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MOVING ERGODIC THEOREMS
FOR SUPERADDITIVE PROCESSES

S. E. FERRANDO

ABSTRACT. Let 7 = (1,),74 be a semigroup of measure preserving transforma-
+

tions on a measure space (Q2, ¥, ). The main result of the paper is the proof of a.e.
convergence for the moving averages

1
EFI” (W)

where {F}, } is a superadditive process and {1, } is a sequence of cubes in Z¢ satisfying
the “cone-condition”. The identification of the limit is given. A moving local theorem
is also proved.

1. Introduction. In [7] A. Nagel and M. Stein developed a method to investigate
the pointwise convergence for general approach regions in harmonic analysis which was
later simplified by J. Sueiro [9]. These techniques have, in turn, been adapted to deal
with convergence of “moving” averages in Ergodic Theory by A. Bellow, R. Jones and
J. Rosenblatt [4]. We refer to [1] for a more up to date list of references in the applications
of these methods to Ergodic Theory. The purpose of this article is to extend some of these
results to the superadditive setting. More specifically, in Theorem 3.3 we prove pointwise
convergence for multiparameter superadditive processes when the sequence is indexed
by a family of cubes (in Z¢) satisfying a condition which is equivalent to the “cone-
condition”. We also identify the limit function. This result generalises the main result
in [5] where a.e. convergence was shown to hold for multiparameter additive processes.
An important step of the proof is an improved maximal inequality, Theorem 3.1, which
combined with techniques from [2] and [6] gives the a.e. convergence. The proof of
Theorem 3.1 is related to the one of the central results in [8] (Theorem 1.7, p. 514). In
fact, using the ideas contained in the proof of Theorem 3.1 it can be seen that there is a
version of Theorem 1.7 ([8]) which holds for superadditive processes. At the moment it
is not clear if such a version can be used as it has been done in [8] (e.g. Theorem 4.7 there,
see also [10]). We remark that our results also generalise results in [2] where stronger
conditions were imposed on the family of sets of integers. In a final section we prove
that an alternative definition for the moving averages in the superadditive setting fails to
give pointwise convergence. In that section we also prove a moving local theorem.

2. Preliminaries. Letd > 1 be a fixed integer and S; = Z¢ be the additive semi-
group of d-dimensional vectors with nonnegative integer coordinates. We denote by 0
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and e the vectors with all coordinates equal to 0 and 1 respectively. For a fixed integer
m > 1 we let:

Sm = (ML) = {mu|ucS}.

If a = (a;) and b = (b;) are two vectors in Z¢ then [a,b) denotes the set {u | u =
(w) € 7%a; < w; < b;} and §,, = {[a,b) | a,b € Su}. If 4 C 7% is finite, the
number of elements in A is denoted by #4. Also, let J, = [0,ne) for n € Z.. To
avoid misinterpretations the notation [v]; will be used occasionally to indicate the k-th
component of v € Sj.

Given a measure space (€, ¥, i1) we say that a set function

F:%m_’Ll(Qafvﬂ)

is a superadditive process (with respect to 7) on F,, if there exists 7 = (7,)ucs,,, @
semigroup of measure preserving transformations on (Q, ¥, p1), such that the following
conditions are satisfied:

FjoT1, = Fp, wheneverl € §,, and u € S,,.

IfI,,. .., I, are disjoint sets in ¥, and if I = |J%, I; is also in %, then

Yr FL < Fr

sup{z; JFrdp | I € Fp#l >0} =7(F) < o0.

If —F is superadditive then F is called subadditive. If both F' and —F are superadditive

then F is called additive.

LEMMA 2.1. IfF is a superadditive process on %, then

Y(F) = lim —

n—o0 #J

/FJM dp,.

For a proof see [2].

To make the connection with the cone-condition (see condition C) below) used in [4]
and [5] we mention that: for a given sequence of cubes {1, = [Vy, v + ery) }n=1,... in F,
(i.e. vy € 81, ¥y € L+, r, > 1) the conditions B) and C) below are equivalent.

B) There is a constant B such that for any cube I = [a,a +re),a € 7%,r € Z,,r > 0:
#{u 7| Inu+l, CI} < BHL
C) There is a constant C and o > 0 such that for all s > 0
#Hu €2 In,ju—va| < (s —r)} <Cs%

The proof of the equivalence goes as in [1]. In this paper only the condition B)
restricted to Z¢ will be used (see the definition of a B-sequence below).

3. In this section we prove the main result of the paper: Theorem 3.3. As it has been
mentioned before, the key step is Theorem 3.1 below. For the case of dimension one
(d = 1) it is possible to give a different proof of Theorem 3.3. This may be done by
making use of the existence of exact dominants for these processes. However, this proof
can not be extended to higher dimensions (see [2], Section 5.1).
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DEFINITION. Wesay that {/,,},-,,.. is a B-sequenceof cubesin ¥ ,, if: I, = [V, Va+7,e)
where r, € (mZ+),r, > 0and v, € S,, and for every cube I € F,,,

#{u € Sy | Inyu+1, CI} < BHI

where B is a constant independent of /.
Examples of B-sequences can be found in [4] and [8].

THEOREM 3.1. Let {I,}n=1,.. be a B-sequence of cubes in F,, and F a nonnegative
superadditive process on ¥, and let o > 0. If

1
E= {w €Q | sgll) EFI"(M) > a}

then J
3B
WE) < —a—md7(F)'
PrROOE. If

Ey= {w eQ | 1rﬁr;anN #lTnFln(w) > a}

we just need to show that p(Ey) < %B m®y(F) for every N > 1. Let K > N and denote
V= Jm(K-—N), L= Jm(K+bN) where
= +
by Jmax [ern +vulk
1<k<d
and
L, = [vn, vy +rre)

Therefore V+1,={v+t|veV,te,} CLforn=1,...,N.
For a given w € Q define 41(w) = {u € VNS, | uw € En}. Let n: 41(w) — [1,N]
denote the multiple valued function n: u — n(u) where n(u) satisfies

1
%Fln(u)(ﬂ,w) > «.

Now choose (u!, n(u')) in such a way that:
y
Fpy = MaxX Fpey-
n(u') u€d;(w) n(u)

Define

C = {u € A1(w) I u+1,,(u) Nu' +In(u‘) 7{ @}
Dl = [717,71 +3rn(u')e)

where [, = max([u! + Vaw') — Tn@yelk, 0) for k=1,...,d. Therefore

C, C {u EA](UJ) I u+1n(u) ng}
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then
#C < {u € A1(w) | u+ Iy C D1} < B#Dy = B3, 5.

Continue recursively as follows: A>(w) = 4;(w) \ C; and choose u? € A,(w) in such a
way that

Py = Max 7,
") T ety "

and then define C, and D, similarly as above.

Because the set 4;(w) is finite we can see that there exists an integer » > 1 which
satisfies

o 4iW)=ULGC

o #C; < B3l for 1 <i<r

o u LN+, =0if 1l <i#j<r.
Making use of these properties and the fact that F is a nonnegative superadditive process
we obtain the following inequalities

r r
aitdi(w) < a) #C; < o3BTy #y,
i=1 =1

<38y Fyu,, @) < 39BF; (w).
=1

We also notice that

[ 1@ dn) = e S ¥ @) ()
= 3w En) = #(V N Sp)u(En)
uc(VNSy)

where 1) is the indicator function of the set E C Q.
Combining these two results we obtain:

#(V N Sm)En)e < o /Q #4,(w) < 3B [Q Fi.

So
34 1 3B mi(K + by)* 1 3B m*(K + by)?
ENW<—B——— | Fp=——— L _ | <" M yp),
HEW s 3 #(VﬂS,,,)/Q Lo " T(K=Ny #Lfn L="a "k =Ny &)
Taking K — oo gives the desired inequality. [

REMARK. We will now prove the a.e. convergence for multidimensional additive
moving averages. This result is Theorem 2.1 in [5], therefore we only sketch a proof
and add the identification of the limit function, which we will need for the proof of
Theorem 3.4.
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THEOREM 3.2. Let H: ¥, — Li(Q, F, i) be an additive process on 5, and {I,} a
B-sequence of cubes in ¥ with #I, — oo, then

il —H; (w) convergesa.e.

to a function h € Li(Q, F, i) which is invariant under T (where T is the semigroup
associated to the additive process H). If 1 (€)) < 00, &li‘Hln converges also in Li-norm
to h. Moreover, if I denotes the o-algebra of T-invariant subsets of Q) then

/Ah=/AH[0’e) VA € I and u(4) < oo
PROOF. Let f(w) = Hjo¢)(w) therefore

Hi(w) =3 f(rw) VIE€F,.

uel
Define
of (W) = hm sup — Zf(v'uw) lim mf— > f(ruw).

n u€l, 'l u€l,

Fix € > 0, it can be seen that

d
f= le(gf —gioT)th+h+f

where
g €Ly, fi€lrandfior,=fi Yu€es,
Iolloo < € and ||f3]|; < €%
. g j= .
We also used the notation ¢; = (64),4:1,,",4, i 0 ITH Usmg
. #LAV+HLL)

nllvlgo #1, B

we obtain

p(gi — &i © Te )(w) = 0.
Clearly pfi(w) = 0 and pfa(w) < 2||f2]l0 < 2€.
Now notice that

ph(w) < 2sup— 2 [aw)l.

n>l n u€l,

Therefore for a given a > 0

2 3dB 2 34B¢e?
WAl <

u(pﬁ>a)=u({wlsup > lsEw)| > = })

n>1 #1" u€l,
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Since

d 3
o) <3 ol — g 07() + L)

by making use of the above inequalities and choosing ¢ appropriately we can make
p({w | pf(w) > a}) arbitrarily small. This ends the proof of a.e. convergence.

To prove the other statements in Theorem 3.2 it is enough to consider f > 0. The
integrability of A(w) = lim, #IT"HI,, (w) follows from Fatou’s lemma. Consider v € S,

W) = lim 2 5 [l = Jim [ 5 10) + 000

n ucl, n ucl,
where
MW= T e - Y S
u€(vH,\I) " u€(ly\vtly)
Now

[ e
0 < [ Jim 0a()] < limint [ 16,2
1
g b _
< liminf 2 [H0+ D \ ) +#( \ v+ 1) Lf 0.

This proves the T-invariance of the limit function. To prove [y & = [,f VA € I and
u(d) < oo it is enough to prove Joh = [of when p(Q) < oo. If w(QQ) < oo it is
easy to see that the sequence #17"H1” is uniformly integrable and so we have L;-norm
convergence to, necessarily, 4. Then [ f = [ A follows from [q #—}"Hl,, = [of. For details
see [6] p. 10. ]

REMARK. The same results are true when H is an additive process on ,, and the sets
I, are replaced by the sets 7, N S,,. This follows by using the natural bijection between
S, and S;. When () < oo, it follows from Theorem 3.2 that the limit function 4 is
independent of the B-sequence of cubes {/,} with #I, — oo.

THEOREM 3.3. Let {I,},=1,... be a B-sequence of cubes in ¥ | and #I, — oo, F: | —
Li(Q, F, 1) a superadditive process on ¥ |, with semigroup T = {1, },cs,, then:

1 -
lim —F; (w) = F(w) exists a.e.,
n—oo #I,,

where F is invariant under T and integrable. If 1(Q) < oo, #F 1, converges also in
Ly-norm to F. Moreover if I denotes the o-algebra of T-invariant subsets of C then

- . 1
JiF= Jim, g P

VA € I and p(A4) < oo.
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PROOF. Define
Giw) =) Fj(rw) VIETF,

uel

then G is an additive process on %, and F — G a nonnegative superadditive process on
&1 Then by Theorem 3.2 it is enough to assume, for the a.e. convergence, that F is
nonnegative.

Let € > 0, using Lemma 2.1 find m € Z. such that

’Y(F)<—/FJ +e Vm>m, mel..

Define
Fi(w) = Fi(w) — Hf'(w) VI€ 7§y,

where
H'(w)= > F;(rw) VIEF,.

uelnS,,

Notice that H™ and F™ are respectively nonnegative additive and superadditive processes
on ¥ ,,. Moreover

lim
n—oo

R = Jim [ [P = g #m 1S9 [

mn " n—o0
"Y(F)———/FJ <e

80 Y(F™) < € by Lemma 2.1.
Define:
I" = largest possible cube in ¥, such that I C I,,.
I" = smallest possible cube in ¥, such that I, C I'*
We will now estimate the B-constant associated to the sequence {/7' },=; .. (considered
as a sequence in %,,). Let I = [a,a + re) be a cube in ¥, and I* = [a,a + 2re). Then

#{ue Sy, | Inu+l] CI} < ##{ueSl | Inyu+1} CI'}

1
< W#{u €S| nu+l, Cr}
1 2B
where the first inequality follows easily once we notice thatifu € S,, andu+I C I then

[uu+me) C{uecS |3nu+l} CI'}.

Hence the B-constant associated with {I"' },=1.... is B, = de
As regards the sequence {I"},-| .. notice that I # (2) for n large enough. Moreover if
I #(is a cube in §, there exists I', a cube in ¥, such that

#' = (") < (r+2m)’
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where #I = ¥ and
{u€Sy|Iu+I" CI} C{u€Sy,|Iu+l, CI'}.

This shows that we can consider {7},” }n=1,... as a B-sequence of cubes in ¥,, with constant
B = B(1 +2m)°.
For later use we notice that

N A )
A, g, !
and ~
. #NS, . #NS, 1
lim = lim = = —.
n—oo  H#Im n—oo  #[m md

Due to the fact that {I”} and {I"'} are B-sequences, an application of Theorem 3.2
gives the existence of both limits below

(3.4) lim ;H;"
noo #(IT 1 Sp)
3. lim ——HT
@-5) o BT O Sy
Using
iy A OSSN GOS] _
00 #(In N Sm)

(similarly for the sets I™) we conclude that both limits, (3.4) and (3.5), are equal to

my s 1
A(w) = hm —#[1 ﬂS,,,]H':(w)

Define

m>mwﬁmw

n—oo

f(w) = liminf ——F, (w)
- n—oo #I,
both functions are finite a.e. by an application of Theorem 3.1, then

fw) — f(w) < limsup *Fzm(w) —fWw)

n—o0

1
<li —F" +1i — -
< hznil:p A (W) llfln il:p m I;,”H;Z"(w) f(w)

1 1 1
< g lim — liminf —H”
_21;117# Fin(w) [I"‘ﬂ S Hpp(w) — limin #InHml;,"(w)
= " + m _ m
igr: el Fpp(w) h (w) —h (w)-
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Therefore
pw 17 = £ > o) < wf{o | sup #,m Fp@) > af )
d nd d ~d
< BdrmeﬂFm)“3 2°B YE™Y < 342 Ba‘

Because « and ¢ are arbitrary, we have proved f(w) = f(w) ae.
To prove the rest of the statements of the theorem it is enough to consider that Fis
nonnegative. We use the notation F(w) = lim, ;;—F 1,(w). We will follow the ideas in

[6] p. 37-38.
To prove F = F o1, Yu € §) it is enough to prove F = Fo T, forj = .,d, where
- s=11 J=i

e - (él')l:l,‘..,d? i { 0 j # i'

Let a,e > 0 and find m € Z, as above, i.e. V(F) < 7 fFJ + ¢. We obtain the
following inequalities:

1 1
0 < lim #—FI W) — 1112) EH;’,"’,,(w)

n—oo

1 o
< lim — F(w) — lim —H™,
Jm Rk @) — lim T )

n—o0

1 1
= lim ;#—I—F',"m(w) < :12111) WFZM(LU)

Let vy € Sp, and A™(w) = -74™(w), then:
,u({w ! |F(w) — F(r,,w)| > 20(}) < ,u({w | |F(w) — h™(w)| > a})
+p({w l |F™(w) — F(r,,w)| > oc})
=2p({w | |Fw) — }?"(w)| > af)
2d+l 3dB
< 2u({w | sup #I”' Fin(w) > a}) —~a———5

where we made use of the inequalities above and the fact that 2 = A" o7, Yu € Sy, a.e.
Take v,, = me;, then we obtain

_ - 39Be
d+1
3.6) p({w l |F(w) — F(T,,,ejw)l > 20(}) <297 —,

Inequality (3.6), by an application of Lemma 2.1, is also valid for m + 1. Therefore (3.6)
for m and m + 1 implies the following inequality:

({w { |F(w) — F(rw)| > 4a}) = ,u({w | |F(Tme,w) — F(Tgme1)gw)| > 4a})
< u({w | 1Fw) = Flrmgw)| > 2a})
+u({w ] |F(w) — F(tm e, w)| > Za})

S 2d+233d€ .
o
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Now, « and ¢ being arbitrary, this proves the T-invariance of F.
To prove f; F =lim,_,., ﬁ J4F;, YA € I and p(4) < oo it is enough to consider the

case 4 = Q and p(Q) < 00. So assuming p(Q) < oo, we will show below that #F 1
converges in L; to h*, necessarily 4/ = F. Therefore, if I, = [v,, v, + er,,)

- 1
Flly =1|p%||; = lim —||F,
Il = ] = Jim 21

. 1
1= nlg{.lo Y /Q Flor,e) = 11m — / Fy,
We will now define #*°. By Theorem 3.2 and the remark that follows it we know that ;}-;

Hy, converges in the Lj-norm to some function 4™ i.e.
n

h —Ll— lim ——I‘Im

noo #Jm

and that the limit is independent of the B-sequence chosen, hence

ilm =L1 — lim

n—oo

H"]’:tm
nm

Using this last expression for 4™ it is easy to obtain (using superadditivity of F) the
following inequality

im < iIZm
$0 h® = L; — lim;_,, A% exists.
Given 7 > 0 fix m = 2 such that
=Rl <n and 2@ - g [ Fa <o
We remark that
PM < Py 1y < (F"+2m)  where #I" = (7")°.
Hence

JoEn —HE) = [ Fioso — #7018l [ Fo,
< e - () [ 1,
< (@)'n + a(n,m, dyY(F)

where a(n, m,d) = (7 +2m)* — (#)? and s0 lim,,_,, “%5< =0

n

Now:
tim [, 2| < tim [, — il o+ |
n—oo | #1, " 1 — n—oool #I, " #1,

VAN

o1
,,ILTO i /Q(FIn —Hp)+n
< 21 where we used lim ~r_,, =land Fj, — H}, > 0.
n—oo r”:' n

Because 1) was arbitrary this gives the L;-norm convergence of w ko h*°, and this
ends the proof. n
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4. In this final section we present a counterexample related to the material in Sec-
tion 3. We also state a local theorem.

The following counterexample is related to an alternative definition for the moving
averages in the superadditive setting. In [3] and [6], for example, the following type of
superadditive process is considered:

{Sn}n=0,l,2,..., SO =0

S Q — Li(Q, F, ) and

7: Q) — € a measure preserving transformation such that:
e S, 01" < Spin— Sy Vm,n>0
® S, 5 Jo S < 00

The connection between this one parameter type of superadditive process and the
two-parameter processes considered in Section 2 (taking d = 1 in that definition) is the
following:

Fimm(w) = Sy—m(™"w) forn>m>0.

Defining f, = Sy+1 — Sy, n > 0 we can write S, = fo +--- + f,_1, f» € L;. In the additive
case f,(w) = fo(r"w). The moving averages in the additive case can be written, for a given
B-sequence [vi, vk + 1) Vi, i € Z+, in two equivalent ways, namely (f; = fo o ):

re—1 1 wtn-l Vitre—1 v—1
@.1) = wakw) 2L =] Y ) L)
J=ve J=0 J=0

In the superaddltlve version, the left-hand side of (4.1) can be written as follows:
1 1
_Srk(TVk w) = _F[vk,vk+rk)(w)
Tk Tk

which by Theorem 3.3 it converges a.e. if r, — 00. The superadditive analog of the
right-hand side of (4.1) is:

1
Z(Svm ) — Sy (w)).
We show below that this quantity does not converge in general.
Pick a B-sequence of intervals {[vi, vk + r¢) }i=1,... satisfying

S 147 1

4.2
( ) =1 % 4

and

<<y <---
0<rn<rn<rn<: --.

Set Q = {xo}, u(xo) = 1. We will define a new sequence {(v}, )} =1 € {Vi, 7%)}i=1.... as
follows:

/ /N —
vi,r) =0,
V) = Vny, Vn, suchthatv,, > v +7]

vitr, 1
¥y = Fny, ¥y = Fpy, Ty such that & 2<§andv3 Viny

Fny
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In general
/o / /
Vak = Vny and Vny > Vor—1 T

andrly, =r,, fork=1,2,...and

/
e = here 22 < Landt = fork=1,2
Foks1 = Fny,, Where 3 a4 Va = Vi, fork=1,2,...

r'lzlm

Define X% = (Xf")j:L,__ where

¥k = { 1 ifje [nvgk +(n — 1)y, vy +nrh) for some n > 1
/ 0 otherwise

fork=1,2,...and
XK = (0)=1,. £=0,1,2,...

o0 n
Y,=;X’,andS,,=§:lY, So=0, Y():O.

Using (4.2) we obtain

By making use of the definitions it can be seen that

S < Spin— Sy Vm,n>0

and s S
_”_'Zk"__'fzk__ﬁk.zl fork=1,2,...
2%
and s S
Ve Fowr Ve 1
__Zk:_l__:l;;l___ﬁ_l_<§ fork=0,1,2,....
2%k+1
Therefore
. S, +r! =5
lim ———
n—oo r,

does not exist.

To state the moving local theorem we need to consider the previous concepts in R?,
the additive semigroup of nonnegative real numbers. From now on we will consider
intervals in R?, i.e. if a = (a;) and b = (b;) are two vectors in R?, [a, b) will now denote
la,b) = {x | x=(x;) € R%, a; < x; < bj,a,b,€ Ri} and R = {[a,b) | a,b € R%}.
The definition of a continuous superadditive process, i.e. on R, is similar to the one
in Section 2. More precisely, replace ¥, by ® and 7 = (7,)ucs,, by T = (7,),cpe in the
definition of Section 2. Moreover we need to assume that 7 = (7,),cz¢ is @ measurable
semigroup of measure preserving transformations (see [6] p. 223). We say that {/,},
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where g ranges over a subset of the positive rational numbers, is a continuous B-sequence
of cubes in RY if I, = [v,, v, +ery) € R, ry > 0, for every g and:

{peRi|3g.p+1, CIY <B|I] VIER.

where B is a constant independent of / and |4| denotes the Lebesgue measure of the
measurableset4 C RY. For the sake of simplicity we will drop the adjective “continuous”
from now on. We now prove the maximal inequality that we will need for the local
theorem.

THEOREM 4.3. Let {I, = [Vn,Vn + €ry)}n=1,..n be a finite B-sequence of cubes in R,
and F a nonnegative superadditive process on R _and let o« > 0. If

1
Ey= {wGQ[ max F,(w)>a}

and V and L are sets in R such that
V+l,={u+t|lueV,tel,} CL forn=1,...,N
then

3"B 1
(wEw) = p@\R) < == [ Fi

holds for any R € F.

PROOF. The proof is similar to the proof of Theorem 3.1. For a given w € Q define
A\(w)={ueV|nweEy}

For u € A (w) we let n(u) to denote all the n’s in [1, N] such that:

—F, (,,)(Tuw) > a.
|

Choose (u', Tn(uty) @8 in Theorem 3.1 and define Dy as in that theorem too. Let
Gi={ucR|In=1,...,N;u+1I, C D}
Moreover, due to {/, },=1,... is a B-sequence with constant B we also have:
(G1l < BIDy| < 3%Bly).

Let A>(w) = A1(w) \ G1. Choose (42, r,z)), with u? € Ax(w), similarly as above. Contin-
uing recursively in this way we obtain:

U ALy + Ly =0 ifi#j
|Gi| < 3Bl
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and

1
—F  (T,w) > a.
|In(u‘)l "

We show below that, a.e. in w, there exists » + 1 (r = r(w)) an integer such that
Apv1(w) = 0. Suppose we have done z-steps in the recursion. Let § = minj=;___y |/;| then

|Gi| >6 >0fori=1,...,t Therefore

t d t 3dB t 3dB
t(s S § :|Gll S 3 B§ |In(ui)l S § :Fln(u.')(Tuw) S FL(UJ)'
i=1 i=1 a = @
So
34B
< —
t < pos Fr(w)

because F; € Li(Q, ¥, 1), we conclude that ¢ is finite a.e. Then 4;(w) C UL, G; for
some integer r = r(w).
Take R € ¥, then:

a|V|[u(Ex) — Q\R)] = /V[u(f;‘EN) —Q\R)]du <« /Vu(T;‘EN NR)du
= a [ A1)l du(w) < B3 [ Fi(w)du(w)

where we used a|4;(w)| < B39Fi(w) a.e. .

We conclude with the sketch of a derivation of the moving local theorem. We only
present a sketch because the proof is similar to the proof of Theorem 2.9 in [2]; the
difference is that the maximal inequality used there (Theorem 4.2 in that paper) is
replaced by our more general Theorem 4.3.

We first introduce some notation. We define lim, o /; = 0 by: Va > 0 there exists
go > Osuchthat [, C J, =[0, ea) € R forall g < go. The notation g — lim indicates that
the the limit is taken along the rational numbers (see [6] p. 230). We will call a process
F a bounded process if it satisfies

1
Squ/lpll < 0o

where the supremum is taken over all / € ® with |7] > 0.

THEOREM 4.4. Let F be a bounded superadditive process on R .. Let {1} be a contin-
uous B-sequence of cubes in R with limy,_ I, = 0 then

1
— lim —F (w) exists a.e.
9 I g )
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PROOF. By making use of Lemma 4.7 in [2] we can write F = G + F' where F' is a
nonnegative superadditive process on R satisfying:

1 _
lim - [ Fatw)dp() =0

and G is a bounded additive process on ®. As mentioned in [2], p. 62, G is always the
difference of two bounded nonnegative processes. So we can assume G > 0. We will
first prove g — limy_ ﬁF ,(w)=0ae.

Let £ = {w € Q| f(w) = glimsup, ﬁqu(w) > a} with a > 0. It is enough to
show u(E) = 0. Lete > 0 and choose ¢ > 0 such that I_Jlfl JFj, < e.Wealso choose7 > 0
satisfying the following properties

e I, CJp whenever 0 < g < 7
e there exist positive rationals g; satisfying 0 < q; < ¢2 < --- < gy < 7 moreover
if ' = {w | sup, <<y M:TF,% (w) > o} then u(E) < 2u(E").

We will apply Theorem 4.3 to the finite B-sequence {/,,, ..., I,, } and the process F’
with V'=J,/5, R =Qand L = J,. Hence:

1 24+13dpe
Fj £ ———.
lJt/ZI / o

To prove the a.e. convergence of g — lim,_o ﬁG,q(w) we write G = G' + G” (for this
decomposition see [2], p. 63) where
e (' is absolutely continuous; i.e. there is a nonnegative integrable function g on Q
and

d
u(E) < 2u(E) < 2L

Gi(w) = /1 g(rw)du, foralll€ R.

e G" is singular; i.e. for each € > 0 there is a number ¢ > 0 and a set R € ¥ such
that u(Q \ R) < ¢ and such that [z G} du < 3|I| whenever ! € R and I C J,.

The proof of a.e. convergence for G’ and G” is done as in Lemmas 4.11 and 4.12 in

[2] and making use of Theorem 4.3 as we did above for the process F’. n
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