namespaces be disjoint and that they share the

common equational theories. A precise definition would involve pushouts. We avoid it

and allow the slight informality of saying that each rewrite system is its own namespace,

disjoint from the rest except for those common equational theories.

Definition 8 (semantics in the atomic case)

Given R = (S,≤,Σ, E,R) ∈ atEgRwSys, we define sem(R) = (Q,T,→, P, g0)

∈ atEgTrStr by:

• Q = TΣ/E,State (that is, E-equational classes of State terms);

• T = TΣ/E,Trans (that is, E-equational classes of Trans terms);

• → is the half-rewrite relation →eg
R induced by R (Mart́ın et al . 2020, Definition 6);

• P = Σ|Stage;
• g0 = [init]E (that is, the E-equational class of init).

The half-rewrite relation → takes the system from a state to a transition, or vice versa, in

contrast to the usual state-to-state rewrites. Roughly speaking, a rewrite rule u −
[
t
]
→ u′

https://doi.org/10.1017/S1471068423000340 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068423000340

70 Ó. Mart́ın et al.

produces half rewrites from instances of u to instances of t, and from there to instances

of u′.

Definition 9 (semantics for the general egalitarian case)

Given ‖Y Rn ∈ EgRwSys, we define its semantics componentwise:

sem(‖Y Rn) = ‖Y sem(Rn) ∈ EgTrStr.

A path semantics for the composition of egalitarian structures is given in Section 4.

3.2 Plain structures and systems

In addition to egalitarian structures and systems, we use standard ones which we call plain

to avoid confusion with the egalitarian ones. An important feature of plain structures and

systems is that they only have states, and not (explicit) transitions, and this allows their

composition to be defined as a tuple construction. We see plain structures and systems

as modeling the global behavior of composed systems, while we use egalitarian structures

and systems to model local and distributed systems. The correspondence between them

is given by the split operation defined later.

Definition 10 (plain transition structure)

A plain transition structure is a tuple T = (Q,→, P, q0), where:

• Q is the set of states;

• → ⊆ Q×Q is the adjacency relation;

• P is the set of properties, each one a total function p from Q to some codomain Cp;

• q0 ∈ Q is the initial state.

The class of all plain transition structures is denoted by TrStr.

Definition 11 (plain rewrite system)

A plain rewrite system is a tuple (S,≤,Σ, E,R), where:

• (S,≤) is a poset of sorts which contains the element State.

• Σ is a signature of operators which includes the constant init of sort State.

• E is a set of equations as in Definition 2.

• R is a set of rules of the form t → t′ if C, where t, t′ ∈ TΣ(X)s for some s ∈ S,

and C (which may be absent) is as in Definition 2.

We also refer as signature to the triple (S,≤,Σ). We call properties to the elements of

Σ|State. The class of all plain rewrite systems is denoted by RwSys.

Definition 12 (composition for plain transition structures)

Given plain transition structures Tn = (Qn,→n, Pn, qn0) ∈ TrStr, for n = 1, . . . , N , their

synchronous composition with respect to the synchronization criteria Y ⊆
⋃

n Pn×
⋃

n Pn,

is denoted by ‖Y {Tn | n = 1, . . . , N}, or usually just ‖Y Tn, and is defined to be T =

(Q,→, P, q0) ∈ TrStr, where:

• Q = {〈q1, . . . , qN 〉 ∈
∏

nQn | for each (p, p′) ∈ Y with p ∈ Pm and p′ ∈ Pm′ we

have p(qm) = p′(qm′)};

https://doi.org/10.1017/S1471068423000340 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068423000340

Compositional verification in rewriting logic 71

• for 〈q1, . . . , qN 〉, 〈q′1, . . . , q′N 〉 ∈ Q, we have 〈q1, . . . , qN 〉 → 〈q′1, . . . , q′N 〉 iff for each n

either qn →n q
′
n or qn = q′n, with at least one occurrence of the former;

• P =
⋃

n Pn and, if p is a property originally defined in the component Tm, then it

is defined in T by p(〈q1, . . . , qN 〉) = p(qm);

• q0 = 〈q10, . . . , qN0〉, assumed to be in Q (that is, to satisfy the criteria in Y).

It is an important detail that the composition of plain transition structures can be eval-

uated to a single, monolithic structure of the same type, while the composition of egali-

tarian structures is just a set of interacting but independent components.

The composition of plain rewrite systems is defined next by a tuple-like construction;

in particular, rewrite rules are produced in this way. For this to work, we need the

components involved to be topmost. A plain rewrite system is said to be topmost if

its rules can only be applied on whole State terms, not on its subterms – see more

explanations in our previous work (Mart́ın et al . 2020).

Definition 13 (composition for plain rewrite systems)

Given plain rewrite systemsRn = (Sn,≤n,Σn, En,Mn, Rn) ∈ RwSys for n = 1, . . . , N , all

of them topmost, their synchronous composition with respect to synchronization criteria

Y is denoted by ‖Y {Rn | n = 1, . . . , N}, or usually just ‖Y Rn, and is defined to be a

new plain rewrite system R = (S,≤,Σ, E,R) ∈ RwSys. The elements of R are defined

as the disjoint union of the respective elements of each Rn (that is, S =
⊎

n Sn, and so

on), except for the following:

• There is in S a new sort State and a constructor 〈 〉 : State1×· · ·× StateN → State

(Staten denotes the sort State from component Rn).

• There is a constant init of sort State and an equation init = 〈init1, . . . , initN 〉
(initn denotes the constant init from component Rn).

• For each (p, p′) ∈ Y , suitability of Y (Definition 3) implies the existence of a

common sort s and a common equational theory for it. These are common and,

thus, included only once in the result of the composition.

• For each property p defined in the component Rm, there is in Σ a declaration of a

property with the same name and in E an equation p(〈q1, . . . , qN 〉) = p(qm).

• We assume an equational theory of the Booleans is included, and we add the dec-

laration of a new operator isValidState : ΠN
i=1Statei → Boolean, defined by this

equation:

isValidState(〈q1, . . . , qN 〉) =
∧

(p,p′)∈Y

p(〈q1, . . . , qN 〉) = p′(〈q1, . . . , qN 〉).

• The rewrite rules from the components are dropped, and the set of rules R for the

composition is built in the following way. For each nonempty set M ⊆ {1, . . . , N},
and for each set of rules qm → q′m if Cm, one from each Rm for m ∈ M , and

setting q′m = qm for m �∈M , there is the following rule in R:

〈q1, . . . , qN 〉 → 〈q′1, . . . , q′N 〉 if
∧

m∈M

Cm ∧ isValidState(〈q1, . . . , qN 〉)

∧ isValidState(〈q′1, . . . , q′N 〉).

https://doi.org/10.1017/S1471068423000340 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068423000340

72 Ó. Mart́ın et al.

With these rules, only State terms for which synchronization criteria are satisfied are

reachable from init.

Equations from different components are mixed together, according to this definition,

but there are no conflicts, because each component is its own namespace. The resulting

plain rewrite system happens to be topmost as well, so it can be used as a component in

turn.

Definition 14 (semantics for plain rewrite systems)

Given R = (S,≤,Σ, E,R) ∈ RwSys, we define its semantics sem(R) = (Q,→, P, q0) ∈
TrStr by:

• Q = TΣ/E,State;

• → is the rewrite relation →R induced by R;

• P = Σ|State;
• q0 = [init]E .

Concepts of equivalence can be defined for plain transition structures and for plain

rewrite systems (Mart́ın et al . 2020), corresponding to the equivalence in the egalitar-

ian setting from Definition 6, to formalize the idea that the ordering and grouping of

components in a composition are immaterial. For example, (S1‖Y1
S2)‖Y2

S3 is equivalent

to (S3‖Y3
S1)‖Y4

S2 if Y1 ∪ Y2 = Y3 ∪ Y4, for Sn either plain rewrite systems or plain

transition structures. (Remember that, whenever we write such composition expressions,

we are assuming the synchronization criteria to be suitable.) Although we do not repeat

those definitions here, when we write expressions like 〈q1, . . . , qN 〉 ∈ ‖Y Sn we are assum-

ing that some ordering and grouping of the components have been arbitrarily fixed. And

when we say that two systems are equal, we rather mean they are equivalent in that

sense. This is the case in the following proposition.

Proposition 2 (semantics and composition commute)

For plain rewrite systems Rn, each of them topmost, and for suitable synchronization

criteria Y , we have that sem(‖Y Rn) = ‖Y sem(Rn).

3.3 The split

Plain systems have the advantage that they are standard rewrite systems and existing

theoretical and practical tools can be used on them. For that reason, it is sometimes

useful to transform an egalitarian system into an equivalent plain one. This is what the

operation that we call split does. The result of the split represents in a single system the

joint evolution of the three components.

Definition 15 (the split)

Given T = (Q,T,→, P, g0) ∈ atEgTrStr, its split is split(T) = (Q ∪ T ,→, P, g0) ∈ TrStr.

That is, stages are transformed into states.

Given R = (S,≤,Σ, E,R) ∈ atEgRwSys, its split is split(R) = (S′,≤,Σ, E,R′) ∈
RwSys, where

• S′ is the result of renaming in S the sort State to State’, and Stage to State (with

the only aim of getting the top sort still being called State), and

https://doi.org/10.1017/S1471068423000340 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068423000340

Compositional verification in rewriting logic 73

• R′ is the result of splitting each rule s −
[
t
]
→ s′ if C in R to produce the two rules

s→ t if C and t→ s′ if C in R′.

For a nonatomic system ‖Y Sn in EgTrStr (resp., in EgRwSys), its split is recursively

defined by split(‖Y Sn) = ‖Y split(Sn), a system in TrStr (resp., in RwSys).

The composition of plain systems can always be evaluated to a single one, so the result

of a split is always a single plain transition structure or rewrite system.

Proposition 3 (semantics and split commute)

For R ∈ EgRwSys all whose atomic components are topmost, we have that

sem(split(R)) = split(sem(R)).

Definition 16 (compatible stages)

Given T = (Q,T,→, P, g0) and T ′ = (Q′, T ′,→′, P ′, g′0), the stages g ∈ Q ∪ T and

g′ ∈ Q′ ∪ T ′ are said to be compatible (with respect to Y) iff all criteria in Y are satisfied

when evaluated at them, that is, p(g) = p′(g′) for each (p, p′) ∈ Y ∩ (P × P ′). More in

general, given Tn = (Qn, Tn,→n, Pn, gn0) for n = 1, . . . , N , we say that the stages {gn}n,
with gn ∈ Qn ∪ Tn, are compatible when they are so pairwise according to the above.

The intuitive meaning is that compatible stages can be visited simultaneously, each

within its own component system. In the example of the chained buffers, Section 2.1,

the states sending in BUFFER1 and receiving in BUFFER2 are compatible with respect to

the synchronization criterion BUFFER1$isSending = BUFFER2$isReceiving, because isSending

evaluates to true at sending and isReceiving evaluates also to true at receiving. There

is a trivial bijection between compatible stages and states in the split which justifies the

view that states in split(T) represent global states for the compound T .

Proposition 4 (distributed and global states)

There is a bijection between the set of compatible stages in ‖Y Tn and the set of states

in split(‖Y Tn).

4 Distributed and global paths

In preparation for the definition of satisfaction in following sections, we need an opera-

tional, or step, semantics for all our transition structures. They are given by paths (for

atomic and plain structures) and sets of compatible paths (for compounds). They are

defined in this section.

Definition 17 (path and maximal path)

A path in T = (Q,T,→, P, g0) ∈ atEgTrStr is a finite or infinite sequence of adjacent

stages g = g0 → g1 → . . . starting at the structure’s initial stage. We call such a path

maximal if it is either infinite or it is finite and its final stage has no stages adjacent

to it.

Similarly, a path in T = (Q,→, P, q0) ∈ TrStr is a sequence of adjacent states q =

q0 → q1 → We call such a path maximal if it is either infinite or it is finite and its

final state has no states adjacent to it.

Compatibility of paths is defined by means of a relation between indices which shows a

way in which all paths can be traversed together, interleaving some steps, making other

https://doi.org/10.1017/S1471068423000340 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068423000340

74 Ó. Mart́ın et al.

simultaneous, and keeping compatibility of stages at all times. The intuitive meaning

of the following definition is that, if 〈i1, . . . , iN 〉 is in the relation X, then the stages

g1i1 , . . . , gNiN are visited at the same time, each in its structure. Thus, each relation X

describes a possible execution of the composed system.

Definition 18 (compatible paths)

Let Tn ∈ atEgTrStr for n = 1, . . . , N . For each n, let gn = gn0 → gn1 → . . . be a finite

or infinite path in Tn. The paths {gn | n = 1, . . . , N} are said to be compatible (with

respect to a given Y) iff there exists a relation between indices X ⊆ N
{1,...,N} satisfying

the following conditions:

1. 〈0, . . . , 0〉 ∈ X.

2. If 〈i1, . . . , iN 〉 ∈ X and gnin is not the last stage in gn for at least one n ∈ {1, . . . , N},
then for exactly one nonempty M ⊆ {1, . . . , N} we have that 〈i′1, . . . , i′N 〉 ∈ X,

where i′n = in + 1 if n ∈M , and i′n = in otherwise.

3. All tuples in X can be obtained by means of the two previous conditions.

4. 〈i1, . . . , iN 〉 ∈ X implies the compatibility (with respect to Y) of the stages gnin
(n = 1, . . . , N).

5. For each stage gni in each path gn, the index i appears as the nth component of

some tuple in X.

Further, a set of paths is said to be maximally compatible if no path or subset of paths

in it can be extended with new stages in the respective components while maintaining

compatibility.

The conditions, specially Condition 2, make it possible to arrange all the tuples in X

in a linear sequence, which is shown in Proposition 5 to correspond to a path in the split

system. Thus, paths in the split can be seen as global paths.

Condition 5 entails that the paths are all traversed together in their entirety. This,

however, does not mean each path is maximal in its component: a partial path can be

a member of a compatible set, as long as X shows how to traverse it to its last (though

maybe not terminal) stage.

For example, consider the paths for the chained buffers from Section 2.1

• in BUFFER1: idle → receiving → gotToken → sending → · · · ;
• in BUFFER2: the same as in BUFFER1;

• in BUFFER3: the single-stage path idle.

A set X showing how to traverse these three paths would include, among others, the

following triples:

• 〈0, 0, 0〉, representing the three paths starting at idle;

• 〈1, 0, 0〉 and 〈2, 0, 0〉, representing only the first path advancing one step and two

steps;

• 〈3, 1, 0〉, representing the first and second paths advancing to the respective stages

sending and receiving, which are compatible.

As a side note, compatibility of paths cannot be defined pairwise, as we did for com-

patibility of stages in Definition 16. It need not be the case that three paths can be

traversed simultaneously keeping compatibility of stages, even if any two of them can.

https://doi.org/10.1017/S1471068423000340 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068423000340

Compositional verification in rewriting logic 75

Consider split(‖Y Tn). Its states are tuples of components’ stages. Thus, for each atomic

component Tn of T , a projection map πn can be defined from the states of split(‖Y Tn)
to the stages of Tn. This projection can be extended to paths. However, our defini-

tions allow for a component to advance while others stay in the same stage, so, in

general, a pure projection would produce repeated stages (stuttering) that we want to

remove.

Definition 19 (projection)

Let q = 〈g1, . . . , gN 〉 be a state of split(‖Y Tn) and q = q0 → q1 → . . . be a path in

split(‖Y Tn). For each n = 1, . . . , N :

• we define πn(q) = gn;

• we define πn(q) as the result of removing stuttering (that is, simplifying consecutive

repetitions) from πn(q0) → πn(q1) → . . .

Proposition 5 (distributed and global paths)

There is a bijection between sets of compatible paths in {Tn}n (with respect to Y) and

paths in split(‖Y Tn). Also, there is a bijection between sets of maximally compatible

paths in {Tn}n (with respect to Y) and maximal paths in split(‖Y Tn).

The paths in a compatible set are not required to be maximal. Indeed, any projection

of q may fail to be maximal in its component, even if q is in the split.

Proof

We prove first that, for q a path in split(‖Y Tn), the projections πn(q), for n = 1, . . . , N ,

are compatible paths, with the relation X (required by Definition 18) being induced

by q itself. Because the projections πn remove stuttering, we need to be careful with

the resulting indices. We introduce a function s which, when applied to πn(qi) (the

nth component of the ith state appearing in q), returns the index of that stage in the

path πn(q) (that is, after removing stuttering). Then, X = {〈s(π1(qi)), . . . , s(πN (qi))〉 |
qi in q} meets the conditions in Definition 18.

Next, we prove that, given paths gn in Tn, for n = 1, . . . , N , which are compatible,

there is a unique path q in split(‖Y Tn) such that πn(q) = gn. Let X be the relation whose

existence is given by compatibility of paths in Definition 18. Let the initial state of q be

q0 = 〈g10, . . . , gN0〉. Then, inductively, for each state qk already in the path, let the

next state qk+1 be the tuple whose existence is required by Condition 2 in Definition 18.

Condition 5 ensures that the projections of this q produce the complete gn’s.

The maximal part now follows: to any hypothetical extension for a set of compatible

paths would correspond an extension to the corresponding path in the split, and vice

versa.

We are not saying too much here: there is an almost trivial correspondence between

tuples of paths and paths of tuples. But there are useful consequences. The split provides

global, monolithic concepts of states and paths. The equivalence between those concepts

and the distributed ones validates our definitions and allows us to work using the most

suitable view in each case. Also, as discussed in Section 6.1, it allows us to reason about

models of distributed systems, or even execute them, by performing the split and using

existing techniques and tools for the corresponding global, monolithic result.

https://doi.org/10.1017/S1471068423000340 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068423000340

76 Ó. Mart́ın et al.

4.1 A short diversion on locality

Even though the definition of compatibility involves all paths at once, and thus all com-

ponents at once, there is room to see locality somewhat concealed in it. We have already

mentioned that the contrast between local and global, or, equivalently, between a dis-

tributed view of complex systems and a monolithic one is a motivation for our work, so

a short diversion is in order.

For an example, consider a system composed of a sender and a receiver, which syn-

chronize on a Boolean property, very much in the same way as the chained buffers in

Section 2.1 did:
sync SENDER || RECEIVER

on SENDER$isSending = RECEIVER$isReceiving .

While the SENDER is not ready to send, its property isSending keeps being false, the

same as RECEIVER$isReceiving. Meanwhile, SENDER can evolve in whatever way fits to its

function. The system SENDER may even be a composed system on its own, and then its

components can interact among them as they need to, with no concern about RECEIVER.

Of course, the same is true of RECEIVER. This is the sense in which locality is included in

our definitions. This view is more difficult to appreciate when only considering global,

monolithic definitions of composition. Let us be more precise.

Proposition 6 (compatibility and locality)

Suppose given the egalitarian transition structure T = ‖Y {Tn | n = 1, . . . , N}, which we

rather prefer to view grouped as T = T ′‖Y3
T ′′ with T ′ = ‖Y1

{Tn | n = 1, . . . , N ′} and

T ′′ = ‖Y2
{Tn | n = N ′ + 1, . . . , N} (therefore, Y = Y1 � Y2 � Y3). Suppose further that

the stages {gn}n, n = 1, . . . , N , are compatible and that, for each n, there is a g′n such

that either gn →n g
′
n or gn = g′n (that is, either Tn advances one step or stays where it

was). We have that the stages {g′n | n = 1, . . . , N} are compatible if (but not only if) the

three following conditions hold:

• the stages in the set {g′n | n = 1, . . . , N ′} are compatible respect to Y1;

• the stages in the set {g′n | n = N ′ + 1, . . . , N} are compatible respect to Y2; and

• for each p used in Y3, if p ∈ Pm, we have p(gm) = p(g′m).

Proof

Let (p, q) be a criterion in Y ∩ (Pi×Pj), that is, property p is defined in Ti and property

q in Tj . We need to show that p(g′i) = q(g′j) if the three conditions hold.

If i, j ∈ {1, . . . , N ′}, it means that (p, q) ∈ Y1, and then p(gi) = q(gj) because of

the first item in the proposition statement. Similarly if i, j ∈ {N ′ + 1, . . . , N}. Finally,
if i ∈ {1, . . . , N ′} and j ∈ {N ′ + 1, . . . , N}, or vice versa, then (p, q) ∈ Y3, so that,

because of the third item in the statement and the compatibility of {gn}n, we have

p(g′i) = p(gi) = q(gj) = q(g′j).

5 Linear temporal logic

The temporal logic we use in this work is LTL (Clarke et al . 1999, Ch. 3) with two

deviations from the standard that we discuss below. LTL is appropriate for compositional

verification because its formulas are implicitly universally quantified over execution paths.

https://doi.org/10.1017/S1471068423000340 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068423000340

Compositional verification in rewriting logic 77

Thus, when the possible executions of a system are restricted by its interaction with

the environment, the remaining ones still satisfy whatever LTL formulas were satisfied

in isolation. ACTL* (Clarke et al . 1999, Ch. 3) is a superset of LTL that shares this

universality property, but we restrict to LTL in this paper.

The first difference between our logic, which we call LTL ∅(Σ,Π), and standard LTL

is that we avoid the use of the next temporal operator, usually represented by � (or,

alternatively, N or X). The reason for avoiding � is that its reference (the next stage)

is not preserved by composition, nor by refinement. If we want to be ready for them,

we should treat time as if it were dense: between the present and any next stage, a new

stage may show up. Also, the semantics for the � operator is not clear when we have to

evaluate it at both states and transitions. The resulting logic is still quite common in the

literature. If we are allowed to bring in some experts to support us:

[. . .] increasing the expressiveness of our temporal logic with a next operator would destroy
the entire logical foundation for its use in hierarchical methods. (Lamport 1983)

This definition is appropriate for reasoning about asynchronous processes since there is no
notion of next system state in such cases. (Clarke et al . 1989)

The downside of quitting the next operator is that, well, sometimes it is useful. In

particular, in our examples, we have found often the need to specify that a formula holds

at each state from the current one but excluding the current one, which in LTL would

be written as � �ϕ. However, we have also found that the next state of interest can

often be characterized by particular changes in the values of propositions (or, rather,

properties). For example, for a proposition p and a temporal formula ϕ, the expression

p ∧ (p U (¬p ∧ ϕ)) can be interpreted as saying that a change in the value of p identifies

the next state of interest, at which point we require ϕ to hold.

The second difference between LTL ∅(Σ,Π) and standard LTL is that, instead of atomic

propositions, we use in our formulas properties and terms involving them – that is what Π

is for. We usually denote by Π the set of property symbols to build formulas on, and by P

the set of actual properties defined in a transition structure. We decided that properties

are the interfaces of systems, and that they are all that is to be observed and known

from the external world. It makes sense to use them in formulas. For instance, �(p = 5)

and (p1 + p2 < p3) U (p4 = true) are valid temporal formulas for us, interpretable on

structures in which the respective properties, p, pi, are defined. Using properties instead

of propositions does not increase the expressive power of our formulas, because any

Boolean expression involving properties can be turned into an atomic proposition (see

Propositions 10 and 11), but properties fit better in our setting.

When we get to semantics below, we will need a means to evaluate expressions involving

properties. For now, from a merely syntactic point of view, we need a signature on which

such expressions are built. Remember from Definitions 2 and 11 that a signature in

rewriting logic is a triple (S,≤,Σ). To such a signature we add Π, a set of S-sorted

symbols to represent properties. Then, similarly to the notations TΣ(X) and TΣ(X)s
for terms with variables from X, we use the notations TΣ(Π) and TΣ(Π)s for terms

which can include sorted symbols from Π. Thus, viewing such symbols as new constants,

TΣ(Π) = TΣ∪Π and TΣ(Π)s = TΣ∪Π,s.

https://doi.org/10.1017/S1471068423000340 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068423000340

78 Ó. Mart́ın et al.

Definition 20 (temporal formula)

Let Σ = (S,≤,Σ) be a signature. Let Π be a set of S-sorted symbols disjoint from Σ, and

let TΣ(Π) and TΣ(Π)s be as described above. A formula in LTL ∅(Σ,Π) is defined by:

• t = u is an atomic formula for terms t, u ∈ TΣ(Π)s for some sort s ∈ S;

• if ϕ and ψ are formulas, then so are ¬ϕ, ϕ ∨ ψ, and ϕ U ψ.

We define ∧, →, ↔, �, �, W, and R as the usual abbreviations.

In the particular case in which t ∈ TΣ(Π)Bool (and assuming the sort Bool includes

the value true), it is often convenient to allow the mere t as a shortcut for the formula

t = true, so that we can write p1 + p2 < p3 instead of (p1 + p2 < p3) = true.

6 Basic satisfaction relations

The satisfaction relations studied in this section consider systems as closed entities, with

no environment, no interaction with other systems. Sections 8 and, specially, Section 9

deal with open, interacting systems.

We need two elements to jointly provide a basis to evaluate the satisfaction of

LTL ∅(Σ,Π) formulas. One is a Σ-algebra on which terms in TΣ are evaluated. The

other element we need is a transition structure on which temporal formulas make sense;

for this, we use egalitarian transition structures and plain ones. Transition structures

also provide interpretations for the property symbols in Π. Thus, we are dealing with

satisfaction relations of the form T ,A |= ϕ, where T is a transition structure (which, in

our definition, includes its initial state or stage), A is a Σ-algebra, and ϕ is a temporal

formula in LTL ∅(Σ,Π).

The algebra A is a Σ-algebra in the usual sense that it is implicitly equipped with an

interpretation map for all the elements in Σ. We denote the interpretations of s ∈ S and

f ∈ Σ in A, respectively, as sA and fA. In the same way, a transition structure T with

set of properties P is a Π-transition structure, in the sense that it is implicitly equipped

with an interpretation map that assigns to each element in Π an element in P . We denote

the interpretation of p ∈ Π in T as pT . Also, this interpretation has to be sort-preserving,

that is, if p ∈ Π has been given sort s, then the codomain of pT has to be sA. Often,

Σ and Π are clear from context, and we omit them and say just algebra and transition

structure.

Satisfaction is formalized below but, intuitively, evaluating T ,A |= �(p1+ p2 < p3) for

an atomic T entails: (i) finding the properties in T that are the interpretations of p1, p2,

and p3; (ii) finding the values of those properties at each of T ’s stages; (iii) using A to

evaluate (p1(g)+p2(g) < p3(g)) = true for each stage g; and (iv) using the results from the

previous step and the adjacency relation in T to decide whether �((p1+p2 < p3) = true)

holds.

The previous discussion is equally valid for the three types of transition structures:

plain or egalitarian, atomic or otherwise. The definition of satisfaction of formulas is

very similar in all cases, so we present the three definitions at once, in part to avoid

repetitions, but also to highlight the similarities.

Remember from Definition 4 that the set of properties of a composed transition

structure is the disjoint union of the properties of its components. So, if each Tn is a

https://doi.org/10.1017/S1471068423000340 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068423000340

Compositional verification in rewriting logic 79

Πn-transition structure, then T = ‖Y Tn is a (
⊎

n Πn)-transition structure. The interpre-

tation of p in T , pT , is also pTn
for some n.

Definition 21 (evaluation of terms)

Consider a Π-transition structure T , with set of properties P , implicitly equipped with

a sort-preserving interpretation for properties p → pT .

• For T ∈ atEgTrStr, consider the mapping v : p → pT (g0), that is, the evaluation of

the property p at T ’s initial stage.

• Respectively, for T ∈ EgTrStr, consider the mapping v : p → pT (gm0) if p ∈ Pm,

that is, the evaluation of the property p at the initial stage of the component it is

defined on.

• Respectively, for T ∈ TrStr, consider the mapping v : p → pT (q0), that is, the

evaluation of the property p at T ’s initial state.

The mapping v can be extended to TΣ(Π) homomorphically in the standard way: v(p) =

v(p), and v(f(t1, . . . , tn)) = fA(v(t1), . . . , v(tn)). We denote as tT,A the image of t under

v, that is, the evaluation of the term t in T and A.

The type of v(p) is what we called Cp in Definition 1, so it is dependent on p.

Syntactically speaking, the role of Π in TΣ(Π) is analogous to the role of a set of

variables in TΣ(X). In this sense, the valuation v for properties is analogous to the

classical valuation maps that assign to each variable in X an element in the algebra.

There is a technical point regarding interpretations and the split that we need to

take care of: both T and split(T) are Π-transition structures, both with the same set of

properties, say P , so that they are both equipped with an interpretation from Π to P ,

respectively, p → pT ∈ P and p → psplit(T) ∈ P . In principle, the interpretations need

not be the same, but that is the natural and convenient way to proceed.

Definition 22 (the split, revisited)

Given T ∈ EgTrStr, considered as a Π-transition structure and equipped with an inter-

pretation p → pT , we define split(T) ∈ TrStr as in Definition 15 and equipped with the

interpretation p → psplit(T) = pT .

Definition 23 (πi and T (g))

• For a path π = g in T ∈ atEgTrStr, we denote as πi the result of removing from

π its first i stages. Also, T (g) is the result of replacing in T its initial stage by g,

that is, T (g) = (Q,T,→, P, g).

• The definition is a little more involved for EgTrStr. Let π = {gn}n be a set of

compatible paths, and let X be the relation from Definition 18 which shows how to

traverse them all simultaneously. As observed there, the tuples in X can be ordered

linearly. Let 〈r1, . . . , rN 〉 be the ith tuple in that linear sequence. We denote as

πi the result of removing from each component path gn its first rn stages. Also,

T ({gnkn
}n) is the result of replacing in each Tn its initial stage by gnkn

.

• Finally, for a path π = q in T ∈ TrStr, we denote as πi the result of removing from

π its first i states. Also, T (q) is the result of replacing in T its initial state by q,

that is, T (q) = (Q,→, P, q).

Now, we can define the satisfaction relation for each of our three classes of transition

structures.

https://doi.org/10.1017/S1471068423000340 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068423000340

80 Ó. Mart́ın et al.

Definition 24 (satisfaction for transition structures)

Let Σ = (S,≤,Σ) be a signature, A be a Σ-algebra, and Π be a set of S-sorted symbols,

disjoint from Σ. Also,

1. let T = (Q,T,→, P, g0) ∈ atEgTrStr be an atomic Π-structure;

2. respectively, let T = ‖Y Tn ∈ EgTrStr be a nonatomic Π-structure;

3. respectively, let T = (Q,→, P, q0) ∈ TrStr be a plain Π-structure.

Finally, let t, u ∈ TΣ(Π)s for some s ∈ S, and let ϕ,ψ be formulas in LTL ∅(Σ,Π). The

satisfaction relation T ,A |= ϕ is defined by:

• T ,A |= t = u iff tT,A = uT,A;

• otherwise, T ,A |= ϕ iff

1. for each maximal path π in T ,

2. respectively, for each maximally compatible set of paths π in T ,

3. respectively, for each maximal path π in T ,

we have T ,A, π |= ϕ.

Satisfaction of a formula by a path is defined by:

• T ,A, π |= t = u iff T ,A |= t = u;

• T ,A, π |= ¬ϕ iff not T ,A, π |= ϕ;

• T ,A, π |= ϕ ∨ ψ iff T ,A, π |= ϕ or T ,A, π |= ψ;

• T ,A, π |= ϕ U ψ iff there is some i ≥ 0 such that T (πi),A, πi |= ψ, and for all

j < i, we have T (πj),A, πj |= ϕ.

These definitions are not only formally similar, but also equivalent in a sense made

precise in the two propositions that follow. This is again an instance of the equivalence

of the distributed and the monolithic views achieved through the split.

Proposition 7 (split and terms)

For any egalitarian Π-transition structure T ∈ EgTrStr, atomic or otherwise, and

Σ-algebra A, we have that tT,A = tsplit(T),A for every term t ∈ TΣ(Π).

Proof

The role of the structure, T or split(T), is providing values for properties. By Defini-

tion 22, the properties of T and those of split(T) are the same, and the interpretations

are also the same.

Proposition 8 (split and satisfaction for transition structures)

For any egalitarian Π-transition structure T ∈ EgTrStr, atomic or otherwise, and

Σ-algebra A, we have that T ,A |= ϕ iff split(T),A |= ϕ for every formula ϕ in

LTL ∅(Σ,Π).

Proof

We proceed by structural induction on the shape of the formula. First:

T ,A |= t = u ⇐⇒ tT,A = uT,A

⇐⇒ tsplit(T),A = usplit(T),A

⇐⇒ split(T),A |= t = u.

https://doi.org/10.1017/S1471068423000340 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068423000340

Compositional verification in rewriting logic 81

The second equivalence is because of Proposition 7; the other two are by the definition

of satisfaction.

For the inductive case, satisfaction is defined in terms of paths. We need to use the

bijection between compatible sets of paths in (the atomic components of) T and paths

in its split, and between their maximal versions, from Proposition 5. We did not give

a name to that bijection in the proposition, but it will be useful to have one now. For

consistency, we denote by split(π) the path in split(‖Y Tn) that corresponds to the set of

paths π. (There is nothing being actually split here in the literal sense of the word, so

we take it just as a convenient name.)

Then, we want to prove these equivalences:

T ,A |= ϕ ⇐⇒ for each π max. compat. set of paths in T , we have T ,A, π |= ϕ

⇐⇒ for each π max. path in split(T), we have split(T),A, π |= ϕ

⇐⇒ split(T),A |= ϕ.

The middle equivalence is the one that still needs a proof. More concretely, we are going

to prove something a little stronger: for each π which is a maximally compatible set of

paths in (the atomic components of) T we have T ,A, π |= ϕ iff split(T),A, split(π) |= ϕ.

Because each path in split(T) is the split of a set of compatible paths in T , the result

follows.

We proceed again by induction on the structure of the formula. The case t = u is now

dealt with easily, as are negation and disjunction. Thus, what remains to be proved is:

for each π which is a maximally compatible set of paths in (the atomic components of)

T , we have

T ,A, π |= ϕ U ψ iff split(T),A, split(π) |= ϕ U ψ.

This chain of equivalences is quite trivial except maybe for the third one:

T ,A, π |= ϕ U ψ ⇐⇒ ∃i ≥ 0 such that T (πi),A, πi |= ψ

and ∀j < i, T (πj),A, πj |= ϕ

⇐⇒ ∃i ≥ 0 such that split(T (πi)),A, split(πi) |= ψ

and ∀j < i, split(T (πj)),A, split(πj) |= ϕ

⇐⇒ ∃i ≥ 0 such that split(T)(split(π)i),A, split(π)i |= ψ

and ∀j < i, split(T)(split(π)j),A, split(π)j |= ϕ

⇐⇒ split(T),A, split(π) |= ϕ U ψ.

For the third equivalence to hold, we need split(T (πi)) = split(T)(split(π)i), and

split(πi) = split(π)i. Both are easy to justify, and will not be proved here.

Definition 25 (satisfaction for rewrite systems)

Let R be an egalitarian rewrite system, atomic or otherwise, or a plain one. Let Σ =

(S,≤,Σ) be its signature and P be its set of properties. Let Π be a set of S-sorted symbols

and assume there is an interpretation from Π to P . Note that sem(R) is a Π-transition

structure. Also, let A(R) be the initial algebra for the equational theory in R (defined

as the union of the equational theories of the components, if R is not atomic). Note that

A(R) is a Σ-algebra. Finally, let ϕ be an LTL ∅(Σ,Π) formula. We define R |= ϕ by

sem(R),A(R) |= ϕ.

https://doi.org/10.1017/S1471068423000340 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068423000340

82 Ó. Mart́ın et al.

Proposition 9 (split and satisfaction for rewrite systems)

In the conditions of the previous definition, let R be an egalitarian rewrite system, and

let ϕ be a formula in LTL ∅(Σ,Π). We have R |= ϕ iff split(R) |= ϕ.

Proof

R |= ϕ ⇐⇒ sem(R),A(R) |= ϕ

⇐⇒ split(sem(R)),A(R) |= ϕ

⇐⇒ sem(split(R)),A(R) |= ϕ

⇐⇒ sem(split(R)),A(split(R)) |= ϕ

⇐⇒ split(R) |= ϕ.

The third equivalence is because of Proposition 3. The fourth is because A(R) =

A(split(R)), given that the equational theories from R are copied as such into

split(R).

Sometimes, we say that a LTL ∅(Σ,Π) formula is a formula in the language of T or

in the language of R, meaning that Σ and Π are the signature and property symbols

associated with the transition structure T or the rewrite system R, but we do not care

to make Σ and Π explicit.

6.1 Back to the standards

Plain transition structures are very much like standard Kripke structures; also Boolean

properties and atomic propositions are equivalent. So, in the particular case in which all

properties in a plain transition structure are Boolean and all atomic formulas have the

shape p = true, our definitions agree with the standard ones for Kripke structures and

LTL. Even out of this particular case, everything expressible in LTL ∅(Σ,Π) using prop-

erties is also expressible in LTL with Boolean propositions. And it may be worth doing

so, because it would allow the use of existing tools on our nonstandard specifications.

We make it formal in this section.

Definition 26 (translation into LTL)

We define [ϕ] for any formula ϕ ∈ LTL ∅(Σ,Π) inductively on the structure of ϕ.

• From each atomic formula t = u in LTL ∅(Σ,Π), we create an atomic proposition,

which we denote as [t = u].

• For each nonatomic LTL ∅(Σ,Π) formula ϕ, the LTL formula [ϕ] is the result of

replacing each atomic subformula of ϕ by its corresponding atomic proposition.

That is:

– [¬ξ] = ¬[ξ];
– [ξ ∨ ξ′] = [ξ] ∨ [ξ′];

– [ξ U ξ′] = [ξ] U [ξ′].

Definition 27 (standardization of structures)

Consider given Σ, Π, and A as usual, and an LTL ∅(Σ,Π) formula ϕ. Let T =

(Q,→, P, q0) ∈ TrStr. We generate a Kripke structure K = K(T ,A, ϕ) as K =

(Q,→,AP,L, q0), where:

https://doi.org/10.1017/S1471068423000340 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068423000340

Compositional verification in rewriting logic 83

• Q, →, and q0 are in K the same as in T ;

• AP = {[ξ] | ξ is an atomic subformula of ϕ};
• L(q) = {[ξ] ∈ AP | T (q),A |= ξ}, for q ∈ Q and T (q) being the transition structure

that results by replacing T ’s initial stage by q.

Proposition 10 (standardization of satisfaction)

Let Σ, Π, A, ϕ, T , [ϕ], and K as in the previous paragraphs. We have T ,A |= ϕ iff

K |= [ϕ].

The satisfaction relation for Kripke structures and LTL formulas is the standard

one (Clarke et al . 1999).

Proof

The proof is an easy induction on the structure of formulas. We also need to prove the

equivalence for paths: T ,A, q |= ϕ iff K, q |= [ϕ]. We illustrate it with just two cases:

T ,A |= t = u ⇐⇒ [t = u] ∈ L(q0)
⇐⇒ K |= [t = u].

T ,A |= ϕ U ψ ⇐⇒ for each maximal path q in T , we have T ,A, q |= ϕ U ψ

⇐⇒ for each maximal path q in T , ∃i ≥ 0 such that

T (qi),A, qi |= ψ and ∀j < i, T (qj),A, qj |= ϕ

⇐⇒ for each maximal path q in K, ∃i ≥ 0 such that

K(qi), q
i |= [ψ] and ∀j < i,K(qj), q

j |= [ϕ]

⇐⇒ for each maximal path q in K, we have K, q |= [ϕ] U [ψ]

⇐⇒ K |= [ϕ] U [ψ]

⇐⇒ K |= [ϕ U ψ].

We are using here the fact that, for K = K(T ,A, ϕ), the Kripke structure K(πi), that is,

K with its initial state replaced by πi, can be obtained as K(T (πi),A, ϕ), which is easy

to prove.

An immediate consequence is that, for T ∈ EgTrStr, we have T ,A |= ϕ iff split(T),A |=
ϕ iff K |= [ϕ]. This allows verifying the satisfaction of formulas in egalitarian structures

by using standard tools.

It is worth noting that this procedure does not work componentwise. Suppose, for an

example, that for the structure T1 we are interested in the formula �(p1 ≤ 5) for some

numerical property p1. In the same way, in the structure T2 we have the formula �(p2 ≥ 5)

for a numerical property p2, which is to be synchronized with p1. After performing the

standardization procedure above on both structures, we get two Boolean propositions

[p1 ≤ 5] and [p2 ≥ 5] which are unrelated and the relation between p1 and p2 cannot be

preserved. The implicit message is that using properties instead of Boolean propositions

does not increase the expressive power of our formulas, but does increase the possibilities

for synchronization.

Plain rewrite systems are close relatives of standard ones. As we have just done for

transition structures, we take the final step into the standard setting.

https://doi.org/10.1017/S1471068423000340 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068423000340

84 Ó. Mart́ın et al.

Definition 28 (standardization of rewrite systems)

From a plain rewrite system R = (S,≤,Σ, E,R) ∈ RwSys and an LTL ∅(Σ,Π) formula ϕ

(for some set of property symbols Π), we define AP and [ϕ] as in Definitions 26 and 27.

We generate a standard rewrite system R(ϕ) = (S+,≤,Σ+, E+, R) in the following way.

The new set of sorts S+ is defined to be S plus new sorts Bool and Prop (for atomic

propositions). To obtain Σ+ we add to Σ, for each [ξ] ∈ AP, the declaration of a Boolean

proposition, which we also denote by [ξ], and also an operator |= : State × Prop → Bool.

Finally, we obtain E+ by adding to E equations to define |= for each new proposition

in AP:

•
(
g |= [t(p) = u(p)]

)
=

(
t[p(g)/p] = u[p(g)/p]

)
, where p is the sequence of properties

in t (and in u) and t[p(g)/p] is the result of replacing in t each p by its evaluation

at g, that is, by p(g).

Thus, for example,
(
g |= [p = 3]

)
=

(
p(g) = 3)

)
, assuming p = 3 is an atomic formula in

ϕ for a numeric property p.

Proposition 11 (standardization of satisfaction)

Let Σ, Π, A, ϕ, R, [ϕ], and R(ϕ) as in Definition 28. We have R |= ϕ iff R(ϕ) |= [ϕ].

Proof

We have that R |= ϕ iff sem(R),A(R) |= ϕ iff K(sem(R),A(R), ϕ) |= [ϕ] (the first

equivalence by Definition 25; the second by Proposition 10). We assert that the Kripke

structureK(sem(R),A(R), ϕ) is isomorphic to the standard semantics for rewrite systems

associated to R(ϕ). From that, the proposition follows. The assertion is not difficult to

check. For example, the terms of sort State are the same in R and in R(ϕ), and they

produce state nodes in the transition structure sem(R), which correspond to state nodes

in the Kripke structure K(sem(R),A(R), ϕ). Similarly, the adjacency relation and the

values of propositions can be checked to correspond.

7 On fairness and deadlocks

When a system S interacts with an environment E , its repertoire of execution paths is

restricted to a subset of the ones that are possible when S is run in isolation. For an

LTL formula ϕ in the language of S, the statement S |= ϕ means that all maximal paths

in S satisfy ϕ. In particular, all maximal paths in S that remain after the environment

restriction still satisfy ϕ. And because ϕ only speaks about S (and not about E), we may

be willing to assert that S |= ϕ implies S‖Y E |= ϕ for any environment E and criteria Y .

Except this does not hold when the interaction with the environment prevents S from

executing long enough to satisfy ϕ. This may be the case when paths in S that are not

maximal become maximal in S‖Y E , which can happen because of lack of fairness between

components or because of emerging deadlocks.

Some models of interaction avoid these issues by establishing that only fair executions

are part of the semantics (Pnueli 1985; Grumberg and Long 1994), or that all interac-

tions consist of message passing and the receiver is at all times ready to receive (Lynch

and Tuttle 1989), thus preventing emerging deadlocks. We are taking a more permis-

sive approach, which both requires and allows a discussion of the details. This section

https://doi.org/10.1017/S1471068423000340 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068423000340

Compositional verification in rewriting logic 85

introduces such a discussion. We consider only transition structures, but the results are

equally valid for rewrite systems by means of their semantics.

First, consider deadlocks. More precisely, emerging deadlocks, that is, the ones which

result from the failure of the component systems to agree on a next action to perform.

Definition 29 (deadlock)

Let Tn ∈ atEgTrStr for n = 1, . . . , N . A set of maximally compatible paths {gn}n, each
gi being a finite or infinite path in Ti, is said to be deadlocked iff no component path gi
is maximal in its component Ti.

According to this definition, there is no deadlock as long as some component system

keeps running, even if only one does. Moreover, if one path in the set is finite in its system

and reaches its final state in the compatible set, there is no deadlock, even though the

composed system may come to a halt. This is our working definition, certainly not the

only possible one. This capability to accommodate different definitions within the same

framework is made possible by a permissive concept of composition like ours.

Deadlock can be prevented with some extra work on the part of the specifier. Being

aware that the system is meant to work inside a largely unknown environment, the

specifier should be able to anticipate unfriendly behaviors and be ready to deal with

them. That is, the specification should include reactions to wrong environment behaviors,

even if only with the aim of raising exceptions or performing error recovery. The following

proposition shows a particular case in which this is achieved.

Proposition 12 (a case of deadlock freeness)

Let T1, T2 ∈ atEgTrStr and let Y = {(p, q)} be the singleton set of synchronization criteria

to compose T1 and T2. Suppose that in T1 we have that, for each pair of stages g, g′ with

g →1 g
′, and each possible value v in the range of p, there exists a stage gv, still in T1,

such that p(gv) = v and g →1 gv. Then no set of compatible paths in {T1, T2} can be

deadlocked.

Proof

According to Definition 29, we need to prove that if g1 and g2 are compatible paths,

then at least one of them is maximal in its component, T1 or T2. Let us consider a

particular stage g11 in g1, which is not a final stage in T1 (if taken as an isolated system),

that is, there exist g21 with g11 →1 g
2
1 in T1. We show that g11 cannot be the last stage

in g1.

Because of the statement of the proposition, each possible value v of p is realized in a

gv in T1 such that g11 →1 gv. Now, suppose the relation X from Definition 18 (the one

which shows how the two paths can be traversed) pairs g11 with g12 , and then consider

the particular value v = q(g12). Then, the path in T1 that has taken us to g11 can be

extended to gv while T2 stays at g12 , so that g1 can run indefinitely, or as long as T1 allows

it to.

The conditions in Proposition 12 can be paraphrased as one component acting as a

receiver which is ready to receive any value at any time. Less demanding conditions would

be enough to guarantee absence of deadlocks.

This technique may seem too convoluted, but something similar is implicitly used in

some models of composition. Typically, those models divide the possible interactions of a

https://doi.org/10.1017/S1471068423000340 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068423000340

86 Ó. Mart́ın et al.

component with its environment into inputs and outputs. Inputs represent the reception

of a value from the environment. The input value is controlled only by the environment,

and the component is assumed to be ready to receive it, at any time, whatever it is. In the

same way, the environment is assumed to be ready to receive any value the component

outputs. For example, input/output automata (Lynch and Tuttle 1989), explicitly state

that input events are not in control of the automata that receives them. The technique

proposed in the previous paragraph is no more than an explicit implementation of this.

Consider now fairness between components. Fairness is difficult to characterize in the

presence of deadlocks, so we only define it for non-deadlocked sets of paths.

Definition 30 (fairness)

Let Tn ∈ atEgTrStr for n = 1, . . . , N . Consider the set of maximally compatible paths

{gn}n, each gi being a finite or infinite path in Ti. Assuming there is no deadlock in

{gn}n, the set of compatible paths {gn}n is said to be fair iff each component path gi is

maximal in its transition structure Ti.

Thus, fairness entails that, if a partial path can be extended in its component alone,

then it gets eventually extended in the composition as well. This is different from intra-

component fairness: for our purposes here, we do not care about fairness inside each

individual component, but only in their interactions.

Our definition of synchronous composition does not require fairness, so it is possible

that a component starves. An extreme case is that in which no synchronization criteria

are specified, so that the different systems are just put together, but allowed to execute

independently. In this case, S |= ϕ does not entail S‖∅E |= ϕ, because a possible evolution

of the composed system is that E executes but S does not perform a single step.

A way in which fairness is ensured is by requiring synchronization infinitely often. For

example, as in the following proposition.

Proposition 13 (a case of fairness)

Let Tn ∈ atEgTrStr for n = 1, . . . , N . Suppose that for each i, j ∈ {1, . . . , N}, i �= j, there

is a pair of Boolean properties (p, q) ∈ Y ∩ (Ti × Tj), such that

Ti |= � �(p = true) ∧ ��(p = false)

and

Tj |= � �(q = true) ∧ ��(q = false).

Then any set of compatible (and not deadlocked) paths in ‖Y Tn is fair.

Proof

First, we note that, for any i = 1, . . . , N , the fact that Ti |= ��(p = true) ∧ ��(p =

false) implies that any path in Ti is infinite; thus, no finite maximal paths exist. Accord-

ing to Definition 30, we need to prove that in any set of compatible non-deadlocked paths

{gn}n, each component gi is infinite. As we are supposing they are not deadlocked, we

know that at least one path is infinite. Without loss of generality, suppose g1 is infinite,

let gi be any other path, and let q be the property in Ti which synchronizes with p,

according to the proposition’s statement.

Let X be the relation from Definition 18 which shows how to traverse the compatible

paths. Let us say g11 and g1i are compatible stages in T1 and Ti, resp., appearing in g1

https://doi.org/10.1017/S1471068423000340 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068423000340

Compositional verification in rewriting logic 87

and gi, resp., which are paired by X. Further, suppose, again without loss of generality,

that p(g11) = q(g1i) = true. Because g1 |= � �(p = false), there is a stage g21 in g1 which

does not satisfy p. Therefore, so that the criterion (p, q) is kept, gi must contain a stage

g2i which does not satisfy q and that is accessible from g1i , that is, g
1
i → · · · → g2i . Thus,

gi is infinite.

The condition in Proposition 13 is an example. It is nice in that it can be expressed as a

temporal logic formula and, thus, checked by the usual means. More general and easy to

meet conditions may be found which are sufficient to ensure fairness. As mentioned above,

in some models of computation and composition, fairness is included from the start, that

is, the path semantics of a specification includes, by definition, only fair executions, even

though the specification, textually taken, would allow unfair ones. This is different from

our view, in which we require the specification to be fair as given. The two views, however,

are not completely disjoint. In Section 9, we consider the assume/guarantee technique

and mention that temporal formulas expressing fairness requirements can be added to

the assume part of a specification. This, in a sense, makes fair semantics a particular

case of our model. Also, sometimes a system can be externally controlled to allow only

fair executions in it. Maybe, even, such a control can be exerted via a synchronous

composition with a suitable system. But many different concepts of fairness are possible,

and it is not to be expected that all of them can be dealt with in this way.

Proposition 14 (deadlock freeness and fairness are enough)

Given ‖Y Tn, with Tn ∈ atEgTrStr for n = 1, . . . , N , if all sets of maximally compatible

paths are non-deadlocked and fair, then Ti |= ϕ implies ‖Y Tn |= ϕ for each i ∈ {1, . . . , N}
and each formula ϕ in the language of Ti.

Proof

The assertion Ti |= ϕ means that all paths in Ti satisfy ϕ. Each compatible set of paths

in ‖Y Tn contains as ith component a path in Ti which, because of fairness and absence

of deadlock, is guaranteed to be maximal in its component system Ti. And because ϕ

is expressed in the language of Ti, its satisfaction does not depend on other component

paths. Therefore, ‖Y Tn |= ϕ.

Besides, deadlocks and fairness become unimportant when ϕ is a safety formula: by

definition, a safety formula is satisfied by a path iff it is satisfied by every initial seg-

ment of that path, even the empty one. Thus, the proof of the following proposition is

immediate.

Proposition 15 (safety formulas are enough)

Given ‖Y Tn, with Tn ∈ atEgTrStr for n = 1, . . . , N , if ϕ is a safety formula in the language

of Ti for some i ∈ {1, . . . , N}, then Ti |= ϕ implies ‖Y Tn |= ϕ.

A component from which we only require to satisfy safety formulas can be seen as

imposing its behavior on the compound. It acts as a controller or a strategy. This is the

case for the mutual exclusion controller example from Section 2.2 (revisited in Sections 8.3

and 9.2).

The next proposition is a simple remark that a kind of converse implication always

holds.

https://doi.org/10.1017/S1471068423000340 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068423000340

88 Ó. Mart́ın et al.

Proposition 16 (satisfaction in any environment)

With the usual notation, we have that if (T ‖Y E),A |= ϕ for every environment E and

every suitable Y , then T ,A |= ϕ. Likewise, if R‖Y E |= ϕ for every environment E and

every suitable Y , then R |= ϕ.

Proof

We can define an environment E0 that preserves all the behaviors of T in the following

way: let E0 consist of a single system with a unique state, and let Y = ∅, that is, no

requirements for synchronization. The behaviors of T in this environment are the same

as the ones of T alone.

We are assuming (T ‖Y E),A |= ϕ for all E and Y , so, in particular, (T ‖∅E0),A |= ϕ

and, because of the previous paragraph, also T ,A |= ϕ. The proof for rewrite systems

follows easily.

Concerning deadlocks and fairness, our framework sets the responsibility in the hands

of the user. This is also the case in (Glabbeek and Höfner 2019, Chapter 16), where

some actions may need to be explicitly declared as non-blocking. And in (Klai et al .

2005), where an algorithm is provided to check that an interaction between Petri nets

is non-constraining, which is a similar concept. This is another point where an actual

implementation may include tools to help. We do not go deeper into this issue here.

8 Componentwise simulation and abstraction

A way to analyze a system is to find another one that in some sense behaves the same

and is simpler. This is formalized with the concept of simulation (Clarke et al . 1999).

A particular kind of simulation is abstraction, in which the simpler system is obtained

by forgetting some features from the original. In rewriting logic, a well studied kind of

abstraction is equational abstraction (Meseguer et al . 2008). In this section, we show that

componentwise simulation and equational abstraction translate into global ones. That is,

roughly speaking, if there is a simulation (resp., equational abstraction) between systems

S1 and S ′
1, then there is also a simulation (resp. equational abstraction) between S1‖Y S2

and S ′
1‖Y S2. This is sometimes phrased as simulation and equational abstraction being

congruences.

Another kind of abstraction that has been studied in relation to rewriting logic is

predicate abstraction (Bae and Meseguer 2014). According to it, states of the original

system which coincide in the values assigned to all atomic propositions are identified

in the abstract system. Predicate abstraction in one component does not need to map

to predicate abstraction in the composition. However, predicate abstraction induces a

simulation in the abstract component, which does map to a simulation at the global

level. We have not much else to say about predicate abstraction in this paper, though we

use it in the example in Section 8.3.

There are several ways in which abstraction can be useful for compositional verification.

First, instead of verifying S in the environment E (that is, S‖Y E), we can verify an

abstraction of S in the same environment. Second, if we verify S in E , the result will

also hold for any environment of which E is an abstraction. Often, we model intuitively

our systems from scratch as abstractions. This is certainly the case for the example on

https://doi.org/10.1017/S1471068423000340 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068423000340

Compositional verification in rewriting logic 89

chained buffers in Section 2.1. The results which follow in this section show that, if we

later need to refine our initial specification, verification may not need to be redone.

8.1 Simulation

Up to now, we have been taking care of defining each concept in both the distributed

and the monolithic view. For example, we defined a compatible set of paths and showed

it equivalent to a path in the split; and we then defined satisfaction of formulas based on

both and, again, showed equivalence. Definition 31 just below, however, defines simulation

for composed egalitarian structures as simulations for their splits. We proceed in this

way from now on, because it makes definitions and results easier. Still, when we want to

enforce one or the other view, distributed or monolithic, we use one or the other of the

two equivalent notations, like, for example, either ‖Y Sn |= ϕ or split(‖Y Sn) |= ϕ.

Definition 31 (simulation)

Given a set Π of property symbols and two atomic egalitarian Π-transition structures

T = (Q,T,→, P, g0) and T ′ = (Q′, T ′,→′, P ′, g′0), a simulation S : T → T ′ is a relation

S ⊆ (Q ∪ T)× (Q′ ∪ T ′) such that:

• g0 S g′0;

• if g S g′ then pT (g) = pT ′(g′) for each p ∈ Π;

• if g1 S g′1 and g1 → g2 in T , then there exists a finite path in T ′, g′1 →′ . . . →′ g′k,

with k ≥ 1, such that g1 S g′i for i = 1, . . . , k − 1 and g2 S g′k.

If both S and S−1 are simulations, we say that S is a bisimulation.

The definition for plain transition structures is a straightforward adaptation of the

above. Finally, a simulation between nonatomic egalitarian transition structures ‖Y Tn
and ‖Y ′T ′

n is, by definition, a simulation between their splits: S : split(‖Y Tn) →
split(‖Y ′T ′

n).

A (bi)simulation is with respect to the symbols in Π. When we need to make this

explicit, we say it is a Π-(bi)simulation.

The third item in the definition allows, in particular, k = 1, so that the requirement

becomes g1 S g′1 and g2 S g′1 – so to speak, T advances while T ′ waits.

The concept defined above is analogous to the ones called stuttering (bi)simulation and

weak (bi)simulation in the literature. However, we decided to avoid the use of the next

operator in our temporal logic, and also decided that only the values of properties are

important, not paying attention to possible internal steps. Thus, we are always working

in a way that pretty much corresponds to stuttering or weakness. So, we drop adjectives

and call our concept just (bi)simulation.

Theorem 1 (simulation and satisfaction)

Consider Σ, Π, and A as usual, and T , T ′ ∈ EgTrStr ∪ TrStr. If there exists a simulation

S : T → T ′, then for every LTL ∅(Σ,Π) formula ϕ we have that T ′,A |= ϕ implies

T ,A |= ϕ. If S is a bisimulation, then T ,A |= ϕ iff T ′,A |= ϕ.

Proof

It is an easy adaptation of the proof for more traditional settings (Clarke et al . 1999). It

proceeds by induction on the structure of ϕ. It relies on two lemmas that hold whenever

https://doi.org/10.1017/S1471068423000340 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068423000340

90 Ó. Mart́ın et al.

there is a simulation S : T → T ′ (they are easy, and we do not prove them here): first,

that tT,A = tT ′,A for any term t ∈ TΣ(Π); second, that for each path in T there is a

(stuttering, weak) corresponding path in T ′. Let us sketch just one base case and one

inductive case:

T ′,A |= t = u ⇐⇒ tT ′,A = uT ′,A

⇐⇒ tT,A = uT,A

⇐⇒ T ,A |= t = u.

The second equivalence is justified by the first lemma mentioned above.

T ′,A |= ϕ U ψ ⇐⇒ for each path g′ in T ′ we have T ′,A, g′ |= ϕ U ψ

⇐⇒ for each path g′ in T ′ there exists i′ ≥ 0 such that

T ′(g′i′),A, g′i
′ |= ψ and, for all j′ < i′, T ′(g′j′),A, g′j

′ |= ϕ

=⇒ for each path g in T there exists i ≥ 0 such that

T (gi),A, gi |= ψ and, for all j < i, T (gj),A, gj |= ϕ

⇐⇒ for each path g in T we have T ,A, g |= ϕ U ψ

⇐⇒ T ,A |= ϕ U ψ.

The “ =⇒ ” step in the middle is justified by the second lemma mentioned above.

The next theorem is our main result about simulations, stating that componentwise

simulations induce global ones. It can be seen as an adaptation of (Clarke et al . 1999,

Ch. 12).

Definition 32 (∼ for synchronization criteria)

For n = 1, . . . , N , let

An = (QAn
, TAn

,→An
, PAn

, g0An
) and Bn = (QBn

, TBn
,→Bn

, PBn
, g0Bn

)

be atomic egalitarian Πn-transition structures such that there are Πn-simulations Sn :

An → Bn. Consider the composed systems ‖YAn and ‖ZBn. We denote by Y ∼ Z the

fact that, for p, q ∈
⋃

n Πn, we have (pAn
, qAm

) ∈ Y ∩ (PAn
× PAm

) iff (pBn
, qBm

) ∈ Z ∩
(PBn

× PBm
).

Theorem 2 (simulation and composition)

Let An and Bn be atomic egalitarian Πn-transition structures such that there are

Πn-simulations Sn : An → Bn for n = 1, . . . , N . (The identity is a bisimulation, so

this includes the case that An = Bn for some or all n.) Consider A = split(‖YAn) and

B = split(‖ZBn) for some Y and Z with Y ∼ Z. Then, there is a simulation S : A → B

(as plain transition structures). In addition, if all Sn are bisimulations, then S can be

taken to be a bisimulation as well.

Proof

The simulation S is defined by

〈gA1
, . . . , gAN

〉 S 〈gB1
, . . . , gBN

〉 ⇐⇒ gAn
Sn gBn

for all n.

We must show that this is indeed a simulation (if each Sn is), that is, that the three

items in Definition 31 hold.

https://doi.org/10.1017/S1471068423000340 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068423000340

Compositional verification in rewriting logic 91

The first item in the definition, that 〈gA10, . . . , gAN0〉 S 〈gB10, . . . , gBN0〉, follows im-

mediately from gAn0 Sn gBn0 holding for each n.

For the second item in Definition 31, we must prove that, for arbitrary gAn
and gBn

,

if 〈gA1
, . . . , gAN

〉 S 〈gB1
, . . . , gBN

〉, we have pA(〈gA1
, . . . , gAN

〉) = pB(〈gB1
, . . . , gBN

〉).
So, take a particular pA ∈

⋃
n PAn

. Suppose pA = pAk
∈ PAk

and, therefore, be-

cause Y ∼ Z, pB = pBk
∈ PBk

. Then, pA(〈gA1
, . . . , gAN

〉) = pAk
(gAk

) = pBk
(gBk

) =

pB(〈gB1
, . . . , gBN

〉).
For the third item in Definition 31, we consider the simpler case with only two compo-

nents, that is, N = 2. This simplifies the presentation. The case for a general N follows

the same lines.

Thus, from 〈gA1
, gA2

〉 S 〈gB1
, gB2

〉 and 〈gA1
, gA2

〉 →A 〈g′A1
, g′A2

〉 we must be able

to produce a path in B with the needed properties. From 〈gA1
, gA2

〉 S 〈gB1
, gB2

〉 we

get gA1
S1 gB1

and gA2
S2 gB2

. And from 〈gA1
, gA2

〉 →A 〈g′A1
, g′A2

〉 we deduce both

(gA1
→A1

g′A1
or gA1

= g′A1
) and (gA2

→A2
g′A2

or gA2
= g′A2

).

For A1, if gA1
→A1

g′A1
, because S1 is a simulation, we have that there exist a finite

path gB1
= g1B1

→B1
. . . →B1

gi1B1
, i1 ≥ 1, such that gA1

S1 g
1
B1

, . . . , gA1
S1 g

i1−1
B1

and

g′A1
S1 g

i1
B1

. If instead gA1
= g′A1

, we choose gB1
= g′B1

, which can be seen as a path

of length 1. The same can be done for A2, after which we end with a path in B1 and

another in B2.

From these paths in B1 and in B2 we build now one in B = B1‖ZB2. The idea is to

interleave in whichever way the paths g1B1
→∗

B1
gi1−1
B1

and g2B2
→∗

B2
gi2−2
B2

, and then take

a last joint step 〈gi1−1
B1

, gi2−1
B2

〉 →B 〈gi1B1
, gi2B2

〉. For example: 〈gB1
, gB2

〉 = 〈g1B1
, g1B2

〉 →∗
B

〈gi1−1
B1

, g1B2
〉 →∗

B 〈gi1−1
B1

, gi2−1
B2

〉 →B 〈gi1B1
, gi2B2

〉
Two points remain to be proved. First, that 〈gA1

, gA2
〉 S g for all stages g in the path,

except the last one, and that 〈g′A1
, g′A2

〉 S 〈gi1B1
, gi2B2

〉. This is immediate, because it holds

componentwise. Second, that the exhibited path is indeed a path in B, that is, that all

stages in it satisfy the synchronization criteria in Z. The key here is that stages related

by the simulation assign equal values to corresponding properties. For example, for the

final stage, we know that g′A1
Si g

i1
B1

and g′A2
Si g

i2
B2

and, therefore, for each property p

we have pA1
(g′A1

) = pB1
(gi1B1

) and pA2
(g′A2

) = pB2
(gi2B2

). But 〈g′A1
, g′A2

〉 is a stage in A,

and, thus, satisfies all criteria in Y . Finally, because Y ∼ Z, the criteria in Z are satisfied

by 〈gi1B1
, gi2B2

〉.

On the other hand, similarly behaved systems can be specified from quite different

components, so it is not to be expected that any (bi)simulation S : split(T1) → split(T2),

for T1, T2 egalitarian transition structures, can be factored as a set of (bi)simulations on

the components.

Given the importance of deadlocks and fairness in our setting, as discussed in Section 7,

it is necessary to explore how they relate to simulation. It is not difficult to see that a

mere simulation does not even preserve maximal compatibility of paths, which is needed

to make sense of the definitions. The situation is different with bisimulation.

Proposition 17 (bisimulations preserve fairness and deadlock freeness)

Let Tn, T ′
n ∈ atEgTrStr for n = 1, . . . , N , with each Tn and T ′

n being a Πn-transition

structure. Let Y be any suitable set of synchronization criteria. For convenience, we say

that ‖Y Tn (resp., ‖Y T ′
n) is deadlock-free iff no set of maximally compatible paths in it

https://doi.org/10.1017/S1471068423000340 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068423000340

92 Ó. Mart́ın et al.

is deadlocked (as defined in Definition 29). Similarly, we say that ‖Y Tn (resp., ‖Y T ′
n) is

fair iff all non-deadlocked and maximally compatible sets of paths are fair (as defined in

Definition 30). Suppose there are bisimulations Sn: Tn → T ′
n for each n. Then, ‖Y Tn is

deadlock-free iff ‖Y T ′
n is. Also, ‖Y Tn is fair iff ‖Y T ′

n is.

Proof

Given a path g′n in T ′
n, the bisimulation Sn allows us to find a corresponding path in

Tn which we denote as S−1
n (g′n). It is easily justified that S−1

n (g′n) is maximal in Tn iff

g′n is in T ′
n. Also, the set of paths {g′n}n is (maximally) compatible iff the set of paths

{S−1
n (g′n)}n is. The definitions of fairness and deadlock depend only on the concepts of

maximal path and of maximally compatible set of paths, hence the proposition.

8.2 Equational abstraction

A well-known way to implement simulations is by equational abstraction in a rewrite

system (Meseguer et al . 2008). In short, on an atomic egalitarian or plain rewrite system

R = (S,≤,Σ, E,R), we can perform equational abstraction by adding equations E′ to

obtain the new system R′ = (S,≤,Σ, E ∪ E′, R), so that states satisfying certain condi-

tions are now equated and considered the same. The usual questions about computability

apply here, that is, we must ensure that the new set of equations (oriented left to right) is

ground Church-Rosser and terminating, and that the rules are still ground coherent with

respect to the new set of equations. In (Mart́ın et al . 2020, Section 3.5), we justified that

checking for computability can be made componentwise. Therefore, checking whether a

global abstraction is executable can also be done componentwise.

Proposition 18 (equational abstraction induces bisimulation)

Let R′ = (S,≤,Σ, E ∪ E′, R) ∈ atEgRwSys (resp., RwSys) be an equational abstraction

of R = (S,≤,Σ, E,R). The relation {([t]E , [t]E∪E′) | t ∈ TΣ,Stage} (resp., t ∈ TΣ,State)

is a bisimulation.

Proof

We have to check that the three conditions in Definition 31 hold in both directions.

• Each stage (resp., state) is trivially related to its abstraction. In particular, initial

ones are, which ensures the first condition is met.

• The set E of equations includes the ones that define the values of properties. Thus,

if the extended set of equations E ∪ E′ is Church-Rosser, we infer that properties

are preserved, that is, t ≡E∪E′ u =⇒ p(t) = p(u), or, in words, that all stages

(resp., states) that have been fused into the same abstract stage (resp., state) assign

the same values to properties. This ensures the second condition is met.

• All transitions are kept through equational abstraction. Even if two stages (resp.,

states) t and u for which [t]E → [u]E get abstracted into the same, that is, [t]E∪E′ =

[u]E∪E′ , we will still have [t]E∪E′ → [u]E∪E′ . And every transition in the ab-

stracted system derives from one in the original one. This ensures the third condition

is met.

https://doi.org/10.1017/S1471068423000340 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068423000340

Compositional verification in rewriting logic 93

Theorem 3 (equational abstraction and composition)

Let Rn,R′
n ∈ atEgRwSys be such that each R′

n is an equational abstraction of the

corresponding Rn for n = 1, . . . , N . Consider ‖Y Rn and ‖Y R′
n for some set of synchro-

nization criteria Y . Then, split(‖Y R′
n) can be obtained as an equational abstraction of

split(‖Y Rn).

Proof

The difference between the contribution of each Rn to split(‖Y Rn) and the contribution

of R′
n to split(‖Y R′

n) are some equations. So, split(‖Y R′
n) is split(‖Y Rn) plus some

equations, that is, an equational abstraction.

8.3 Example: mutual exclusion (continued)

We apply now simulation to our mutual exclusion example from Section 2.2. For a re-

minder, these were the instructions we used in the specification of each of the trains:
crl atStation N =[comingFrom N]=> atStation (N + 1) if N < 2 .
rl atStation 2 =[crossing]=> atStation 0 .
eq isCrossing @ crossing = true .
eq isCrossing @ G = false [owise] .

The property isCrossing embodies all our model cares about in each train system, and

it makes sense to perform abstraction based on it, so that all stages with the same value

for that property get equated. In this case, equational abstraction would result in all

stages except crossing being equationally reduced to one of them. Equivalently, we can

perform predicate abstraction to get one state for the truth of isCrossing and another

for its falsehood, producing the following:
rl false =[true]=> false .
eq isCrossing @ B = B .

The state true represents the former crossing, while false is the abstraction for all the

other states. We call the two systems with this specification S-TRAIN1 and S-TRAIN2.

It is quite straightforward to see that the conditions in Definition 31 are met and these

are indeed simulations. Because of Theorem 3, we can use this specification instead of

the original one in composed systems and draw conclusions based on it.

Now we perform a three-way synchronous composition to build a new system that we

call SAFE-TRAINS:
sync S-TRAIN1 || S-TRAIN2 || MUTEX

on S-TRAIN1$isCrossing = MUTEX$isGranting(1)
/\ S-TRAIN2$isCrossing = MUTEX$isGranting(2) .

We want to show that mutual exclusion holds for the crossings, that is:

SAFE-TRAINS |= �¬(S-TRAIN1$isCrossing ∧ S-TRAIN2$isCrossing) (1)

from which we can readily deduce the same formula holds for TRAIN1 and TRAIN2 and the

same MUTEX. One way to prove (1) is to use our prototype implementation to perform the

split on SAFE-TRAINS and then use Maude’s model checker. A more compositional way is

also possible, which is shown later, in Section 9.2.

9 The assume/guarantee technique

The classical satisfaction relation between a system S and a temporal formula ϕ, which

we write S |= ϕ, considers the system as if run in isolation – as a non-interacting, closed

https://doi.org/10.1017/S1471068423000340 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068423000340

94 Ó. Mart́ın et al.

system. For open systems, techniques have been devised to verify that a component satis-

fies a given specification in a suitable environment. Well-known among such techniques is

assume/guarantee (Pnueli 1985), A/G from now on. This section is devoted to discussing

this technique and its adaptation to our setting for verifying rewrite systems.

Satisfaction, according to the A/G technique, involves two formulas: one stating what

can be assumed from the environment; the other stating what one particular component

is ready to guarantee based on the assumption and on its own internal behavior. The

notation we are using is S |= α � γ (Elkader et al . 2018) (or T ,A |= α � γ for transi-

tion structures, or R |= α � γ for rewrite systems), where α is the assumption and γ

the guarantee. Both are LTL ∅(Σ,Π) formulas expressed in the language of S. Thus, α
speaks about the environment by means of the properties of S, some of which are to be

synchronized with the ones of the environment.

The näıve reading of S |= α � γ as “S guarantees the satisfaction of γ if placed

in an environment that satisfies α” is misleading. It is not really necessary that the

environment satisfies α – it is the interaction that matters. For example, an environment

that behaves according to the CCS expression a.P | b.Q does not ensure the execution of a

in general, but for some processes, like a.P ′ | c.Q′, it does: the environments a.P | b.Q and

a.P are equivalent for that process, they induce the same restrictions. More in general,

it is not necessary that the environment satisfies α, but only that the interaction of the

environment with the process does.

Moreover, the assumption α can sometimes be intuitively thought of as reflecting

other convenient laws or facts, not always expected to be realized by an environment,

like fairness assumptions, or the fact that time is strictly increasing in the case of timed

systems (Abadi and Lamport 1995). In those cases, the assumption would only involve

properties not used for synchronization, so that it restricts the component and not the

environment.

A definition of A/G satisfaction based on the intuitions in the previous paragraphs

may consider execution paths in their fullness, that is, they may be ultimately based

on assertions like “if some full execution path satisfies α, then it also satisfies γ.” This

is unsuitable, however, because it allows that first a system fails to satisfy γ and only

later the environment fails to satisfy α. This is probably not what we have in mind when

we think about A/G. Instead, we can choose an inductive definition (Misra and Chandy

1981; Jonsson and Yih-Kuen 1996), which could be stated in this way:

if S‖Y E |=i α, then S |=i+1 γ,

where |=i represents the satisfaction up to i steps away from the current state.

A posteriori, the two concepts, the full-path one and the inductive one, turn out to

be equivalent, which reflects the fact that a system could only take advantage of the

difference if it knew that the environment was going to fail to satisfy α in the future,

which it cannot. Similar results are known in other settings (Kupferman and Vardi 2000,

Theorem 5.1) (Abadi and Lamport 1995, Section 5.1). We prove it now in our own setting.

It is Theorem 4 below, but we need some considerations first.

For the same reasons that we avoid the next temporal operator, we prefer to avoid

explicit references to steps. For, if we later refine that next step into a sequence of them,

the reference to state i + 1 turns out to be a moving one. The important concept here

is that the partial path up to the present time is compatible with the satisfaction of the

https://doi.org/10.1017/S1471068423000340 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068423000340

Compositional verification in rewriting logic 95

formula, that is, that some maximal path that extends the partial one satisfies α. We

make this formal. The definition of when a path is a prefix (or initial segment) of another

is the usual one, denoted by the symbol <, with reflexive closure ≤.

Definition 33 (path compatible with formula)

Given T ∈ atEgTrStr, a finite path g in it, and a formula ϕ in its language, we say that

g is compatible with ϕ, and denote it as g |≈ ϕ, iff there is some maximal path g′ in T
such that g ≤ g′ and g′ |= ϕ.

Given that T and A are going to be fixed, we spare them when writing g |≈ ϕ. Also,

sometimes we write just g |= ϕ instead of the full T ,A, g |= ϕ.

According to this definition, if g is maximal, then g |≈ ϕ iff g |= ϕ.

For a simple example, consider a finite path g0 . . . gk such that at each gi the value of a

certain Boolean property p is true. And suppose there are two possible ways that path can

be maximally extended: g0 . . . gkgk+1 . . . and g0 . . . gkg
′
k+1 . . . , with all unprimed stages

still assigning true to p, but g′k+1 assigning false. Then

g0 . . . gkgk+1 . . . |= �(p = true),

and, therefore,

g0 . . . gk |≈ �(p = true),

even though

g0 . . . gkg
′
k+1 · · · �|= �(p = true).

Our definition of A/G satisfaction is somewhat involved, so we first give an intuitive

explanation. Very informally, T ,A |= α � γ is a promise from T of not being the first

to fail to perform its duties – if we see γ as its duties and α as the environment’s.

Consider this diagram, showing two paths running from left to right, starting at the initial

stage g0.

. . .

. . .

g0 g1

g0 . . . g1 |≈ α

g2

g0 . . . g2 |≈ γ
|= α

|= γ

At present, T and its environment have traversed together the path from g0 to g1,

and have done so in a way compatible with the satisfaction of α. The component T
cannot know what the environment is going to do in the future; it may choose to go

along the upper path, that is, to keep on being compatible with α. To ensure T ,A |=
α � γ, the component T has to keep on being compatible with γ at least a little longer

than the environment, for instance, until g2.

In principle, the path that satisfies γ needs not be the same one that satisfies α, as

shown in the diagram above. However, compatibility has to be preserved up to stages g1
arbitrarily far in the future. The result is that the two branches get zipped into one.

Definition 34 (path allowed in a compound)

A path g in T ∈ atEgTrStr is said to be allowed in T ‖Y E , for E ∈ EgTrStr, if g is an

element of some set of compatible paths in T ‖Y E .

https://doi.org/10.1017/S1471068423000340 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068423000340

96 Ó. Mart́ın et al.

In a similar way, a path q in T ∈ TrStr is said to be allowed in T ‖Y E , for E ∈ TrStr, if

there is a path in T ‖Y E whose projection on T is q.

Definition 35 (A/G satisfaction)

• For T ∈ atEgTrStr, an algebra A, and two formulas α, γ, we define T ,A |= α � γ

by: for each egalitarian transition structure E (the environment) and suitable Y ,

and for each finite path g in T allowed in T ‖Y E such that g |≈ α, we have that:

– either g is maximal (hence g |= α) and then g |= γ;

– or g is not maximal and, then, for each maximal g′ with g < g′ and g′ |= α,

there is g′′ with g < g′′ ≤ g′ and g′′ |≈ γ, that is, along each maximal

extension that satisfies α (of which there must be some, because g |≈ α) there

is an intermediate path compatible with γ.

• For T ∈ TrStr, the definition is, as usual, very similar to the above.

• For T ∈ EgTrStr, we define T ,A |= ϕ as equivalent to split(T),A |= ϕ.

• For rewrite systems of any kind, the definition is based on the transition structures

which are their semantics, as usual.

Possibly the simplest alternative concept of A/G satisfaction is T ,A |= α → γ (being

→ classical implication); that is, each path that satisfies the assumption also satisfies

the guarantee. Though our definition of satisfaction is much more complex than that,

a posteriori both concepts turn out to be equivalent.

Theorem 4 (equivalence of � and →)

In the conditions of Definition 35,

T ,A |= α � γ iff T ,A |= α→ γ

and

R |= α � γ iff R |= α→ γ.

Proof

First, we prove the theorem for T ∈ atEgTrStr, that is, for an atomic T . Assume T ,A |=
α � γ, and let us prove that T ,A |= α→ γ. We have to show that each path g in T which

is maximal in T and satisfies α also satisfies γ. We place T in an arbitrary environment

E with empty synchronization criteria: T ‖∅E . Certainly, g is allowed in T ‖∅E and is

maximal in T ‖∅E , because it is in T . Then, because T ,A |= α � γ and the definition of

A/G satisfaction, we have g |= γ, as we wanted.

Now, assume T ,A |= α → γ. Fix E and Z. Fix also a path g in T which is allowed in

T ‖ZE and is compatible with α: g |≈ α. If g happens to be maximal in T , then g |= α

and, because of the assumption, g |= γ. Otherwise, if g if not maximal in T , fix a path

g′ which is maximal in T , extends g and satisfies α. Because of the assumption, g′ |= γ.

We can take g′′ = g′, and this completes the proof for atomic transition structures.

The same proof is almost verbatim valid for plain ones. And because satisfaction for

composed structures is equivalent to the one for their splits, the result also holds for TrStr.

Finally, because satisfaction for rewrite systems is defined based on their semantics, the

result also holds for the three types of rewrite systems.

https://doi.org/10.1017/S1471068423000340 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068423000340

Compositional verification in rewriting logic 97

This is a most welcome result, because it means that we can use standard verification

tools to perform compositional verification.

The particular case when α ≡ true is worth stating.

Corollary 1 (true assumption)

In the conditions of Definition 35,

T ,A |= true � γ iff T ,A |= γ

and

R |= true � γ iff R |= γ.

After having Theorem 4, in view of our convoluted definition for A/G satisfaction,

and considering also how trivial some of our examples are (maybe specially the one on

chained buffers in Section 9.1 below), it is legitimate to ask if it would not have been

better to use just implication to characterize A/G to begin with. The answer, in our

opinion, is no. The assertion S |= α→ γ is about the internal behavior of S; in contrast,

S |= α � γ is an assertion about S’s interaction with other systems. Their equivalence

(in appropriate conditions) is a fortunate, a posteriori fact. Perhaps it could be likened

to the equivalence between � ϕ→ ψ and ϕ � ψ in classical first-order logic.

We finish this section with the theorem which justifies the soundness of A/G.

Theorem 5 (soundness of A/G)

With the notational conventions used so far, let Rn (n = 1, . . . , N) be rewrite systems

of any of the kinds discussed in this work, and let R be their composition with respect

to the synchronization criteria Y , R = ‖Y Rn. If all the following hold:

1. for each n = 1, . . . , N and each i = 1, . . . ,
n, we have that

(a) Rn |= αni � γni,

(b) Rn |= αni → γni implies R |= αni → γni,

2.
(∧N

n=1

∧�n
i=1 αni → γni and

∧
(p,p′)∈Y p = p′

)
imply α→ γ,

then R |= α � γ.

Proof

Because of Theorem 4, for each i, we have R1 |= α1i � γ1i iff R1 |= α1i → γ1i and,

because of Condition 1b, this implies ‖Y Rn |= α1i → γ1i. The same reasoning holds for

the other components Rn and its A/G statements in view of Condition 1a. Additionally,

‖Y Rn |= p1 = p2 for each (p1, p2) ∈ Y , because of the very definition of the synchronous

composition and of satisfaction. Thus, ‖Y Rn satisfies all conjuncts in the left-hand side

of Condition 2. And, thus, it satisfies the right-hand side, that is, ‖Y Rn |= α→ γ which,

again because of Theorem 4, is equivalent to ‖Y Rn |= α � γ.

Each of the conditions included in Condition 1a asks for an A/G statement to hold in a

component. Often, a single A/G statement is asked from each component, that is,
n = 1

for some or all n. In particular, the statement that R1 |= ϕ implies R1‖Y E |= ϕ, can be

seen as the particular case where n = 2,
1 = 1,
2 = 0, R2 = E , and α11 = α = true.

This theorem allows to reduce the proof of an A/G statement on a composed system to

similar proofs on smaller systems, plus checking the validity of an LTL formula. The word

https://doi.org/10.1017/S1471068423000340 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068423000340

98 Ó. Mart́ın et al.

reduce in the previous sentence is questionable, because the number of tasks seems to

have increased. In addition, obtaining the formulas needed in the premises is not always

easy. (We will have something more to say about this in Section 11.3.) The positive side

is that each statement has to be proved now in a smaller model. And that, once proved,

each component can be reused with no need for new proofs.

We want to remark that Maude provides the tools needed for compositional verification

using Theorem 5: the model checker can be used to verify R1 |= α11 → γ11 and the other

similar results, and the tautology checker can be used to check the validity of the final

formula. Maude is not able to handle our properties, so the formulas must be transformed

to use only Boolean propositions as discussed in Section 6.1.

Condition 1b holds for safety formulas, as shown in Proposition 15, or in the pres-

ence of fairness between components and absence of emerging deadlocks, as shown in

Proposition 14. A case of interest is when the assumption α implies such fairness and

deadlock freeness requirements. An instance of this is the following. In each Rn, there

is a property tn defined so that it holds true at each transition and false at each state

of Rn. In addition, the formula α includes as a conjunct (or implies otherwise) the

formula ϕn =
∧

n(� � tn = true∧� � tn = false), which means that component Rn ad-

vances infinitely often, which implies by itself fairness between components and absence

of emerging deadlocks. Those formulas ϕn need not be appropriate for every case. With

our definitions, terminating systems may be fair and still not satisfy ϕn. In each case,

more refined formulas may be better suited.

It may be worth noting, to avoid confusion, that Rn |= ϕn for all n does not entail

fairness or deadlock freeness. The reason is that it may happen that Rn |= ϕn but

R �|= ϕn because, well, deadlocks or lack of fairness. Things are different when we use

the ϕn, not as guarantees, but as assumptions, which we did in the previous paragraph.

There is another way to verify a compositional specification, which is to split it into a

monolithic one and use standard verification techniques on it. This works thanks to the

following proposition.

Proposition 19

With the notational conventions used so far, for Rn egalitarian rewrite systems for n =

1, . . . , N , we have that

‖Y Rn |= α � γ iff split(‖Y Rn) |= α � γ.

Proof

This is an easy corollary of Theorem 4 and Proposition 9.

9.1 Example: chained buffers (continued)

This continues the example from Section 2.1. It is immediate to prove that each of

the buffers satisfies BUFFERn |= � isReceiving → � isSending. Therefore, by Theorem 4,

BUFFERn |= � isReceiving � � isSending. We expect to be able to prove a similar behavior

for the whole chain of buffers, 3BUFFERS, using Theorem 5. Concretely, in this case:

• N = 3,

• Rn = BUFFERn,

•
n = 1,

https://doi.org/10.1017/S1471068423000340 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068423000340

Compositional verification in rewriting logic 99

• αn1 = � BUFFERn$isReceiving, γn1 = � BUFFERn$isSending,

• α = � BUFFER1$isReceiving, γ = � BUFFER3$isSending.

Regarding the conditions in Theorem 5: Condition 1a (that is, Rn |= αn1 � γn1 for each

n) has already been justified, and Condition 2 (implication for temporal formulas) is

easily seen to hold. Fairness is ensured by the way the buffers synchronize, and we hope

it is clear that no deadlocks can emerge, so also Condition 1b holds. From which we can

deduce

3BUFFERS |= � BUFFER1$isReceiving � � BUFFER3$isSending.

The properties BUFFER1$isReceiving and BUFFER3$isSending can be better seen here as

properties of 3BUFFERS, and our extension to Maude’s syntax allows to define synonyms,

so that the above can also be written as

3BUFFERS |= � 3BUFFERS$isReceiving � � 3BUFFERS$isSending.

9.2 Example: mutual exclusion (continued)

We finish now our discussion of the example from Sections 2.2 and 8.3. It is easy to prove,

either by model checking or by mere inspection, that

MUTEX |= �¬(isGranting(1) ∧ isGranting(2)).

Reasoning intuitively, we know that the same formula holds when MUTEX is made a com-

ponent of SAFE-TRAINS. And, because the composition requires each isGranting property

to be synchronized with the corresponding isCrossing, we deduce

SAFE-TRAINS |= �¬(S-TRAIN1$isCrossing ∧ S-TRAIN2$isCrossing).

Formally, we have used Theorem 5 with

• N = 3,

• R1 = S-TRAIN1, R2 = S-TRAIN2, R3 = MUTEX,

•
1 =
2 = 0,
3 = 1,

• α11 = true, γ11 = �¬(isGranting(1) ∧ isGranting(2)),

• α = true, γ = �¬(S-TRAIN1$isCrossing ∧ S-TRAIN2$isCrossing).

Component fairness does not always hold, but the formulas involved are safety ones,

which is enough according to Proposition 15.

It was observed before that the system MUTEX can be seen as a controller or strategy.

The verification task is, in this case, of a different nature from the one in the previous

example on chained buffers, in which the behavior of the compound necessarily results

from the interactions between the components.

9.3 Example: crossing the river (continued)

We now verify the example whose compositional specification was given in Section 2.3.

We want to prove that the composed system satisfies the formula � success, where the

property is defined in RIVER like this:
ppt success : -> Bool .
eq success @ (noBelong |~| mark farmer wolf goat cabbage) = true .
eq success @ G = false [owise] .

https://doi.org/10.1017/S1471068423000340 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068423000340

100 Ó. Mart́ın et al.

We consider a success that all items, including the mark, are on the same side of the river.

So, our hypothesis is that each possible sequence of crossings executed according to our

two guidelines leads to a valid solution.

Our implementation allows to transform the four-component system into a single stan-

dard one (that is, to apply the split), and use Maude’s model checker in the resulting

system. This split approach has the advantage that we do not need to find the A/G

statements for each component. However, in this case the needed A/G statements for

RIVER-W-PREV, AVOID1, and AVOID2 are quite clear. So, we work compositionally on those

three, although we use the split below to verify the two-component system RIVER-W-PREV.

Namely, we need RIVER-W-PREV to satisfy the A/G statement

RIVER-W-PREV |= �¬danger ∧ �¬undoing � � success.

In words: success is eventually reached assuming the environment allows neither dan-

gerous situations nor undoings. If we are able to prove this, and having into account

that, quite obviously, AVOID1 and AVOID2 satisfy �¬avoid, we can use Theorem 5 to de-

duce that the four-component system satisfies � success. Thus, we perform the split on

RIVER-W-PREV and model check it for �¬danger∧�¬undoing → � success, as allowed by

Theorem 4.

The result is that the formula does not hold, and the model checker hands us a coun-

terexample: an infinite execution that never gets to the desired state. On inspection, we

find out that the problem with our solution stems from a symmetry between the roles

of the wolf and the cabbage. For example, suppose we are in this situation (in which we

omit the mark, because its location does not make any difference):
farmer wolf goat |~| cabbage

Then, the farmer crosses with the wolf, to get
goat |~| farmer wolf cabbage

and, then, the farmer crosses back with the cabbage to get
farmer cabbage goat |~| wolf

The new situation is symmetric to the first one, because the roles of cabbage and wolf are

similar: eating can take place whenever the goat is left unattended with any of them. As

critical as the difference may be for the goat itself, it is irrelevant for us who eats whom.

Indeed, if a solution is obtained for a specific situation, the corresponding symmetric

solution can be applied to the symmetric situation.

At the end, what we need is to strengthen the concept of undoing to avoid also sym-

metric movements, which we get by adding two equations to the definition of the property

undoing:
eq undoing @ (wolf > cabbage) = true .
eq undoing @ (cabbage > wolf) = true .

Now, the A/G satisfaction holds, showing that the strengthened guidelines are sufficient.

Indeed, only two solutions are left, one symmetric to the other, both optimal in their

number of moves. And, fixed this part of the composed system, we already know the

whole compound works.

10 Additional examples

The examples used in this paper up to now have been chosen to be illustrative, so they

are rather simple on purpose. Because of such simplicity, we have been able to omit many

https://doi.org/10.1017/S1471068423000340 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068423000340

Compositional verification in rewriting logic 101

details of our implementation, which are unimportant for the theoretical work here pre-

sented. In this section, we offer a cursory overview of two more complex examples which

were presented and discussed at length in (Mart́ın 2021a, Chapter 7). Our presentation

in this section is necessarily incomplete. The source code for the examples is available on-

line (Mart́ın 2021b). Both examples have been run through our prototype implementation

and the results have been verified using Maude’s toolset with the techniques described

in this paper.

It has been mentioned that there are two ways to verify a compositional rewriting-logic

specification. The first is to perform a compositional verification, according to Theorem 5,

using A/G assertions for each component. This is the approach taken in the examples

shown so far in this paper, where the A/G assertions for the components were easily

found. The second way, justified by Proposition 19, consists in splitting the compositional

specification to obtain an equivalent monolithic one which is then monolithically verified.

This is the technique illustrated in the new examples we are presenting next. In them,

finding the A/G assertions for the component systems turns out to be a difficult task

(mainly because there is no general controller, but rather an emergent behavior). So we

have used our prototype implementation of the split to obtain a standard Maude module,

which is the one we have actually verified using Maude’s toolset.

Questions about performance are analyzed in (Mart́ın 2021a, Chapter 7). We quote:

“our implementation needs more than two minutes to process the ABP specification and

produces more than 18,000 rules, while the Needham-Schroeder example is processed in

only two seconds and produces less than 600 rules.” These numbers are largely dependent

on the implementation we are using. Again, more details are in (Mart́ın 2021a).

10.1 Alternating bit protocol

The first example is a specification of the alternating bit protocol, ABP from now on, to

send messages reliably on a channel which may lose some of the packets it receives. We

consider an ABP system as consisting of four interacting components:

sender

message

channel

ack

channel

receiver
msg

msg+bit msg+bit

ack+bitack+bit

msg

The sender and the receiver are the components which implement the protocol. There

are two channels: one for transmitting messages it gets from the sender; the other for

transmitting acknowledgments back. The internal workings of the two channels are the

same. Missing, at the two ends of the diagram, are a producer and a consumer. Thus, the

result of our four-component specification is meant to be used in turn as a component

in a larger system.

When specifying systems of some complexity, we like to enforce modularity further by

using the syntax for parametric specification in Maude (Mart́ın et al . 2018). In our case,

the final module, which represents the whole ABP system, is specified as

https://doi.org/10.1017/S1471068423000340 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068423000340

102 Ó. Mart́ın et al.

emod ABP-BP{Sndr :: SENDER-IF,
MsgChnl :: CHANNEL-IF,
AckChnl :: CHANNEL-IF,
Rcvr :: RECEIVER-IF} is

sync Sndr || MsgChnl || AckChnl || Rcvr
on ...

endem

We have hidden the synchronization criteria. The important point here is that the module

ABP-BP is parametric in the four modules it receives, each modeling one of the components:

a sender, two channels, and a receiver. The suffix -BP stands for blueprint, and -IF stands

for interface. For example, Sndr is the name given to the first formal parameter, which

is to be instantiated with a module that implements the interface specified in SENDER-IF.

Namely, SENDER-IF (which is called a theory in Maude jargon) includes the declaration of

the following five properties:
ppt msgIn : -> Msg? .
ppts msgPckOut ackPckIn : -> Packet? .
ppts canAckChnlPass canMsgChnlGet : -> Bool .

The interfaces contain declarations, and no implementation. Then, whichever module

defines these properties is valid as the first argument to build an ABP. In the end, after

we have specified the needed modules which fit the interfaces, with respective module

names Sender, MsgChannel, AckChannel, Receiver, we obtain the final result with
emod ABP is

inc ABP-BP{Sender, MsgChannel, AckChannel, Receiver} .
endem

For the two channels, their specification includes the possibility that messages are lost.

As a consequence, a fairness constraint is required for each channel, to ensure that at

least some messages get through. Namely, we use the assumption � � isPassing, where

isPassing is a Boolean property defined to be true exactly when a message is going out

of the channel. We also need fairness assumptions on the sender and the receiver, which

we do not care to show here.

For verification, given those assumptions, we want to prove the following formula:

γ = �(isAccepting → (isAccepting U (¬ isAccepting U isDelivering))).

The property isAccepting is meant to be true whenever the sender gets a message from

some producer process (that is, when the sender is executing a transition to the purpose

of getting such a message); similarly, isDelivering is true whenever the receiver gives the

message to some consumer process. In words, this says that to each input to the ABP

system follows an output, with no other input in between. This can also be interpreted as

saying that “at the next stage of interest” isDelivering holds (see discussion in Section 5).

If we call α the conjunction of the four fairness constraints mentioned above, we want

to prove ABP |= α � γ. To prove it, we first use our prototype implementation to obtain a

monolithic standard Maude module equivalent to the original compositional specification

of ABP, then we verify on the resulting module the formula α → γ using Maude’s model

checker.

10.2 Needham-Schroeder public-key protocol

Needham-Schroeder is a public-key protocol for safe communication between two actors:

an initiator and a responder. It is known to be unsafe in the presence of an attacker, but

we are here interested in the simple case where there is no attacker.

https://doi.org/10.1017/S1471068423000340 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068423000340

Compositional verification in rewriting logic 103

This example illustrates the convenience of compositionality in system specification in

two ways. First, the two actors (initiator and responder, Alice and Bob) are specified as

independent systems, and only later made to interact. Second, and more to the point

of the purpose of this example, each actor is specified as a base module describing all

its nondeterministic capabilities (sending, encrypting. . .), which is then controlled by

another module making it behave actually as initiator or responder. The technique we

use to make possible this control is, roughly speaking, the use of a language by which

the controller sends commands to the base module. This is achieved, of course, through

the use of properties and synchronous composition.

This diagram shows the components we model in Maude:

Initiator

controller

Base

module

Base

module

Responder

controller

Initiator Responder

Each of the small arcs represents a property, and the dotted lines represent synchroniza-

tion. The initiator and the responder both implement the interface theory called ACTOR-IF.

The base modules, which we call INITIATOR-BASE and RESPONDER-BASE, are exactly the same

except for their initial states. The blueprint for the total system is this:
emod NSPKP-BP{I :: ACTOR-IF, R :: ACTOR-IF} is

sync I || R
on R$msgRcv := I$msgSnd
/\ I$msgRcv := R$msgSnd .

...
ag True |> [] <> isCommEstablishedInI /\ [] <> isCommEstablishedInR .

endem

This is again a parameterized module, which has to be fed with implementations for the

initiator I and the responder R. The sentence with the ag keyword is an A/G assertion

saying that, with no assumption (True), the module has to guarantee that communica-

tion is established arbitrarily often for both actors. (The ABP example also had A/G

assertions, which we preferred to omit to simplify the presentation.) The symbol := in

the synchronization criteria is, for our purposes here, equivalent to the = we have used

all the time.

To implement control, we have used a very simple language of commands that the

controller issues and the base module executes. For example, the INITIATOR is specified

as the composition of INITIATOR-PROTOCOL and INITIATOR-BASE:
emod INITIATOR is

sync INITIATOR-PROTOCOL || INITIATOR-BASE
on INITIATOR-BASE$action := INITIATOR-PROTOCOL$action
/\ INITIATOR-BASE$arg := INITIATOR-PROTOCOL$arg
/\ INITIATOR-PROTOCOL$isErrorState := INITIATOR-BASE$isErrorState .

...
endem

Thus, the base module INITIATOR-BASE receives from the controller (by synchronizing

properties) the action to be performed and the arguments on which to perform them. The

feedback to the controller is whether there has been some error (namely, an unsuccessful

https://doi.org/10.1017/S1471068423000340 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068423000340

104 Ó. Mart́ın et al.

decryption). The states of the base system are given by a set of pairs key-value. For

example, this is the initial state for the INITIATOR:
eq init = (’myid : alice) (’xid : bob)

(’myprivkey : priv(alice)) (’xpubkey : pub(bob))
(’mynonce : nonce(alice)) .

Thus, the key ’myid is storing the value alice, and so on. There are rules in the base

module to specify the different actions it is able to perform: send, receive, decrypt,

encrypt, and check whether the values stored under two given indices are equal. For

example:
rl D =[sending | D]=> D .
rl D =[receiving(M) | D]=> D <+ (’msg : M) .

So, sending leads to no change in the values stored, but receiving adds or overwrites a

pair with the key ’msg and the value of whatever it received. Slightly more complex rules

implement the rest of the capabilities.

Then, these are the rules for the INITIATOR-PROTOCOL that makes INITIATOR-BASE behave

as an actual initiator for the protocol:
rl 1 =[1 : encrypt(’mynonce ’myid)]=> 2 .
rl 2 =[2 : send]=> 3 .
rl 3 =[3 : receive]=> 4 .
rl 4 =[4 : decrypt(’recmynonce ’recxnonce)]=> 5 .
rl 4 =[4 : decrypt(’recmynonce ’recxnonce)]=> error .
rl 5 =[5 : check(’recmynonce, ’mynonce)]=> 6 .
rl 5 =[5 : check(’recmynonce, ’mynonce)]=> error .
rl 6 =[6 : encrypt(’recxnonce)]=> 7 .
rl 7 =[7 : send]=> 8 .
rl 8 =[8 : reset]=> 1 .

The states are represented by mere numbers. But the interesting part is that the initiator

part of the protocol can be read line by line in the transition terms: first, encrypt the

values stored under the keys ’mynonce and ’myid, then send the result of the encryption,

and so on. The way the properties are defined and the way the synchronization is specified

ensures that the send in the controller is executed synchronized with the sending in the

base module. The wildly nondeterministic behavior of the base system is transformed

into an almost fully deterministic one once synchronized with the controller.

For verification, as in the previous example, we transform the compositional specifica-

tion into a monolithic, standard one and, then, use Maude’s model checker to verify the

formula given in the ag statement. Again, this method is fast and simple and avoids the

costly search for the components’ A/G assertions.

11 Closing material

11.1 Related work

We are not aware of any other work dealing precisely with compositional verification and

rewriting logic, but certainly our work on compositionality, both for specification and

for verification, is inspired by others, including process algebras, coordination models,

and many more. Our results on A/G are also strongly based on existing work for other

settings (Elkader et al . 2018; Jonsson and Yih-Kuen 1996; Abadi and Lamport 1995).

Besides A/G, many other verification techniques are discussed in the literature which

are compositional in nature. Often they consist in simplifying the isolated components

https://doi.org/10.1017/S1471068423000340 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068423000340

Compositional verification in rewriting logic 105

before composing them into a single global system. This is related to our work on simula-

tion and abstraction in Section 8. Simplification is performed either taking into account

the behavior of the environment, or the temporal formula to be proved, or both. Some-

times, the global system is not even produced in full, but instead the global state-space is

created on the fly traversing in parallel the components. The paper (Garavel et al . 2015)

describes these and other techniques and their implementation in the toolset CADP

(INRIA 2023). On this same matter of simplifying a component before using it, (André

et al . 2012) proposes the use of Symbolic Observation Graphs, similar to the predicate

abstractions we mentioned also in Section 8. All these works use LTSs to model processes.

In the field of Petri nets, (Klai et al . 2005) deals with decomposing a Petri net into

smaller ones. Isolated component nets, detached from the rest, are enriched with abstrac-

tion places representing, in a sense, the environment. It also discusses non-constraining

interactions between components, a concept similar to our requirement of fairness and

deadlock freeness. Their conclusion is worth quoting: “experimental results show that this

technique is efficient for some models, but for others the combinatorial explosion is not

really attacked.” Similar thoughts are expressed by (Garavel et al . 2015) and endorsed

by our own experience.

11.2 Future work

The most substantial path we would like to explore in the future is the possibility of

implementing strategies by synchronous composition. We see strategies in a broad sense,

encompassing controllers, protocols, monitors, coordinators. . . Strategies are applied to

nondeterministic systems to guide them, reducing or removing their nondeterminism. The

rules of chess allow for many movements from each position. On that, a good strategy

reduces the possibilities to probably just one at each point in a match. In the same

way, when specifying the behavior of systems, we can specify a base system with all its

nondeterministic capabilities and, then, use it under the control of a strategy; even in

different ways under different strategies. This idea has been used with Maude and its

strategy language to implement Knuth-Bendix-like completion as a basic set of correct

rules on which different strategies are applied (Lescanne 1989; Clavel and Meseguer 1997;

Verdejo and Mart́ı-Oliet 2012), also for congruence closure (Bachmair et al . 2003), and

for specifying insertion sort as a base system with a single rule for swapping cell contents

which is then conveniently controlled (Mart́ı-Oliet et al . 2004; Eker et al . 2007). Our

examples in this paper and in previous work (Mart́ın 2021a; Mart́ın et al . 2020) can be

also viewed in this way.

Besides that, and being more concrete, we lack a proof that the procedure in Theorem 5

is complete. That is, it is not proved whether, given α and γ, appropriate formulas αni,

γni can always be found. Based on similar results in similar contexts, we conjecture it is

complete, but a proof is currently missing.

Adding other similar rules would also enrich our work. In particular, circular deduction

rules (Elkader et al . 2018) are different enough to deserve our attention. We mean, from

R1 |= ϕ � ϕ′ and R2 |= ϕ′ � ϕ, deduce R1‖R2 |= Φ for some formula Φ = Φ(ϕ,ϕ′).

Some works (Cobleigh et al . 2003; Bobaru et al . 2008) have shown how A/G reasoning

can be automated. And also abstraction can be automated, for example, with the tech-

nique known as counterexample-guided abstraction refinement (CEGAR) (Clarke et al .

https://doi.org/10.1017/S1471068423000340 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068423000340

106 Ó. Mart́ın et al.

2000; Chaki et al . 2004). This can even be applied to a compositional system specifica-

tion. Adding any such automation to our implementation would increase its usefulness.

Specially the generation of intermediate formulas, because that would mean we have a

new completely automated way to verify systems.

Our prototype implementation can be advanced in several ways to make it more com-

plete, efficient, reliable, and easy to use. Also, translating compositional specifications in

extended Maude to, for example, CADP syntax would allow the use of the rich CADP

toolset for compositional verification.

11.3 Conclusion

There are reasons to be skeptic about the value of compositional verification, and in

particular about the A/G technique. The main reason is the difficulty of finding the

needed intermediate formulas: in a simple case, a compositional proof of R1‖Y R2 |= ϕ

requires finding a formula γ such that R1 |= γ and R2 |= γ � ϕ. Finding such a formula

γ, or whatever is needed in more complex cases, is in general a difficult task. We have

chosen the examples in this paper so that those intermediate formulas are easily found.

Examples in previous work, mentioned in Section 10, showed other examples for which

the intermediate formulas were not obvious at all, which made us prefer to use the split,

finishing with a monolithic verification for a compositional specification.

Techniques have been devised for automatically generating such intermediate formu-

las (Elkader et al . 2018; Cobleigh et al . 2003; Bobaru et al . 2008). However, an ex-

perimental study (Cobleigh et al . 2006) on the efficiency of these techniques with two

actual tools draws this conclusion: “This discouraging result, although preliminary, raises

doubts about the usefulness of assume-guarantee reasoning.” In a different style, a com-

putation of the theoretical complexity of A/G (Kupferman and Vardi 2000) finds it to

be quite large: “The results of this paper indicate that modular model checking [. . .]

is rather intractable.” Additionally, not many of the well-known tools for verification

include the possibility of compositional verification, notable exceptions being BIP (Basu

et al . 2008) and TLA+ (Lamport 2002). Whether this is because their practitioners have

not found the need for it or for some other reason, we cannot say. To this, we can add

our own, limited experience trying to perform compositional verification within our pro-

posed framework, from which we have learned that the generation of temporal formulas

for components is a laborious task. Moreover, the use of Theorem 5, in its Condition 2,

requires checking that a certain LTL formula, potentially large, is a tautology. We have

used Maude’s tautology checker, which in some cases takes very long to reach an answer.

In all, if we want to verify a compositionally specified system, the cheaper way, both in

human time and in computer time, may well be transforming it into a monolithic one

(through the split operation), and performing monolithic model checking on the result.

There is ongoing work in this area, so improvements can be expected. It may seem, how-

ever, that we need to justify our work on compositional verification. We devote a few

lines to it.

First, we have already mentioned at the end of Section 11.1 that both (Klai et al .

2005) and (Garavel et al . 2015) have found their compositional techniques (which do not

include A/G) to be more effective than monolithic ones in some, though not all, cases.

https://doi.org/10.1017/S1471068423000340 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068423000340

Compositional verification in rewriting logic 107

One of our goals in this work was to show that compositional reasoning in rewriting

logic is possible based on our framework for compositional specification. Componentwise

abstraction and simulation and the A/G technique, in addition to whatever value they

may have by themselves, were chosen by us as case studies to put our framework to the

test. After having written this paper, we feel confident that new developments could be

adapted as well.

The discouraging studies mentioned above miss a key ingredient of modularity, namely,

reuse. They consider compositional verification as if it has to be completely redone from

scratch every time. But, once the design of a system has been carried out modularly, the

temporal formulas needed from each component have been determined, and the proof

that some global formula follows from those of the components has been completed, all

that is valid forever. If one of the components has to be modified, refined, or replaced,

only the new component needs verification against the formulas already known to be

needed from it.

A library of ready-to-use components is another instance of the convenience of modular

design and verification. We have already remarked that we are specially interested in

studying how strategies can be implemented as components that exert their control

by means of synchronous composition. In these cases, the component implementing a

strategy has to be independent of the rest, and has to perform its task whatever system it

happens to be attached to. Thus, because the mutual exclusion controller in our example

satisfies the mutual exclusion property, so does any composed system that relies on it.

No need to find intermediate formulas or check complex provisos. In contrast, it is in

cases when the global behavior is emergent, as in the ABP example in Section 10.1, that

finding the intermediate formulas is a difficult task.

The above discussion has to do with verification. In specification (or design, or mod-

eling) the value of compositionality is less controversial.

For a final summary, our goal was to develop a framework for compositional specifica-

tion in rewriting logic and Maude and, in the present paper, to show the way for compo-

sitional reasoning on such specifications. This much we are confident to have achieved.

We like to think that, through compositionality, rewriting logic can become easier or

more suitable to apply to some domains, like runtime verification, coordination models,

component-based software development, and hardware specification. All of it is quite

speculative at present, which means we have some appealing lines of work ahead of us.

Competing interests

The authors declare none.

References

Abadi, M. and Lamport, L. 1995. Conjoining specifications. ACM Transactions on Program-
ming Languages and Systems 17, 3, 507–534.

André, É., Klai, K., Ochi, H. and Petrucci, L. 2012. A counterexample-based incremental
and modular verification approach. In Large-Scale Complex IT Systems. Development, Oper-
ation and Management, R. Calinescu and D. Garlan, Eds. Springer Berlin Heidelberg, Berlin,
Heidelberg, 283–302.

https://doi.org/10.1017/S1471068423000340 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068423000340

108 Ó. Mart́ın et al.

Bachmair, L., Tiwari, A. and Vigneron, L. 2003. Abstract congruence closure. Journal of
Automated Reasoning 31, 2, 129–168.

Bae, K. and Meseguer, J. 2014. Predicate abstraction of rewrite theories. In Rewriting and
Typed Lambda Calculi—Joint International Conference, RTA-TLCA 2014, Held as Part of
the Vienna Summer of Logic, VSL 2014, Vienna, Austria, 14–17 July 2014. Proceedings,
G. Dowek, Ed. Lecture Notes in Computer Science, vol. 8560. Springer, 61–76.

Basu, A., Bozga, M. and Sifakis, J. 2008. Modeling heterogeneous real-time components
in BIP. In Perspectives Workshop: Model Engineering of Complex Systems (MECS 2008),
U. Aßmann, J. Bézivin, R. F. Paige, B. Rumpe and D. C. Schmidt, Eds. Dagstuhl Seminar
Proceedings, vol. 08331. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, Germany.

Bobaru, M. G., Păsăreanu, C. S. and Giannakopoulou, D. 2008. Automated assume-
guarantee reasoning by abstraction refinement. In Computer Aided Verification, A. Gupta
and S. Malik, Eds. Lecture Notes in Computer Science, vol. 5123. Springer Berlin Heidelberg,
135–148.

Chaki, S., Clarke, E. M., Ouaknine, J., Sharygina, N. and Sinha, N. 2004. State/event-
based software model checking. In Integrated Formal Methods. Lecture Notes in Computer
Science, vol. 2999. Springer Berlin Heidelberg, 128–147.

Clarke, E. M., Grumberg, O., Jha, S., Lu, Y. and Veith, H. 2000. Counterexample-guided
abstraction refinement. In Computer Aided Verification. Lecture Notes in Computer Science,
vol. 1855. Springer Berlin Heidelberg, 154–169.

Clarke, E. M., Grumberg, O. and Peled, D. A. 1999. Model Checking. MIT Press.

Clarke, E. M., Long, D. E. and McMillan, K. L. 1989. Compositional model checking.
In Proceedings of the Fourth Annual Symposium on Logic in Computer Science (LICS 1989).
IEEE Computer Society, 353–362.

Clavel, M., Durán, F., Eker, S., Escobar, S., Lincoln, P., Mart́ı-Oliet, N., Meseguer,

J., Rubio, R. and Talcott, C. 2022. Maude Manual (Version 3.2.1).

Clavel, M. and Meseguer, J. 1997. Internal strategies in a reflective logic. In Proceedings of
the CADE-14 Workshop on Strategies in Automated Deduction, B. Gramlich and H. Kirchner,
Eds. Springer Berlin Heidelberg, 1–12.

Cobleigh, J. M., Avrunin, G. S. and Clarke, L. A. 2006. Breaking up is hard to do: An in-
vestigation of decomposition for assume-guarantee reasoning. In ISSTA’06: Proceedings of the
2006 International Symposium on Software Testing and Analysis. Association for Computing
Machinery (ACM).

Cobleigh, J. M., Giannakopoulou, D. and Pasareanu, C. S. 2003. Learning assumptions
for compositional verification. In Tools and Algorithms for the Construction and Analysis
of Systems, H. Garavel and J. Hatcliff, Eds. Lecture Notes in Computer Science, vol. 2619.
Springer Berlin Heidelberg, 331–346.

Eker, S., Mart́ı-Oliet, N., Meseguer, J. and Verdejo, A. 2007. Deduction, strategies, and
rewriting. Electronic Notes in Theoretical Computer Science 174, 11, 3–25.

Elkader, K. A., Grumberg, O., Păsăreanu, C. S. and Shoham, S. 2018. Automated cir-
cular assume-guarantee reasoning. Formal Aspects of Computing 30, 5, 571–595.

Garavel, H., Lang, F. and Mateescu, R. 2015. Compositional verification of asynchronous
concurrent systems using cadp. Acta Informatica 52, 337 – 392.

Glabbeek, R. V. and Höfner, P. 2019. Progress, justness, and fairness. ACM Computing
Surveys 52, 4, 1–38.

Grumberg, O. and Long, D. E. 1994. Model checking and modular verification. ACM Trans-
actions on Programming Languages and Systems 16, 3, 843–871.

INRIA. 2023. CADP – construction and analysis of distributed processes (website). http://
maude.ucm.es/syncprod.

Jonsson, B. and Yih-Kuen, T. 1996. Assumption/guarantee specifications in linear-time tem-
poral logic. Theoretical Computer Science 167, 1-2, 47–72.

https://doi.org/10.1017/S1471068423000340 Published online by Cambridge University Press

http://maude.ucm.es/syncprod
http://maude.ucm.es/syncprod
https://doi.org/10.1017/S1471068423000340

Compositional verification in rewriting logic 109

Klai, K., Haddad, S. and Ilié, J.-M. 2005. Modular verification of Petri nets properties:
A structure-based approach. In Formal Techniques for Networked and Distributed Systems -
FORTE 2005, F. Wang, Ed. Springer Berlin Heidelberg, Berlin, Heidelberg, 189–203.

Kupferman, O. and Vardi, M. Y. 2000. An automata-theoretic approach to modular model
checking. ACM Transactions on Programming Languages and Systems 22, 1, 87–128.

Lamport, L. 1983. What good is temporal logic? Information Processing 83, 657–668.

Lamport, L. 2002. Specifying Systems. Pearson Education (US).

Lescanne, P. 1989. Completion procedures as transition rules + control. In TAPSOFT’89:
Proceedings of the International Joint Conference on Theory and Practice of Software De-
velopment, Barcelona, Spain, 13–17 March 1989 (1989), J. Dı́az and F. Orejas, Eds. Lecture
Notes in Computer Science, vol. 351. Springer Berlin Heidelberg, 28–41.

Lynch, N. A. and Tuttle, M. R. 1989. An introduction to input/output automata. CWI
Quarterly 2, 219–246.

Mart́ı-Oliet, N., Meseguer, J. and Verdejo, A. 2004. Towards a strategy language for
Maude. In Proceedings of the Fifth International Workshop on Rewriting Logic and Its Appli-
cations (WRLA 2004) (2004-01), N. Mart́ı-Oliet, Ed. Electronic Notes in Theoretical Com-
puter Science, vol. 117. Elsevier BV, 417–441.

Mart́ın, Ó. 2021a. Composition in Rewriting Logic. Ph.D. thesis, Universidad Complutense de
Madrid - Facultad de Informática. URL: http://eprints.ucm.es/id/eprint/68887.

Mart́ın, Ó. 2021b. Composition in rewriting logic (website). URL: http://maude.ucm.es/

syncprod.

Mart́ın, Ó., Verdejo, A. and Mart́ı-Oliet, N. 2018. Parameterized programming for com-
positional system specification. In Rewriting Logic and Its Applications, V. Rusu, Ed. Lecture
Notes in Computer Science, vol. 11152. Springer International Publishing, 59–75.

Mart́ın, Ó., Verdejo, A. and Mart́ı-Oliet, N. 2020. Compositional specification in rewriting
logic. Theory and Practice of Logic Programming 20, 1, 44–98.

Meseguer, J. 1992. Conditional rewriting logic as a unified model of concurrency. Theoretical
Computer Science 96, 1, 73–155.

Meseguer, J., Palomino, M. andMart́ı-Oliet, N. 2008. Equational abstractions. Theoretical
Computer Science 403, 2-3, 239–264.

Misra, J. and Chandy, K. M. 1981. Proofs of networks of processes. IEEE Transactions on
Software Engineering SE-7, 4, 417–426.

Palomino, M., Mart́ı-Oliet, N. and Verdejo, A. 2005. Playing with Maude. Electronic
Notes in Theoretical Computer Science 124, 1, 3–23. Proceedings of the 5th International
Workshop on Rule-Based Programming (RULE 2004).

Pnueli, A. 1985. In transition from global to modular temporal reasoning about programs. In
Logics and Models of Concurrent Systems, K. R. Apt, Ed. NATO ASI Series, vol. 13. Springer
Berlin Heidelberg, 123–144.

Rubio, R., Mart́ı-Oliet, N., Pita, I. and Verdejo, A. 2021. Strategies, model checking and
branching-time properties in Maude. Journal of Logical and Algebraic Methods in Program-
ming 123, 100700.

Verdejo, A. and Mart́ı-Oliet, N. 2012. Basic completion strategies as another application
of the Maude strategy language. In Proceedings 10th International Workshop on Reduction
Strategies in Rewriting and Programming (2012-04), S. Escobar, Ed. Electronic Proceedings
in Theoretical Computer Science, vol. 82. Open Publishing Association, 17–36.

https://doi.org/10.1017/S1471068423000340 Published online by Cambridge University Press

http://eprints.ucm.es/id/eprint/68887
http://maude.ucm.es/syncprod
http://maude.ucm.es/syncprod
https://doi.org/10.1017/S1471068423000340

	Introduction
	Examples
	Chained buffers
	Mutual exclusion
	Crossing the river

	Background
	Egalitarian structures and systems
	Plain structures and systems
	The split

	Distributed and global paths
	A short diversion on locality

	Linear temporal logic
	Basic satisfaction relations
	Back to the standards

	On fairness and deadlocks
	Componentwise simulation and abstraction
	Simulation
	Equational abstraction
	Example: mutual exclusion (continued)

	The assume/guarantee technique
	Example: chained buffers (continued)
	Example: mutual exclusion (continued)
	Example: crossing the river (continued)

	Additional examples
	Alternating bit protocol
	Needham-Schroeder public-key protocol

	Closing material
	Related work
	Future work
	Conclusion

	References

