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Finding and Excluding
b-ary Machin-Type Individual Digit
Formulae

Jonathan M. Borwein, David Borwein and William F. Galway

Abstract. Constants with formulae of the form treated by D. Bailey, P. Borwein, and S. Plouffe (BBP

formulae to a given base b) have interesting computational properties, such as allowing single dig-

its in their base b expansion to be independently computed, and there are hints that they should be

normal numbers, i.e., that their base b digits are randomly distributed. We study a formally limited

subset of BBP formulae, which we call Machin-type BBP formulae, for which it is relatively easy to

determine whether or not a given constant κ has a Machin-type BBP formula. In particular, given

b ∈ N, b > 2, b not a proper power, a b-ary Machin-type BBP arctangent formula for κ is a formula

of the form κ =

∑

m
am arctan(−b−m), am ∈ Q , while when b = 2, we also allow terms of the form

am arctan(1/(1 − 2m)). Of particular interest, we show that π has no Machin-type BBP arctangent

formula when b 6= 2. To the best of our knowledge, when there is no Machin-type BBP formula for a

constant then no BBP formula of any form is known for that constant.

1 Introduction

1.1 Preliminaries

Given b ∈ N, b > 1, we say that a constant κ ∈ R has a BBP formula to the base b, or
a b-ary BBP formula, if

(1) κ =

∑

k≥0

p(k)

q(k)
b−k,

where p ∈ Z[k], q ∈ Z[k].

BBP formulae are of interest because, for fixed b, the nth b-ary digit of a num-
ber with a BBP formula can be found without computing prior digits—using only
O(n ln n) operations on numbers with O(ln n) bits [BBP97]. For example, a BBP
formula has been used to compute the quadrillionth bit (1015th bit) in the binary

expansion of π [Per00].
There are also recent results that relate BBP formulae to the behavior of a dynam-

ical system, and which suggest a “road-map” towards a proof that irrational numbers
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with BBP formulae must be normal in base b, i.e., their base b digits are randomly
distributed [BC01]. For example, setting z = 1/2 in the Taylor series expansion of

− ln(1 − z) yields the particularly simple binary BBP formula:

ln(2) =

∑

k≥0

1

2k + 2
2−k.

In consequence the system with x0 := 0, and

xn := (2xn−1 + 1/n) mod 1

for n > 0 has the property that if the sequence of xn is equidistributed in [0, 1) then

ln 2 is a normal number base 2.
While BBP formulae are interesting for these reasons, they are somewhat myste-

rious because there are few methods known for finding a formula for a given con-

stant, and even after a formula has been found experimentally it may be difficult
to rigorously prove its validity. A recent summary of work in the field is to be
found in Chapter Four of [BB03]. Consider for example, Catalan’s constant G :=
∑∞

k=0(−1)k(2k+1)−2 which is not proven irrational. In a series of inspired computa-

tions using polylogarithmic ladders David Broadhurst has found—and proved—BBP
formulae for constants such as G, ζ(3), and ζ(5) [Bro98]. Broadhurst’s hexadecimal
BBP formula for G is:

G = 3

∞
∑

k=0

1

2 · 16k

(

1

(8k + 1)2
− 1

(8k + 2)2
+

1

2(8k + 3)2

− 1

22(8k + 5)2
+

1

22(8k + 6)2
− 1

23(8k + 7)2

)

− 2

∞
∑

k=0

1

8 · 163k

(

1

(8k + 1)2
+

1

2(8k + 2)2
+

1

23(8k + 3)2

− 1

26(8k + 5)2
− 1

27(8k + 6)2
− 1

29(8k + 7)2

)

.

Given m ∈ N, a BBP formula to the base b can be rewritten as a BBP formula to
the base bm, since

(2)
∑

k≥0

p(k)

q(k)
b−k

=

∑

k≥0

(

m−1
∑

j=0

p(mk + j)

b j q(mk + j)

)

b−mk,

and the inner sum can be recast as a rational function in k. Although it is a minor

abuse of language, we shall also refer to formulae to the base bm as base b, or b-ary,
BBP formulae. Under this convention the sum

∑

k(−1)k
(

p(k)/q(k)
)

b−k may also
be considered to be a b-ary BBP formula—a convention that lets one write some
“base b” formulae in a shorter form, although we shall avoid doing so in this paper.

https://doi.org/10.4153/CJM-2004-041-2 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-2004-041-2


Machin-Type BBP Formulae 899

Unless we mention otherwise, we shall now assume b is not a proper power, i.e., that b

does not have the form an, for any a ∈ N, n ∈ N, n > 1.

For fixed b, the set of numbers with b-ary BBP formulae is a vector space over Q .
To the best of our knowledge, nearly all research has focused on subspaces generated
by elements of the form

(3) L(s, b, n, j) :=
∑

k≥0

1

(nk + j)s
b−k,

with s, n, j ∈ N, 1 ≤ j ≤ n. Numbers within these spaces have been called polylog-

arithmic. We will show in Appendix B that it suffices to restrict the analysis of such
formulae to Q-linear combinations of L(s, b, n, j) in which only j is allowed to vary.

In his Compendium [Bai00], Bailey catalogues many polylogarithmic constants.
Bailey uses the notation

(4) P(s, b, n,A) :=
∑

k≥0

b−k

n
∑

j=1

a j

(nk + j)s
,

where A = [a1, . . . , an] ∈ Zn. In terms of our L(s, b, n, j) we have

(5) P(s, b, n,A) =

n
∑

j=1

a j L(s, b, n, j).

Let span{αk} denote the vector space over Q spanned by the set {αk}. The spaces of
polylogarithmic constants explored by Bailey have the form

span{P(s, b, n,A) : A ∈ Z
n} = span{L(s, b, n, j) : 1 ≤ j ≤ n}

with s, b, n fixed, and with b allowed to be a power, such as 24. Bailey has found many

“interesting” constants κ in these spaces by computing κ and a table of L(s, b, n, j),
1 ≤ j ≤ n, to high precision; and then using the PSLQ integer relation algo-
rithm [FBA99] to find a ∈ Z, A ∈ Zn such that aκ = P(s, b, n,A).

1.2 Our goals

In this paper we focus our attention on degree one, or “logarithmic”, BBP formulae,
i.e., those where s = 1 in (4). We further restrict ourselves to formulae of a special

form which we call Machin-type. Roughly speaking, we write κ has a Machin-type
BBP formula to the base b (or κ has a b-ary Machin-type BBP formula) if κ can be
written either as a Q-linear combination of real parts of logarithms, or of imaginary
parts of logarithms, where the logarithms are chosen so as to yield a BBP formula to

the base b.
The numbers whose logarithms we consider all lie in the multiplicative group

Q[i]×. Knowledge of how numbers factor into primes over Z[i] (the Gaussian in-
tegers) or over Z serves as a tool both for finding Machin-type BBP formulae and

for showing no such formula exists. Despite the restricted nature of Machin-type
BBP formulae, to the best of our knowledge when we can show that there is no b-ary
Machin-type formula for a constant then no b-ary BBP formula of any form is known
for that constant.
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2 Machin-Type BBP Formulae for Arctangents

2.1 A Brief Survey of Machin-Type Formulae

The original Machin formula is the identity

π/4 = 4 arctan(1/5) − arctan(1/239) (Machin, 1706).(6)

Machin used this formula to compute 100 digits of π. Similar Machin-type formulae

for π, i.e., formulae which express π as a Z-linear combination of arctangents, have
been used in most other extended computations of π until around 1980 and a few

million digits. In recent years it has generally been believed that quite different for-
mulae for π, such as the “AGM formula”, are better suited for the computation of π.
These AGM methods have been used beyond 200 billion digits and are surely of lower
operational complexity, but involve full precision intermediate calculation.

However, in December 2002, Yasumasa Kanada announced the record computa-
tion of 1.24 trillion decimal digits of π, using the identities

π = 48 arctan(1/49) + 128 arctan(1/57) − 20 arctan(1/239)(7)

+ 48 arctan(1/110443),

π = 176 arctan(1/57) + 28 arctan(1/239) − 48 arctan(1/682)(8)

+ 96 arctan(1/12943).

Indeed, for the size of computation being undertaken, full precision floating point
operations again seem impracticable. (See [BB98, §11.1] and [BB03, Chapter 3] for
additional history on π computations.)

One way to “discover” Machin’s formula (6) is to observe that

(9) arctan(y/x) ≡ ℑ ln(x + i y) (mod π).

(We shall give our choice of branch-cut for arctan(ρ) and ln(z) below.) Equation (9),
and the fact that (5 + i)4(239 + i)−1

= 2 + 2i imply

(10) π/4 = arctan(1) ≡ 4 arctan(1/5) − arctan(1/239) (mod π).

True equality of the congruence is easily verified numerically, by computing both

sides to sufficient precision to ensure that they differ by less than π. Similarly, the
process of verifying Equations (7) and (8) can be reduced to verifying that the prod-
ucts

(49 + i)48(57 + i)128(239 + i)−20(110443 + i)48

and

(57 + i)176(239 + i)28(682 + i)−48(12943 + i)96

both yield negative rational numbers.
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This technique of formulating a question about arctangents in terms of Z[i] was
used by Størmer in 1897 to solve a problem of Gravé. Gravé’s problem asks if there

are only four non-trivial integral solutions to

m arctan(1/u) + n arctan(1/v) = kπ/4,

namely Machin’s formula (6), and

π/4 = arctan(1/2) + arctan(1/3) (Euler, 1738),(11)

π/4 = 2 arctan(1/2) − arctan(1/7) (Hermann, 1706),(12)

π/4 = 2 arctan(1/3) + arctan(1/7) (Hutton, 1776).(13)

Further information on Størmer’s solution can be found in [BB98, §11.1, Exercise 6],
or, more completely, in [Rib94, §A.12].

2.2 Notational Conventions

Throughout, arctan(ρ) denotes the principal branch of the arctangent function, de-
fined so −π/2 < arctan(ρ) < π/2 for ρ ∈ R. We also allow ρ = ∞, and define

arctan(∞) := π/2 and tan(±π/2) := ∞. Given ρ 6= 0 we define ρ/0 := ∞, regard-
less of the sign of ρ. Similarly, ln(z) denotes the principal branch of the logarithm,
defined so ln(z) = ln(|z|) + iθ satisfies −π < θ ≤ π. In other words θ = ℑ ln(z)
satisfies eiθ

= z/ |z|, −π < θ ≤ π. Given x, y ∈ R, our definitions of ln(z) and

arctan(ρ) ensure that

arctan(y/x) = ℑ ln(x + i y) =

1

2i
ln
( x + i y

x − i y

)

,

provided x > 0. More generally, under our conventions we always have

arctan(y/x) ≡ ℑ ln(x + i y) (mod π),

even for x = 0, y 6= 0.

2.3 Using Group Homomorphisms

As with Machin’s formula in Section 2.1, we shall use some basic group theory to

guide our search for BBP formulae. We start with a set {κ1, κ2, . . . } of constants
with known BBP formulae, and a constant κ for which we wish to determine a BBP
formula. Provided κ ∈ span{κ1, κ2, . . . }, finding a BBP formula for κ in terms of
formulae for κ j is equivalent to finding a Q-linear relationship of the form

κ =

∑

j

a jκ j ,
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or, rearranging and multiplying through by a common denominator, to finding a
Z-linear relationship of the form

(14) nκ +
∑

j

n jκ j = 0.

In other words, we ask if there is an n ∈ Z for which nκ lies in the additive Abelian

group G generated by {κ1, κ2, . . . }. Despite little knowledge of G, we can choose a
group homomorphism f : G → H where the target group H is well understood. (Note
f need not be surjective—in our applications we shall typically have img f � H.)

Given the homomorphism f , we seek a relationship

(15) n f (κ) +
∑

j

n j f (κ j) = 0 or f (κ)n
∏

j

f (κ j)
n j

= 1,

according to whether H is an additive group or an Abelian multiplicative group. If
there is no solution to (15) then there is no solution to (14), and κ cannot be rep-
resented in terms of {κ1, κ2, . . . }. Yet, a solution to (15) does not ensure a solution

to (14), but only ensures that

(16) nκ +
∑

j

n jκ j = κ0

for some κ0 ∈ ker f . Thus, to verify that κ can be represented in terms of
{κ1, κ2, . . . }, it suffices to solve (15) and to verify either that ker f = {0} or to

further examine the left side of (16) (e.g., numerically) to verify κ0 = 0.

In our search for arctangent formulae there are two, nearly equivalent, choices
of target group that seem convenient, and we will use both. In some cases we shall
identify an angle θ ∈ R with the line of slope tan(θ). Writing members of group
quotients as explicit cosets, the corresponding homomorphism is essentially f : R →
C×/R×, f (θ) = eiθR×. We shall call C×/R× the group of slopes. More precisely,
with f (θ) as above, we shall be using the homomorphism f |G, the restriction of f

to G. Since we are working with G < R generated by elements of the form arctan(ρ),
ρ ∈ Q we may take H = Q[i]×R×/R× ∼

= Q[i]×/Q×, a group with a rich number-

theoretical structure which will guide us in our search.

In other cases we shall identify an angle θ with the directed ray eiθR
×
+ , via the

homomorphism f : R → C/R
×
+ , f (θ) = eiθR

×
+ , where R

×
+ is the multiplicative group

of positive real numbers. By identifying the ray eiθR
×
+ with the point eiθ we see that

C/R
×
+ is isomorphic to the unit circle group S := {z ∈ C : |z| = 1}. As before, in this

case we may take the target group to be H = Q[i]×R
×
+ /R

×
+
∼
= Q[i]×/Q

×
+ .

Remark Our group of slopes, C×/R×, can be considered as the real projective line

PR, endowed with a group structure. In more detail,

PR := {(y, x) ∈ R × R : (y, x) 6= (0, 0)} ,
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under the equivalence relation (y, x) ∼ (λy, λx) for all λ 6= 0, λ ∈ R. Writing
y/x to denote the equivalence class of (y, x), we can embed R ⊂ PR under the map

y 7→ y/1. Of course 1/0 denotes ∞: the point at infinity. In some earlier research
notes we have written (y1/x1) ⊗ (y2/x2) for multiplication in this group, where

y1

x1

⊗ y2

x2

∼ y1x2 + y2x1

x1x2 − y1 y2

.

With this notation, PR has identity 0/1, and the (multiplicative) inverse of y/x is

−y/x.

2.4 Generators for Machin-Type BBP Arctangent Formulae

We now describe our Machin-type BBP generators and the resulting formulae. Given
b not a proper power, b > 2, these are generators of the form

arctan(−b−m) = ℑ ln(1 − ib−m) = −b−m
∑

k≥0

(−1)k

2k + 1
b−2mk

= b−3mP(1, b4m, 4, [−b2m, 0, 1, 0]).

Setting x = ±2−m in the series expansion for arctan(x/(1 + x)) yields a binary BBP
formula which is distinct from the generators above.

Thus, when b = 2 we use additional generators of the form

arctan
(

1/(1 − 2m)
)

= ℑ ln(1 − (1 + i)2−m).

We call these generators Aurifeuillian because of their similarity to the Aurifeuillian
logarithmic generators defined in Section 3, where we also discuss Aurifeuille’s work.
The BBP formulae for these Aurifeuillian generators are given in Appendix A.

Definition 1 Given κ ∈ R, 2 ≤ b ∈ N, b not a proper power, we say that κ has a

Z-linear or Q-linear Machin-type BBP arctangent formula to the base b if and only if
κ can be written as a Z-linear or Q-linear combination (respectively) of generators
of the form described above. A non-Aurifeuillian formula is one which does not
use Aurifeuillian generators. (Note all formulae are non-Aurifeuillian when b > 2.)

More briefly, when κ has a Q-linear formula we say that κ has a b-ary Machin-type
BBP arctangent formula.

Remarks Although our Machin-type BBP formulae are in one sense more restricted
than the formulae considered by Bailey, they also appear to be more general, in that

we allow linear combinations of P(1, bm, n, . . . ) where both m and n may vary. How-
ever, in Appendix B we show that any Machin-type BBP formula may be reduced to
Bailey’s form.

We call the generators of Definition 1 the minimal set of arctangent generators,
although for fixed b this set is not necessarily linearly independent. When b = 2 it
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is sometimes convenient when doing hand computations to use all elements of the
form ℑ ln(1 ± (1 + i)2−m) = arctan(1/(1 ± 2m)) as generators. Note however that

both our minimal set of generators and the full set described above span the same
space, as can easily be shown using

ℑ ln(1 + (1 + i)2−m) = ℑ ln(1 − i21−2m) −ℑ ln(1 − (1 + i)2−m).

Note that (1 − ib−m)R×
= (bm − i)R×. Hence, both sides of the equality

represent the same element in our group of slopes. Along the same lines we have
ℑ ln(1 − ib−m) = ℑ ln(bm − i). Since it is generally easier to work with elements
of Z[i]× instead of Q[i]×, we will often write (bm − i)R× instead of (1 − ib−m)R×.
Similarly, we will often prefer (2m − 1 − i)R× to (1 − (1 + i)2−m)R× and prefer to

write the inverse of (x + i y)R× as (x− i y)R×. (We follow the corresponding practice
when working with elements of C×/R

×
+ , with R

×
+ replacing the role of R×.)

2.5 Finding Machin-Type BBP Arctangent Formulae

With these preliminary remarks out of the way, we almost immediately find a binary
Machin-type BBP formulae for π/4 by noting that

(17) π/4 = −ℑ ln(1 − i) = − arctan(−1)

= 2−4P(1, 24, 8, [8, 8, 4, 0,−2,−2,−1, 0]).

(This formula seems to have first been observed by Helaman Ferguson. See [Bai00,
Equation (13)] and also [FBA99, p. 352].)

Further binary formulae for π/4 can be found in much the same way as in our

development of Formula (10), and as in Størmer’s solution to Gravé’s problem, by
looking for products of the form

(18) z :=
∏

j

(2m j − i)n j

∏

j

(2m j − 1 − i)n j

which yield z ∈ (1 + i)R
×
+ , and thus ℑ ln(z) ≡ π/4 (mod 2π). More generally, when

looking for Z-linear formulae for some multiple of π, we would consider products of
the form (18) yielding z ∈ (1 + i)nR

×
+ , and thus ℑ ln(z) ≡ nπ/4 (mod 2π). Note

that when n ≡ 0 (mod 8) it is possible that ℑ ln(z) = 0.
A hand search for additional formulae soon reveals that

(2 − i)(3 − i) = 5 − 5i,(19)

(2 − i)2(7 + i) = 25 − 25i,(20)

(3 − i)2(7 − i) = 50 − 50i,(21)

corresponding to the solutions (11)–(13) of Gravé’s problem. Since each factor on
the left-hand sides has one of the desired forms 2m − i or 2m − 1 − i for some m we
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see that (11), (12), and (13) all yield binary Machin-type BBP arctangent formulae
for π/4.

Similarly, a hand search gives binary Machin-type BBP arctangent formulae for
arctan(1/6), arctan(5/6), and arctan(1/11) via the factorizations

6 + i = (5 + i)(31 − i)/26,

6 + 5i = (1 + i)(5 − i)(9 + i)(255 − i)/2132,

11 + i = (1 + i)(6 − 5i), and then factor (6 − 5i) as 6 + 5i.

These factorizations give formulae in terms of our full set of generators:

arctan(1/6) = arctan(1/5) − arctan(1/31)

and

arctan(5/6) = arctan(1) − arctan(1/5) + arctan(1/9) − arctan(1/255)

while
arctan(1/11) = arctan(1) − arctan(5/6).

No formulae for these three arctangents are listed in Bailey’s Compendium of
November 2000 [Bai00, §3]. However, the above results show that arctan(1/6),

arctan(5/6) and arctan(1/11) do indeed admit binary Machin-type BBP formulae.
(The process of converting such formulae to Bailey’s form is detailed in Appendix B.)
Among the values missing in Bailey’s list, the first arctangent for which we have been
unable to find a binary Machin-type BBP formula is arctan(2/7).

We can make the search for arctangent formulae more systematic by examining
how 2m − i and 2m − 1 − i factor into primes over Z[i]. Since primes in Z[i] are
only defined up to a factor of in, we shall always take a “canonical” factorization of
z ∈ Z[i], of the form

(22) z = in
∏

j

p
n j

j ,

where p j runs through a subset of the primes of Z[i], and for each prime p we require
ℜp > 0 and −ℜp < ℑp ≤ ℜp, so that −π/4 < ℑ ln p ≤ π/4. These conditions
uniquely define n (mod 4), where n is the exponent appearing in in. To make n

unique, we further require that −1 ≤ n ≤ 2.
The factorization of z ∈ Z[i] can easily be found in the computer algebra system

Maple using the GaussInt package, or in the system Mathematica using FactorInte-

ger[z, GaussianIntegers→True]. (However, in both cases additional work is needed

to get a canonical factorization in our sense.) Since, given z, w ∈ C, ℑ ln(zw) ≡
ℑ ln(z) + ℑ ln(w) (mod 2π), the factorization (22) gives

ℑ ln(z) ≡ nπ/2 +
∑

j

n jℑ ln p j (mod 2π).
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In many cases, this equivalence modulo 2π corresponds to true equality, but the ex-
ample z = (2 + i)12

= 11753 − 10296i, ℑ ln(z) ≈ −0.7194 while 12ℑ ln(2 + i) ≈
5.5638, demonstrates that this is not always true.

More detailed discussion of such experimental and symbolic computational mat-
ters is to be found in [BB03] and on the associated website www.expmath.info.

To illustrate, we use this technique to more systematically find formulae for π. Let

βm := ℑ ln(2m − i) and αm := ℑ ln(2m − i − 1) denote our binary Machin-type BBP
arctangent generators. For the first few generators, factoring the arguments 2m − i of
ℑ ln( . . . ) into primes over Z[i] gives

21 − i = 2 − i(23)

22 − i = 4 − i(24)

23 − i = (2 + i)(3 − 2i),(25)

while for the Aurifeuillian arguments 2m − 1 − i we find

21 − 1 − i = 1 − i(26)

22 − 1 − i = i−1(1 + i)(2 + i)(27)

23 − 1 − i = (1 + i)(2 − i)2.(28)

Using ℑ ln(i) = π/2, ℑ ln(1 + i) = π/4, ℑ ln(p) = −ℑ ln(p); and checking that we
have the correct congruence class modulo 2π, the factorizations (23) through (25)
give

β1 = −ℑ ln(2 + i)(29)

β2 = −ℑ ln(4 + i)(30)

β3 = ℑ ln(2 + i) −ℑ ln(3 + 2i),(31)

while, by (26) through (28), our Aurifeuillian generators decompose as

α1 = −π/4(32)

α2 = −π/4 + ℑ ln(2 + i)(33)

α3 = π/4 − 2ℑ ln(2 + i).(34)

(The presence of π/4 in our Aurifeuillian generators could have been predicted from
the fact that 1 + i | x + i y when x2 + y2 is even.)

With these decompositions—essentially a change of basis in our vector space over

Q—we can easily spot Z-linear dependencies between β1, α1, α2, and α3. From these
dependencies we once again get formulae for π/4 corresponding to Equations (19)–
(21). Equivalently, we get two linearly independent zero relations such as

α1 + α3 − 2β1 = 0(35)

α1 − 2α2 − α3 = 0.(36)
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2.6 Exclusion Criteria for Machin-Type BBP Arctangent Formulae

The type of reasoning above can also be used to exclude the possibility of a Machin-
type BBP formula, as illustrated in Theorems 1 and 2 below.

In the following discussion, νb(p) denotes the order of b in the multiplicative

group modulo a prime p. Given z ∈ Q , ordp(z) denotes the usual p-adic order of z,
which can be defined by stating that ordp(p) = 1, ordp(q) = 0 for any prime q 6= p,
and ordp(zw) = ordp(z)+ordp(w). We remark that we cannot have ordp(x2+y2) odd
when p ≡ 3 (mod 4). Note also that ordp : Q× → Z is a group homomorphism. For

more information on p-adic orders, see, for example, the book by Koblitz [Kob84].

Theorem 1 Given 2 ≤ b ∈ N, b not a proper power, and given x ∈ Z, y ∈ Z, suppose

there is a prime p ≡ 1 (mod 4) with ordp(x2 + y2) odd, such that either p | b; or p ∤ b,

4 ∤ νb(p). Then arctan(y/x) does not have a Z-linear Machin-type BBP arctangent

formula to the base b.

Proof (a) We first consider the simpler case where b > 2, so that there are no Au-
rifeuillian generators to consider. In this case, if there were a formula for arctan(y/x),
we would have

(37) (x + i y)R
×

=

∏

j

(bm j − i)n j R
×,

m j ∈ N, n j ∈ Z. Since a real-valued product of elements of Q[i]× must lie in Q×,
we conclude from Equation (37) that

(38) (x + i y)
∏

j

(bm j − i)−n j
= M/N ∈ Q

×.

Taking norms (multiplying each expression by its complex conjugate) in (38) yields

(x2 + y2)
∏

j

(b2m j + 1)−n j
= M2/N2.

Since ordp(x2 + y2) is assumed odd but ordp(M2/N2) must be even, we must have
p | b2m j + 1 for at least one j. Clearly this cannot happen if p | b. Now assuming that
p ∤ b, 4 ∤ νb(p), and letting m = m j we find

(39) b2m ≡ −1 (mod p),

and so b4m ≡ 1 (mod p). Thus we conclude that νb(p) | 4m. But 4 ∤ νb(p), so
νb(p) | 2m, giving b2m ≡ 1 (mod p), contradicting (39).

(b) The argument when b = 2 is similar. Note that we cannot have p | b in this
case. Now, if there were a formula for arctan(y/x), we would have an identity of the

form

(40) (x + i y)R
×

=

∏

j

(2m j − i)n j

∏

j

(2m j − (1 + i))n j R
×.
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Arguing as before, and taking norms, we conclude that

(x2 + y2)
∏

j

(22m j + 1)−n j

∏

j

(2m j − (1 + i))−n j (2m j − (1 − i))−n j
= M2/N2.

Since p ≡ 1 (mod 4), there is an I ∈ Z satisfying I2 ≡ −1 (mod p). As before,
since ordp(x2 + y2) is assumed odd but ordp(M2/N2) must be even, at least one of
p | 22m j + 1; p | 2m j − (1 + I); or p | 2m j − (1 − I) must hold.

The first case immediately leads to a contradiction, as when b > 2. The latter
two cases give 2m j ≡ 1 ± I (mod p). Raising both sides to the fourth power gives
24m j ≡ −4 (mod p), so, letting m = 2m j − 1, we have 22m ≡ −1 (mod p), which
again leads to a contradiction, as when b > 2.

Example 1 Using p = 5 and ord5(22+12) = 1 in Theorem 1, we conclude that there

is no b-ary Z-linear Machin-type BBP formulae for arctan(1/2) when 5 |b. Similarly,
using p = 13 and ord13(52 + 12) = 1, we conclude that there is no b-ary Z-linear
Machin-type BBP formulae for arctan(1/5) when 13 |b.

Example 2 Using the second exclusion criterion of Theorem 1, with p = 13 and
noting 32 + 22

= 13 and ν3(13) = 3, we conclude that arctan(2/3) has no 3-ary
Z-linear Machin-type BBP arctangent formula. More generally, no odd multiple of

arctan(2/3) has a 3-ary Z-linear Machin-type BBP arctangent formula.

Similarly, with b = 2 and p = 73, noting that 82 + 32
= 73, we conclude

that arctan(3/8) has no binary Z-linear Machin-type BBP arctangent formula, as

ν2(73) = 9.

Correspondingly, with b = 2 and p = 89, noting that 82 + 52
= 89, we con-

clude that arctan(5/8) has no binary Z-linear Machin-type BBP formula. Similarly,

arctan(5/11) has no binary formula, since 146 = 2 · 73. Also 9/16 yields the prime
337 with ν2(337) = 21, and 11/18 yields 445 which is divisible by the prime 89 with
ν2(89) = 11. (See also Appendix C on density of arctans with or without Machin-
type formulae.)

The arguments above rule out formulae for 3/8 and 5/8. Binary Q-linear Machin-
type formulae are known for all other fractions with denominator less than 10, with

the exceptions of 2/7, 4/9, 5/9, which are presently in limbo. In these three cases the
exclusion criterion of Theorem 1 fails. We return to these orphans in Example 3.

We shall derive a stronger exclusion criterion for Machin-type BBP arctangent

formulae by looking at how (x + i y) factors in Z[i]:

Definition 2 Given z ∈ Q[i], and a rational prime p ≡ 1 (mod 4), let ϑp(z) denote
ordp(z) − ordp(z), where p and p are the two conjugate Gaussian primes dividing p,

and where we require 0 < ℑp < ℜp to make the definition of ϑp unambiguous.

Note that ϑp is a group homomorphism, since

(41) ϑp(zw) = ϑp(z) + ϑp(w).
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Theorem 2 Given 2 ≤ b ∈ N, b not a proper power, and given x ∈ N, y ∈ N, suppose

there is a prime p not dividing b, with p ≡ 1 mod 4 and ϑp(x + i y) 6= 0. Suppose

either (a) 4 ∤ νb(p), or (b) the prime p ≡ 1 (mod 4), such that 4 | νb(p), is unique,

and there is a prime q ≡ 1 (mod 4) with ϑq(x + i y) = 0 and νb(p) = νb(q).
Then in case (a) arctan(y/x) does not have a Q-linear Machin-type BBP arctangent

formula to the base b; and in case (b) arctan(y/x) has no non-Aurifeuillian Q-linear

Machin-type BBP arctangent formula to the base b.

Proof Our proof of (a) is similar to the proof of Theorem 1. Again, we first consider
the case b > 2, where there are no Aurifeuillian generators to consider. In this case,
if there were a Q-linear Machin-type BBP formula for arctan(y/x) then for some

n ∈ Z, n 6= 0 we would have

(x + i y)n
∏

j

(bm j − i)−n j
= M/N ∈ Q

×.

Our assumption that ϑp(x + i y) 6= 0 implies ϑp

(

(x + i y)n
)

6= 0, which together
with ϑp(M/N) = 0 implies ϑp(bm j − i) 6= 0 for at least one j. So, at least one of

p, p divides bm j − i. Thus, letting m = m j , assume that p | bm − i. (The argument
when p | bm − i is nearly identical.) Since p | bm − i we have p | bm + i, and thus
pp | b2m + 1. In other words, b2m ≡ −1 (mod p), which gives a contradiction, as in
the proof of Theorem 1.

We now consider the case when b = 2. In this case a formula for arctan(y/x)
would imply that we had an identity of the form

(x + i y)R
×

=

∏

j

(2m j − i)n j

∏

j

(2m j − (1 + i))n j R
×.

Our assumption that ϑp(x + i y) 6= 0 leads us to conclude that at least one of p, p

divides at least one of 2m j − i or 2m j − (1 + i) for some j. Again, without loss of
generality, assume that p is the divisor. If p | 2m j − i we get a contradiction, as when
b > 2. If p | 2m j − (1 + i) then, letting m = 2m j − 1, it follows that b2m ≡ −1

(mod p), which again gives a contradiction.

We defer the proof of part (b) until Section 3.4.

Example 3 Continuing Example 2, looking for a ternary arctangent formula for
arctan(2/3), we use p = 13 in Theorem 2 (a), still noting that ν3(13) = 3, and using

ϑ13(3 + 2i) = 1, to conclude that arctan(2/3) has no 3-ary Q-linear Machin-type
BBP arctangent formula. This can be applied to various of the other fractions in
Example 2 such as 3/8, 5/8, 5/11, 9/16, and 11/18.

We illustrate Theorem 2 (b), as follows. First it shows us that arctan(1/4) has no

3-ary Q-linear Machin-type BBP arctangent, since ν3(17) = ν3(193) = 16. Cor-
respondingly, we may rule out non-Aurifeuillian binary formulae for arctangents
of the fractions 2/7, 4/9 and 5/9. Indeed 22 + 72

= 53, 52 + 92
= 53 · 2 and

ν2(53) = ν2(157) = 52. Similarly, 42 + 92
= 97 and ν2(97) = ν2(673) = 48.
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We can clarify the meaning of ϑp by extending its definition to cover every prime
p. We define ϑp(z) := 0 when p ≡ 3 (mod 4), since these primes do not factor

further over Z[i] and thus contribute nothing to ℑ ln(z). To deal with the case p = 2
we note that z ∈ Q[i]× can be rewritten as zR×

= z0R× with z0 ∈ Z[i], and so that
z0 factors over Z[i] as

(42) z0 = (1 + i)k
∏

p≡1 (mod 4)

p=pp

p
ordp(z)

p
ordp(z),

with 0 ≤ k < 8 and with 0 < ℑp < ℜp. (When z ∈ Z[i] we have k ≡ 2n + ord1+i(z)
(mod 8), where n is defined by the canonical factorization of z defined following
Equation (22). Similarly, when z ∈ Q[i], we can compute k (mod 8) from the
canonical factorizations of the numerator and denominator of z.) Now, let ϑ2(z) :=

k, where k is given by Equation (42). (Note that ϑ2(zw) ≡ ϑ2(z) + ϑ2(w) (mod 8).)

With this extended definition of ϑp, we have

ℑ ln(z) ≡ ϑ2(z)ℑ ln(1 + i) +
∑

p≡1 (mod 4)

ϑp(z)ℑ ln(p) (mod 2π).

Thus, ϑp(z) measures the contribution to ℑ ln(z) which can be attributed to 1 + i

(the single Gaussian prime dividing 2) and to the Gaussian primes p | p, p | p, p ≡ 1

(mod 4).

Given a finite set of generators of the form ℑ ln(z), z ∈ Q[i], we could, in prin-
ciple, use values of ϑp to automate the process which we informally used to spot the
zero relations (35) and (36) given earlier. For each generator of the form ℑ ln(z) we

would compute a vector of ϑp(z), indexed by p, where p runs through a finite subset
of {2} ∪ {p prime : p ≡ 1 (mod 4)}. (The ϑ2 component of the vectors should be
treated as an element of Z/(8Z).)

Given these vectors, the process of finding possible linear dependencies could be
automated by using the algorithms described in [Coh93, §2.4] for analyzing Z-mod-

ules, (i.e., Abelian groups). The dependencies found this way are only “potential”
dependencies, both because knowledge of ϑp(z) for all p only determinesℑ ln z (mod
2π), and because we may choose to restrict ourselves to a small subset of primes, and

thus will get less than complete information about how the various z factor in Z[i].
(Consider the problem of completely factoring 21001 − i over Z[i].) we shall return to
this idea of using vectors when we discuss valuation vectors in Section 3, below.

At the conclusion of Section 3, we shall introduce another exclusion criterion for
Machin-type BBP arctangent formulae to show that any Machin-type BBP arctangent

formula for π must be a binary formula. In particular, there is no decimal Machin-
type BBP arctangent formula for π. This result is based on a technique which is also
useful for excluding Machin-type BBP “logarithm formulae”—the topic to which we
now turn.
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3 Machin-Type BBP Formulae for Logarithms

3.1 Machin-Type Logarithmic Generators and Formulae

Our definition of a Machin-type BBP logarithm formula is analogous to our defini-
tion of a Machin-type BBP arctangent formula, with ℜ ln(z) = ln |z| replacing the
role of ℑ ln(z). Although group theory plays a less important role here, we note that

we are working with the multiplicative group C×/S. The group C×/S is isomorphic
to the additive group R, under the isomorphism that sends t ∈ R to the coset et S.
The inverse map is zS 7→ ℜ ln(z) = ln |z|. However, since C×/S is so readily identi-
fied with the isomorphic multiplicative group R

×
+ , we usually prefer to treat the latter

group and its obvious isomorphism to the additive group R, ln(z) : R
×
+ → R.

We begin by describing our logarithmic generators. (We give BBP formulae for
these generators in Appendix A.) Given b not a proper power, b > 2, these are gener-
ators of the form ln(1 − b−m). In the case b = 2 we include additional Aurifeuillian

generators, of the form ln |1 − (1 + i)2−m|. We call these additional generators Au-
rifeuillian because some terms which appear in the equation

(43) ln
∣

∣1 ± (1 + i)2−m
∣

∣

=

1

2
ln
(

21−2m(22m−1 ± 2m + 1)
)

=

( 1

2
− m

)

ln(2) +
1

2
ln(22m−1 ± 2m + 1).

correspond to factors in the equation

(44) 24m−2 + 1 = (22m−1 + 2m + 1)(22m−1 − 2m + 1).

Such factorizations were discovered by Aurifeuille and Le Lasseurre but first described
in print in 1878 by Lucas (see [Wil98, p. 126]).

Definition 3 Given κ ∈ R, 2 ≤ b ∈ N, b not a proper power, we say that κ has a

Z-linear or Q-linear Machin-type BBP logarithm formula to the base b if and only if κ
can be written as a Z-linear or Q-linear combination (respectively) of generators of
the form described in the previous paragraph.

A non-Aurifeuillian formula is one which does not use Aurifeuillian generators.

More briefly, when κ has a Q-linear formula we shall say that κ has a b-ary Machin-
type BBP logarithm formula.

Remark We call the generators of Definition 3 the minimal set of logarithm genera-
tors. From the identities ln(1+b−m) = ln(1−b−2m)−ln(1−bm) and ln |1 ± ib−m| =

ln(1 + b−2m)/2 we find that our minimal set generates

span
{

ln(1 ± b−m), ln
∣

∣1 ± ib−m
∣

∣ : m ∈ N
}

.

The Aurifeuillian identity (44) implies that when b = 2 our minimal set generates

span
{

ln(1 ± 2−m), ln
∣

∣1 ± i2−m
∣

∣ , ln
∣

∣1 ± (1 ± i)2−m
∣

∣ : m ∈ N
}

.

As in the arctangent case, for hand computations it is often convenient to use the “full
set” of generators implied by these relations.
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3.2 Using Valuation Vectors and Factorizations

When searching for Machin-type BBP logarithm formulae, we take much the same
approach that we described for finding Machin-type BBP arctangent formulae for π.

Given a finite set of generators of the form {ln |z| : |z| ∈ G ⊂ Q[i]}, we begin by
computing a valuation vector for each |z|, |z| ∈ G. Let Q denote the algebraic closure
of Q . (We allow z ∈ Q so as to give a more general result, although we shall only
consider examples with z ∈ Q[i].) Given z ∈ Q , a valuation vector for z is a vector

with entries indexed by a fixed set of primes P, where the entry indexed by p ∈ P

gives ordp(z). Note that ordp(z) can be extended so as to be defined for z ∈ Q ;
see, for example, [Kob84, Chapter III]. For our purposes, it suffices to recall that
ordp(zw) = ordp(z) + ordp(w), and thus ordp(1−b−m) = ordp(bm −1)−m ordp(b)

while, as in the derivation of Equation (43), we find

(45) ordp

(∣

∣1 − (1 + i)2−m
∣

∣

)

= ordp

(

21/2−m
√

22m−1 − 2m + 1
)

=

( 1

2
− m

)

ordp(2) +
1

2
ordp(22m−1 − 2m + 1).

For example, indexing by the primes {2, 3, 5} (in that order) the valuation vector
for 1 − 2−4

= 15/16 is [−4, 1, 1], while the valuation vector for
∣

∣1 − (1 + i)2−4
∣

∣

=√
2
√

113/16 is [−3.5, 0, 0]. In contrast, if we use P = {2, 3, 5, 113}, the valuation
vector for

∣

∣1 − (1 + i)2−4
∣

∣ is [−3.5, 0, 0, 1].

An important property of ordp is that |z| =

∏

p pordp(|z|), where the product runs

through all primes p for which ordp(|z|) 6= 0. This implies that if we choose

P =

⋃

|z|∈G

{

p : ordp(|z|) 6= 0
}

.

then the vector space over Q generated by {ln |z| : |z| ∈ G} is isomorphic to the

space of valuation vectors indexed by P.

Thus, in principle, it should be possible to reduce the task of searching for Machin-
type BBP logarithm formulae (arising from a fixed set of generators) to doing Z-linear
algebra with valuation vectors, again using algorithms described in [Coh93, §2.4].

In practice, this might require finding the prime factorization of inordinately large
numbers, in which case we can use a smaller set P at the cost of losing some infor-
mation. Because of the nature of our generators, the task of finding Machin-type
BBP formulae for logarithms is closely related to the Cunningham Project [BLS88]:

an ongoing project to find factorizations of numbers of the form bm ± 1, for b ∈
{2, 3, 5, 6, 7, 10, 11, 12}.

As indicated above, one way to find the valuation vector for 1 − b−m is to fac-
tor b and bm − 1. Similarly, by Equation (45), we can find the valuation vector for

|1 − (1 + i)2−m| by factoring b and 22m−1−2m +1. By the Aurifeuillian identity (44),
the task of factoring 22m−1−2m +1 is closely related to the task of factoring 24m−2 +1.
One technique used in the Cunningham Project has been to break bm−1 into smaller
factors by algebraically factoring bm−1 into cyclotomic polynomialsψd(b), using the
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relationship

(46) bm − 1 =

∏

d|m

ψd(b).

The cyclotomic polynomials can be defined by the inversion formula corresponding
to (46), namely

(47) ψd(b) =

∏

m|d

(bm − 1)µ(d/m).

where µ(d) denotes the Möbius function. (Cyclotomic polynomials are discussed in
many references, for example [NZM91].)

In the case b = 2, the Aurifeuillian identity (44) is also useful as an algebraic

factorization for 2m − 1. Further information about Aurifeuillian factorizations can
be found in [Rie94, Appendix 6] and [Bre93]. A paper by Chamberland gives further
discussion of the use of cyclotomic polynomials and Aurifeuillian factorizations to
find BBP formulae [Cha].

3.3 Using Bang’s Theorem as an Exclusion Criterion

Since formulae for ln(z), z ∈ Q , can be generated as Z-linear combinations of formu-

lae for ln(p), p prime, most of the search for BBP formulae has focused on the latter
case. However, as we shall show below, Machin-type BBP formulae for ln(p) often
fail to exist. Our main tool for excluding Machin-type BBP formulae for logarithms
is a theorem due to Bang.

We begin with a definition used in the statement of the theorem.

Definition 4 Given fixed b > 1, we shall say a prime p is a primitive prime factor

of bm − 1 if m is the least integer such that p divides bm − 1. In other words, p is a
primitive prime factor of bm − 1 provided νb(p) = m.

Theorem 3 (Bang, 1886) The only cases where bm−1 has no primitive prime factor(s)

are when b = 2, m = 6, bm − 1 = 32 · 7; and when b = 2N − 1, N ∈ N, m = 2,

bm − 1 = 2N+1(2N−1 − 1).

Bang’s Theorem is often called “Zsigmondy’s Theorem”, since Zsigmondy generalized
Bang’s result to expressions of the form bm − am. A survey of Zsigmondy’s Theorem
and related results can be found in [Rib91], while a proof of Bang’s Theorem can be
found in [Roi97].

We shall call the cases where there is no primitive prime factor the “exceptional
cases” of Bang’s Theorem, and will let Mb denote the value of m, depending on b, for
which an exceptional case occurs, or Mb := 0 when there is no exceptional case. Thus

(48) Mb :=











6 when b = 2,

2 when b = 2N − 1, N ∈ N,

0 otherwise.
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Bang’s Theorem can often be used to exclude the possibility of a constant having
a Machin-type logarithm formula. We illustrate this with an example due to Carl

Pomerance, first mentioned briefly in [BBP97, §5]:

Theorem 4 There is no non-Aurifeuillian binary Machin-type BBP logarithm for-

mula for ln(23) nor for ln(89).

Proof Suppose instead that ln(23) has a non-Aurifeuillian binary Machin-type for-
mula. This is equivalent to being able to write

(49) 23n
= 2t

M
∏

m=1

(2m − 1)nm

with nm ∈ Z, nM 6= 0, n ∈ N, and t = −∑M
m=1 mnm. Since ν2(23) = 11 we must

have M ≥ 11, so 2M − 1 has a primitive prime factor, say p. Since p cannot occur
as a factor of 2m − 1, m < M, we must have p = 23, for otherwise we would not be
able to cancel it out in (49). Since 23 is a primitive prime factor of 211 − 1 = 23 · 89
we must have M = 11. But 89 is also a primitive prime factor 211 − 1, and cannot be

cancelled out of (49).
The above argument also shows that ln(89) can not be obtained.

The same argument applies to many other pairs of primes having the property that
the first prime has a prime “friend” which is also a primitive prime factor of the same
2M−1. For example, two primes with logarithms having no non-Aurifeuillian binary
formula are 47 and 53, since 223 − 1 = 47 · 178481, and ν2(47) = ν2(178481) = 23.

Another such pair is 29 and 113, since 228−1 = 3 · 5 · 29 · 43 · 113 · 127, and ν2(29) =

ν2(113) = 28.
If we exclude Aurifeuillian generators, then to say ln(z) has a b-ary Machin-type

BBP formula means ln(z) ∈ span{ln(1 − b−m) : 1 ≤ m ≤ M} for some M < ∞. A

consequence of Bang’s Theorem is that, for fixed z, elements of the form ln(1− b−m)
and ln(z) are likely to be linearly independent, which excludes the possibility of a
Machin-type BBP formula.

We now develop somewhat more technical tools for demonstrating linear inde-

pendence of logarithms. Lemma 5 below gives a general criterion for linear indepen-
dence for elements of the form ln(z), z ∈ Q . The idea behind Lemma 5 is to find
a sequence of valuation vectors, which, when arranged in a matrix, give a triangular
matrix with nonzero entries along the diagonal.

Lemma 5 Given z0, z1, . . . , zK , all elements of Q , then a sufficient condition that

ln(z0), . . . , ln(zK ) be Q-linearly independent is that there be distinct primes p0, . . . , pK

with ordpk
(zk) 6= 0 and ordp j

(zk) = 0 when j > k.

Proof If there were a Q-linear dependence among the ln(zk) then for some nk ∈ Z,
not all zero, we would have

(50)

m
∑

k=0

nk ln(zk) = 0, and so

m
∏

k=0

znk

k = 1,
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where m denotes the largest k for which nk 6= 0. Writing n := nm and p := pm,
our conditions give ordp(zk) 6= 0 if and only if k = m, while Equation (50) gives the

contradiction

ordp

( m
∏

k=0

znk

k

)

= n ordp(zm) = 0.

Theorem 6, below, gives a fairly general exclusion criterion for Machin-type BBP
logarithm formulae. We shall make use of the facts that if ordp(bm − 1) 6= 0 then
ordp(b) = 0, and that ordp(1 − b−k) = ordp(bk − 1), for any k ∈ Z.

Theorem 6 Given z0 ∈ Q and 2 ≤ b ∈ N, b not a proper power, assume that there is

at least one prime p such that ordp(z0) 6= 0 (equivalently, assume that z0 is not a root

of unity) and let p0 be the largest such prime. Let

(51) M0 := max(Mb, p0 − 1),

where Mb is defined by Equation (48), and let

U := span
{

ln(1 − b−m) : 1 ≤ m ≤ M0

}

so that U has a basis of the form ln(zk), 1 ≤ k ≤ dim(U ). Suppose there are distinct

primes p1, . . . , pdim(U ) such that for 0 ≤ j, k ≤ dim(U ) we have ordpk
(zk) 6= 0 and

ordp j
(zk) = 0 when j > k.

Then there is no non-Aurifeuillian Q-linear Machin-type BBP logarithm formula for

ln(z0).

Proof Suppose, to the contrary, that there is a Machin-type BBP formula for ln(z0),
i.e., ln(z0) ∈ V := span{ln(1 − b−m) : 1 ≤ m ≤ M} for some M < ∞. Without
loss of generality, we may assume M ≥ M0, i.e., U ⊆ V . For k > dim(U ) let

mk := M0 + k − dim(U ), so mk ranges over M0 + 1 ≤ mk ≤ M as k ranges over
dim(U ) + 1 ≤ k ≤ dim(U ) + M − M0. Let zk := 1 − b−mk , and let pk denote
a primitive prime factor of bmk − 1. (Note that pk exists since mk > M0 ≥ Mb.)
Clearly, V = span{ln(zk) : 0 ≤ k ≤ dim(U ) + M − M0}. We shall show that zk, pk,

0 ≤ k ≤ dim(U ) + M − M0 satisfy the conditions of Lemma 5. This will establish
our result since the linear independence of ln(zk) contradicts our assumption that
ln(z0) ∈ V .

To show our zk, pk satisfy the conditions of Lemma 5 we note that ordpk
(zk) 6= 0 by

our assumptions and that, for k > dim(U ), we have ordpk
(1 − b−mk ) = ordpk

(bmk −
1) 6= 0. It remains to show that ordp j

(zk) = 0 when j > k.
We first treat the case k = 0. By assumption, ordp j

(z0) = 0 for 1 ≤ j ≤ dim(U ).
For j > dim(U ), p j is a primitive prime factor of bm j − 1, and m j > M0. By

Fermat’s “Little Theorem”, we know that if p is a primitive prime factor of bm − 1
then m | p − 1 and thus p ≥ m + 1. Thus p j ≥ m j + 1 > M0 + 1 ≥ p0, and
it follows that ordp j

(z0) = 0 since, by definition, p0 is the largest prime such that
ordp0

(z0) 6= 0.
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We next treat the case 1 ≤ k ≤ dim(U ). Again, by assumption, ordp j
(zk) = 0

for 1 ≤ k < j ≤ dim(U ). Since ln(zk) ∈ U , we know that ln(zk) is a Q-linear

combination of elements of the form ln(1 − b−m), 1 ≤ m ≤ M0. Thus, there are
nm ∈ Z, not all zero, and some n 6= 0, such that

(52) zn
k =

M0
∏

m=1

(1 − b−m)nm .

Now, when j > dim(U ) we have ordp j
(1 − b−m) = 0 for 1 ≤ m ≤ M0, since p j is

a primitive prime factor of bm j − 1 and m j > M0. From this and Equation (52) it
follows that

ordp j
(zk) =

1

n

M0
∑

m=1

nm ordp j
(1 − b−m) = 0.

Finally, when dim(U ) < k < j, ordp j
(zk) = 0 follows from the fact that p j is a

primitive prime factor of bm j − 1.

Remark Theorem 6 implies that when searching for a non-Aurifeuillian Machin-
type BBP logarithm formula for ln(z0), one only need consider generators ln(1 −
b−m), 1 ≤ m ≤ M0, with M0 as in Equation (51).

Example 4 When Mb = 0 it follows that there is no Machin-type BBP logarithm
formula for ln(b) to the base b. In particular, there is no decimal Machin-type BBP
logarithm formula for ln(10). Here we use z0 = b, p0 the largest prime divisor of

b. For k > 0 we use zk := 1 − b−k and choose pk to be any primitive prime factor
of bk − 1, noting that pk exists since Mb = 0. Our result then follows immediately
from Theorem 6. Since, when Mb = 0, there is no b-ary formula for ln(b), it seems
unlikely in this case that there is a b-ary formula for any ln(n), n ∈ N, but we have

failed to prove this.

Example 5 When b = 7 = 23 − 1 we have Mb = 2, and the argument of the
previous example does not apply. However, again we find that there is no 7-ary
Machin-type BBP logarithm formula for ln(7). Here we have z0 = 7, p0 = 7. Since

M0 = max(Mb, p0 − 1) = 6, we need to find suitable zk, pk for 1 ≤ k ≤ 6. We begin
with z1 = 8/7, p1 = 2; z2 = 48/49 = 1 − 7−2, p2 = 3. For k > Mb = 2 we can
simply use zk = 1 − 7−k, pk some primitive prime factor of 7k − 1. We can easily see
that the conditions for Theorem 6 are satisfied, and the result follows.

Remark In Example 5, when k = 1 we had to modify the “obvious” choice of basis
element, namely zk = 1 − 7−k, in order to make our pk satisfy the conditions of
Theorem 6. In particular, we require ord3(z1) = 0. We accomplished this task by
using valuation vectors. Here, indexing by the primes {7, 2, 3} (in that order), the

valuation vector for 7 is v0 := [1, 0, 0], while the vectors for 1 − 7−1
= 6/7 and

1 − 7−2
= 48/49 are v1 := [−1, 1, 1] and v2 := [−2, 4, 1] respectively. Searching for

z1 such that ord3(z1) = 0 leads us to find the valuation vector [−1, 3, 0] = v2 − v1,
and thus z1 = 7−1 · 23

= 8/7.
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Example 6 To demonstrate the result of Theorem 4 in the language of Theorem 6,
we begin with z0 = 23, p0 = 23, z1 = 1 − 1/2, p1 = 2. Our rule of thumb starting

with k = 2 will be to use zk = 1 − 2−mk for an increasing sequence mk, and to
choose pk to be a primitive prime factor of 2mk − 1. Thus, z2 = 1 − 2−2

= 3/4,
p2 = 3, z3 = 1 − 2−3

= 7/8, p2 = 7, . . . . We let m6 = 7 rather than 6, since
ln(1−2−6) is linearly dependent on earlier ln(zk). Continuing in this manner, letting

mk+1 = mk+1, we come to z10 = 1−2−11. We have 211−1 = 23·89, both factors being
primitive prime factors. Since 23 = p0, we choose p10 = 89. For k > 10 we may
continue using our rule of thumb, with no complications, through mk = M0 = 22,
at which point we have established the necessary conditions for Theorem 6.

We again note that it is not always necessary to present pk explicitly. More specif-

ically, when mk > Mb we are assured that bmk − 1 has a primitive prime factor pk,
and to guarantee that pk has not occurred earlier in our sequence we only need check
that gcd(z0, b

mk − 1) = 1.

Remarks (i) We have been unable to exclude the possibility that there might be a
binary Machin-type BBP logarithm formula for ln(23) that uses some Aurifeuillian
generators, although it seems unlikely. Using Equation (45), and some simple num-

ber theory, one can also show for odd primes p that

ordp

( ∣

∣1 − (1 + i)2−m
∣

∣

)

6= 0

implies ν2(p) ≡ 0 (mod 4). This restricts the possibilities for any Aurifeuillian binary
Machin-type BBP logarithm formula for ln(23) and suggests that any such represen-
tation must have truly “massive” generators, if it exists at all.

(ii) It is interesting to contrast ln(23) with ln(113), since the cases are similar, but
ln(113) does have an Aurifeuillian binary Machin-type BBP logarithm formula. Here
we have ν2(113) = 28, and 228 − 1 = 3 · 5 · 29 · 43 · 113 · 127.

Since we also have ν2(29) = 28 then, as illustrated immediately after the proof of
Theorem 4, we can conclude that ln(113) has no non-Aurifeuillian binary Machin-

type BBP logarithm formula. However, using Equation (44), we find that

228 − 1 = (214 − 1)(27 + 24 + 1)(27 − 24 + 1),

where 27 − 24 + 1 = 113. Using Equation (43), it follows that

ln(113) = 2 ln
∣

∣1 − (1 + i)2−4
∣

∣− 7 ln(1 − 2−1),

which is a linear combination of binary Machin-type logarithmic generators, the first
term being an Aurifeuillian generator.

3.4 Applications to Arctangent Formulae

We now apply Theorem 3 (Bang’s Theorem) to demonstrate that there are no b-ary
Machin-type arctangent formulae for π unless b = 2.
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Theorem 7 Given b > 2 and not a proper power, there is no Q-linear b-ary Machin-

type BBP arctangent formula for π.

Proof It follows immediately from the definition of a Q-linear Machin-type BBP
arctangent formula (Definition 1) that any such formula has the form

(53) π =

1

n

M
∑

m=1

nmℑ ln(bm − i),

where n ∈ N, nm ∈ Z, and M ≥ 1, nM 6= 0. This implies that

(54)

M
∏

m=1

(bm − i)nm ∈ eniπ
Q

×
= Q

×.

For any b > 2 and not a proper power we have Mb ≤ 2, so it follows from Bang’s
Theorem that b4M − 1 has a primitive prime factor, say p. Furthermore, p must be
odd, since p = 2 can only be a primitive prime factor of bm − 1 when b is odd and
m = 1. Since p is a primitive prime factor, it does not divide b2M − 1, and so p must

divide b2M + 1 = (bM + i)(bM − i). We cannot have both p | bM + i and p | bM − i,
since this would give the contradiction that p | (bM + i) − (bM − i) = 2i.

It follows that p ≡ 1 (mod 4), and that p factors as p = pp over Z[i], with exactly
one of p, p dividing bM − i. Referring to Definition 2, we see that we must have

ϑp(bM − i) 6= 0. Furthermore, for any m < M neither p nor p can divide bm − i

since this would imply p | b4m − 1, 4m < 4M, contradicting the fact that p is a
primitive prime factor of b4M − 1. So for m < M we have ϑp(bm − i) = 0. Referring
to Equation (54), using Equation (41) and nM 6= 0, we get the contradiction that

0 6= nMϑp(bM − i) =

M
∑

m=1

nmϑp(bm − i) = ϑp(Q
×) = 0.

Thus, our assumption that there was a b-ary Machin-type BBP formula for π must
be false.

We finish the section with our deferred proof.

Proof of Theorem 2b It again follows from the definition of a Q-linear Machin-

type BBP arctangent formula (Definition 1) that any such formula may be written
as

(55) n arctan(y/x) + tπ =

M
∑

m=1

nmℑ ln(bm − i),

where n ∈ N, nm, t ∈ Z, and M ≥ 1, nM 6= 0. This implies that

(56)

M
∏

m=1

(bm − i)nm ∈ (x + i y)n(1 + i)4t
Q

×
= (x + i y)n

Q
×.

https://doi.org/10.4153/CJM-2004-041-2 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-2004-041-2


Machin-Type BBP Formulae 919

It follows from Bang’s Theorem that b4M − 1 has a primitive prime factor, say p ′.
Furthermore, p ′ must be odd, since p ′

= 2 can only be a primitive prime factor of

bm − 1 when b is odd and m = 1. Since p ′ is a primitive prime factor, it does not
divide b2M − 1, and so p ′ must divide b2M + 1 = (bM + i)(bM − i). Again, we cannot
have both p ′ | bM + i and p ′ | bM − i, since this would give the contradiction that
p ′ | (bM + i) − (bM − i) = 2i. It follows that p ′ ≡ 1(mod 4), and that p ′ factors as

p ′
= p

′
p ′ over Z[i], with exactly one of p

′, p ′ dividing bM − i.
Referring to Equation (56), using Equation (41) and nM 6= 0, we have

0 6= nMϑp ′(bM − i) =

M
∑

m=1

nmϑp ′(bm − i) = ϑp ′(x + i y)n.

In consequence p ′
= p, since p is the unique prime divisor of x2 + y2 congruent to 1

modulo 4. It follows that 4M = νb(p) = νb(q) and hence, much as above, that

0 6= nMϑq(bM − i) =

M
∑

m=1

nmϑq(bm − i) = ϑq(x + i y)n
= 0,

where the final equality is by hypothesis. Thus, our assumption that there was a non-
Aurifeuillian b-ary Machin-type BBP formula for arctan(x/y) must be false.

A BBP Formulae for Machin-Type BBP Generators

For b not a proper power, b > 2 our arctangent generators are

arctan(−b−m) = ℑ ln(1 − ib−m) = b−3mP(1, b4m, 4, [−b2m, 0, 1, 0]).

When b = 2, we also use the “Aurifeuillian” generators

arctan(1/(1 − 2m)) = ℑ ln(1 − (1 + i)2−m)

= 2−7m+3P(1, 28m−4, 8, [−26m−3,−25m−2,−24m−2, 0, 22m−1, 2m, 1, 0]).

For b not a proper power, b > 2 our logarithmic generators are

ln(1 − b−m) = −b−m
∑

k≥0

1

k + 1
b−mk.

In terms of Bailey’s P(s, b, n,A), these generators are

ln(1 − b−m) = −b−mP(1, bm, 1, [1]).

When b = 2, we also use the “Aurifeuillian” generators

ln
∣

∣1 − (1 + i)2−m
∣

∣

= 2−8m+4P(1, 28m−4, 8, [−27m−4, 0, 25m−3, 24m−2, 23m−2, 0,−2m−1,−1]).
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Note that the BBP formulae for both the arctangent and logarithmic Aurifeuillian
generators may be derived by extracting imaginary and real parts (for arctangent and

logarithmic generators, respectively) from the formula

ln(1 − (1 + i)2−m) = −
8
∑

r=1

2−mr(1 + i)r
∑

k≥0

(1 + i)8k

8k + r
2−8mk

= −
8
∑

r=1

2−mr(1 + i)r
∑

k≥0

1

8k + r
2(4−8m)k.

B Conversion to Polylogarithmic Formulae

In this Appendix we shall analyze vector spaces of constants with polylogarithmic BBP
formulae, i.e., constants κ which have the form

(57) κ =

∑

k≥0

n
∑

j=1

a j

(nk + j)s
b−mk

= P(s, bm, n, [a1, . . . , an]),

with a j ∈ Q , s, b, m, n ∈ N, b > 1. Our main purpose is to demonstrate that any
constant with a Machin-type BBP formula also has a polylogarithmic BBP formula.

(Although our interest will be focused on the case where b is not a proper power we
allow any b ∈ N, b > 1.)

Definition 5 Recall that span{αk} denotes the vector space over Q spanned by the
set {αk}. Given s, b, m, n ∈ N, b > 1, let

Vs,b,m,n := span

{

∑

k≥0

1

(nk + j)s
b−mk : 1 ≤ j ≤ n

}

,

Vs,b,m := span

{

⋃

n≥1

Vs,b,m,n

}

, Vs,b := span

{

⋃

m≥1

Vs,b,m

}

.

Referring to Appendix A, we see that our non-Aurifeuillian arctangent generators,

arctan(−b−m), lie in V1,b,4m,4. The Aurifeuillian arctangent generators, arctan(1/(1−
2m)), lie in V1,2,8m−4,8. In the case of our logarithmic generators we have ln(1 −
b−m) ∈ V1,b,m,1 (non-Aurifeuillian generators), while

ln
∣

∣1 − (1 + i)2−m
∣

∣ ∈ V1,2,8m−4,8

(Aurifeuillian generators).

Lemma 8 Given d ∈ N we have

(58) Vs,b,m,n ⊆ Vs,b,m,dn,

and

(59) Vs,b,m ⊆ Vs,b,dm,dn.
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Proof To establish (58) we note that κ ∈ Vs,b,m,n is equivalent to

(60) κ =

n
∑

j=1

∑

k≥0

a j

(nk + j)s
b−mk

=

n
∑

j=1

∑

k≥0

dsa j

(dnk + d j)s
b−mk

=

dn
∑

j=1

∑

k≥0

a ′
j

(dnk + j)s
b−mk ∈ Vs,b,m,dn;

where we let

a ′
j :=

{

dsa j/d when d | j,

0 otherwise.

Similarly, to establish (59) we proceed from Equation (60) to find

κ =

n
∑

j=1

∑

k≥0

d−1
∑

r=0

a jb
−mr

(dnk + nr + j)s
b−dmk

=

dn
∑

j ′=1

∑

k≥0

a ′
j ′

(dnk + j ′)s
b−dmk ∈ Vs,b,dm,dn;

where we let j ′ := nr + j, so that r = ⌊ j ′/n⌋, j ≡ j ′ (mod n), 1 ≤ j ≤ n, and where
a ′

j ′ := a jb
−mr .

Theorem 9 Given κ ∈ Vs,b,m then κ ∈ Vs,b,m,n, where n depends on κ.

Proof Let κ = κ1 + κ2 where κ1 ∈ Vs,b,m,n1
, κ2 ∈ Vs,b,m,n2

. From (58), it follows

that both κ1 and κ2 are elements of Vs,b,m,lcm(n1,n2), and thus κ ∈ Vs,b,m,lcm(n1,n2).

By definition, κ ∈ Vs,b,m means that

(61) κ =

∑

q

αqκq,

where αq ∈ Q , κq ∈ Vs,b,m,nq
, and where the sum is finite. By using induction on

the number of terms on the right side of (61), applying the result of the previous

paragraph when summing two terms, the conclusion follows.

Theorem 10 Given κ ∈ Vs,b then κ ∈ Vs,b,m,n, where m, n depend on κ.

Proof Let κ = κ1 + κ2 where κ1 ∈ Vs,b,m1
, κ2 ∈ Vs,b,m2

. By Theorem 9 we
may assume that κ1 ∈ Vs,b,m1,n1

, κ2 ∈ Vs,b,m2,n2
. Applying (59) and then (58),
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it follows that both κ1 and κ2 are elements of Vs,b,lcm(m1,m2),lcm(N1,N2), where N1 :=
n1m2/ gcd(m1,m2), N2 := n2m1/ gcd(m1,m2).

By definition, κ ∈ Vs,b means that

(62) κ =

∑

q

αqκq,

where αq ∈ Q , κq ∈ Vs,b,mq
, and where the sum is finite. By using induction on

the number of terms on the right side of (62), applying the result of the previous
paragraph when summing two terms, the conclusion follows.

The above proofs implicitly give a constructive method for finding a polyloga-
rithmic BBP formula for any element of Vs,b. In particular we may find a poly-
logarithmic BBP formula for any constant with a b-ary Machin-type BBP formu-
lae, since such constants lie within V1,b. For example, in Section 2.5 we found that

arctan(1/6) = arctan(1/5) − arctan(1/31).
Referring to Appendix A, and using Bailey’s P(s, b, n,A), we have

arctan(1/5) = 2−11P(1, 212, 8, [29,−28, 26, 0,−23, 22,−1, 0]) ∈ V1,2,12,8,

arctan(1/31) = 2−32P(1, 236, 8, [227, 223, 218, 0,−29,−25,−1, 0]) ∈ V1,2,36,8.

Note that Appendix A covers arctan(1/5) as it equals arctan(1/3) − arctan(1/8), by

the note at the end of Section 2.4. Applying (59) from Lemma 8, we can re-express
arctan(1/5) as an element of V1,2,36,24, giving

arctan(1/5) = 2−11P(1, 236, 24, [ 29,−28, 26, 0,−23, 22,−1, 0,

2−3,−2−4, 2−6, 0,−2−9, 2−10,−2−12, 0,

2−15,−2−16, 2−18, 0,−2−21, 2−22,−2−24, 0 ]).

We then apply (58) in order to re-express arctan(1/31) as an element of V1,2,36,24,
giving

arctan(1/31) = 2−32P(1, 236, 24,

[ 0, 0, 3 · 227, 0, 0, 3 · 223, 0, 0, 3 · 218, 0, 0, 0,

0, 0,−3 · 29, 0, 0,−3 · 25, 0, 0,−3, 0, 0, 0 ]).

Finally, taking the difference of these two results and factoring out the denominator
from the vector of coefficients, we get

arctan(1/6) = arctan(1/5) − arctan(1/31)

= 2−35P(1, 236, 24, [ 233,−232,−231, 0,−227,−227,−224, 0,

−222,−220, 218, 0,−215, 214, 213, 0,

29, 29, 26, 0, 24, 22,−1, 0 ]).
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C Density Results

We discuss the density of arctangents with Machin-type BBP arctangent formulae.
We begin by noting that if θ = arctan(ρ) has a Machin-type BBP formula then any
element of θQ has a Q-linear arctangent formula. For a fixed base b, we have Machin-

type BBP arctangent formulae for ℑ ln(1 − ib−m), so any one of these will generate
a dense set of θ ∈ R with base b Q-linear Machin-type BBP arctangent formula. If,
in order to be considered an “arctangent”, we prefer the convention that θ satisfies
−π/2 < θ < π/2, it remains clear that the set of θ ∈ (−π/2, π/2) with a Q-linear

Machin-type BBP arctangent formula is dense.
If we prefer to restrict ourselves to θ with Z-linear arctangent formulae, then the

set nθ, n ∈ Z, is not dense in R. On the other hand, if we write θ = ℑ ln(x + i y)

and define xn, yn to satisfy xn + i yn := (x + i y)n, n ∈ Z, then nθ ≡ ℑ ln(xn + i yn) ≡
arctan(yn/xn) (mod π). In other words tan(nθ) = yn/xn for all n ∈ Z. By [NZM91,
Theorem 6.16], θ cannot be a rational multiple of π unless tan(θ) ∈ {0,±1,∞}. In
particular, for fixed b ≥ 2, θ = ℑ ln(1 − ib−m) = arctan(−b−m) is not a rational

multiple of π for any m ∈ N, since −b−m 6∈ {0,±1,∞}.
It follows by Weyl’s theorem [HW79, Theorem 445] that for such θ the sequence

nθ is uniformly distributed modulo π. Thus, if there is a b-ary Z-linear Machin-
type BBP formula for π then the set n1θ + n2π, n1, n2 ∈ Z, is dense in the interval

(−π/2, π/2), and clearly n1θ+ n2π has a b-ary Z-linear Machin-type BBP arctangent
formula. If there is no b-ary Z-linear Machin-type BBP formula for π we may still
conclude {tan(nθ) : n ∈ Z} is dense in R.

Finally, suppose b and x + i y satisfy Theorem 2. That is, suppose there is a prime

p ∤ b, p ≡ 1 (mod 4), 4 ∤ νb(p), and ϑp(x + i y) 6= 0. By Theorem 2, there is no Q-
linear Machin-type BBP formula for arctan(y/x). Furthermore, since ϑp((x+i y)n) =

nϑp(x + i y), there is no Q-linear Machin-type BBP formula for arctan(yn/xn) for any
n 6= 0, n ∈ Z. Thus, provided x/y 6∈ {0,±1,∞}, the set {arctan(yn/xn)} is dense in

R, and no member has a b-ary Q-linear arctangent formula.

D Comments and Research Problems

We’ve tried to arrange these comments in increasing order of difficulty.
(1) Note that 3 + i = 2 + (1 + i) = 4 − (1 − i), gives two distinct binary Machin-

type BBP formulae for arctan(1/3). Should this count as a trivial zero relation, or is
it “interesting”?

(2) How many Q-linearly-independent binary Machin-type BBP arctangent zero
relations exist? Are there good upper bounds?

(3) The first BBP formula found for π in [BBP97] was

(63) π =

∑

k≥0

(

4

8k + 1
− 2

8k + 4
− 1

8k + 5
− 1

8k + 6

)

2−4k.

This does not appear to be a Q-linear combination of Machin-type BBP generators.
(Equation (64), below, is an aid in seeing this.) Is there a simple way to derive (63)
from a Machin-type formula?

(4) If infinitely many primes p ≡ 1 (mod 4) with 4 ∤ νb(p) exist, then Theorem 2
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gives infinitely many examples base b with no b-ary Machin-type BBP arctangent
formula. Does their existence follow from Chebotarëv’s density theorem, or another

well-known result?
(5) Our main tool has been group homomorphisms like z 7→ ordp(z) and z 7→

ϑp(z). When ordp(z) = 0 can one similarly use the homomorphism z 7→ (z/p)
arising from the Jacobi symbol (z/p)? As (z/p) ∈ {−1, 1} when ordp(z) = 0, each

such homomorphism only gives a “bit” of information. It should be possible to get
more information by choosing many such p.

(6) Our use of ordp and ϑp works best when we can factor numbers rapidly. Since
factorization is difficult in general, can we combine our approach with the use of

an integer relation algorithm such as PSLQ [FBA99]? The idea would be to find the
“easy” factors, and use the resulting information to help guide PSLQ.

(7) Zsigmondy’s theorem has been generalized to number fields [Sch74, BHV01],
in what Carl Pomerance calls a grand generalization of Bang’s theorem, with effec-

tive bounds on the exceptional cases. These should give an effective version of Zsig-
mondy’s theorem for Q[i], providing an exclusion criterion for Machin-type BBP
arctangent formulae analogous to Theorem 6.

(8) For the binary case, can we find exclusion criteria that deal with Aurifeuillian

generators in logarithm formulae?
(9) We could generalize the definition of a BBP-formula to allow sums of the form

∑

k≥0 b−k p(k)/q(k), b ∈ Z[i], p, q ∈ Z[i, k]. Doing so should avoid the need to treat
arctangents and logarithms as separate cases. Could we get cleaner or more general

results this way?
(10) Let ζn denote a primitive nth root of unity, and recall that L(s, b, n,A) is

defined by Equation (3). It is clear that for 1 ≤ j ≤ n we have

(64) L(1, b, n, j) = −1

n
b j/n

n−1
∑

r=0

ζ−r j
n ln(1 − ζr

n b−1/n).

(In his answer to [Knu98, Exercise 4.3.1.39], Knuth gives a different version of an ex-

plicit formula for L(1, b, n, j).) Can our techniques be applied to determine whether
κ is a linear combination of L(1, bm, n, j), with b, and perhaps n, fixed? This would
probably require a good understanding of Q[ζn, b

1/n], among other things.
(11) How can we justify the idea that our limited set of “Machin-type” BBP gen-

erators gives all (or most) “interesting” arctans and logs?
Acknowledgements Carl Pomerance was the first to observe the importance of
Bang’s theorem as a tool for excluding the possibility of non-Aurifeuillian logarithm
formulae. Pomerance also provided references for some of the papers, cited above,

that generalize Zsigmondy’s Theorem. Imin Chen and Nils Bruin gave advice on var-
ious aspects of ordp and algebraic number theory. The material in Appendix B is
adapted from notes provided by David Bailey.

References

[Bai00] David H. Bailey, A compendium of BBP-type formulas for mathematical constants. Manuscript
available at http://www.nersc.gov/∼dhbailey/dhbpapers, March 2004.

https://doi.org/10.4153/CJM-2004-041-2 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-2004-041-2


Machin-Type BBP Formulae 925

[BB98] Jonathan M. Borwein and Peter B. Borwein, Pi and the AGM, a study in analytic number theory
and computational complexity. John Wiley & Sons, New York, 1998.

[BB03] Jonathan M. Borwein and David H. Bailey, Mathematics by Experiment: Plausible Reasoning in
the 21st Century. A K Peters, Nattick, MA, 2003.

[BBP97] David Bailey, Peter Borwein, and Simon Plouffe, On the rapid computation of various
polylogarithmic constants. Math. Comp. 66(1997), 903–913.

[BC01] David H. Bailey and Richard E. Crandall, On the random character of fundamental constant
expansions. Experiment. Math. 10(2001), 175–190.

[BHV01] Yu. Bilu, G. Hanrot, and P. M. Voutier, Existence of primitive divisors of Lucas and Lehmer
numbers. With an appendix by M. Mignotte. J. Reine Angew. Math. 539(2001), 75–122.

[BLS88] John Brillhart, D. H. Lehmer, J. L. Selfridge, Bryant Tuckerman, and S. S. Wagstaff, Jr.,
Factorizations of bn ± 1, b = 2, 3, 5, 6, 7, 10, 11, 12 up to high powers. second ed., American
Mathematical Society, Providence, RI, 1988, (Third ed. available at
http://www.ams.org/online bks/conm22).

[Bre93] Richard P. Brent, On computing factors of cyclotomic polynomials. Math. Comp. 61(1993),
131–149.

[Bro98] D. J. Broadhurst, Polylogarithmic ladders, hypergeometric series and the ten millionth digits of
ζ(3) and ζ(5). Available at http://xxx.lanl.gov/abs/math/9803067, March 1998.

[Cha] Marc Chamberland, Binary BBP-forumulas for logarithms, cyclotomic polynomials and
Aurifeuillian identities. Draft of circa December, 2001, to appear.

[Coh93] Henri Cohen, A course in computational algebraic number theory. Graduate Texts in
Mathematics, 138, Springer-Verlag, Berlin, 1993.

[FBA99] Helaman R. P. Ferguson, David H. Bailey, and Steve Arno, Analysis of PSLQ, an integer relation
finding algorithm. Math. Comp. 68(1999), 351–369.

[HW79] G. H. Hardy and E. M. Wright, An introduction to the theory of numbers. Fifth ed., Oxford
University Press, Oxford, 1979.

[Knu98] Donald E. Knuth, The art of computer programming. vol. 2: Seminumerical algorithms, third
ed., Addison-Wesley, Reading, Mass., 1998.

[Kob84] Neal Koblitz, p-adic numbers, p-adic analysis, and zeta-functions. Second ed., Graduate Texts
in Mathematics, 58, Springer-Verlag, New York, 1984.

[NZM91] Ivan Niven, Herbert S. Zuckerman, and Hugh L. Montgomery, An introduction to the theory of
numbers. Fifth ed., John Wiley & Sons, New York, 1991.

[Per00] Colin Percival, The quadrillionth bit of pi is ’0’. See
http://www.cecm.sfu.ca/projects/pihex/announce1q.html, September 2000.

[Rib91] Paulo Ribenboim, The little book of big primes. Springer-Verlag, New York, 1991.
[Rib94] , Catalan’s conjecture: Are 8 and 9 the only consecutive powers? Academic Press, Boston,

MA, 1994.
[Rie94] Hans Riesel, Prime numbers and computer methods for factorization. Second ed., Birkhäuser,
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