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I. INTRODUCTION

The maintenance of unselected random mating control populations to serve as a
control in the evaluation of experimental breeding procedures is now attracting
considerable interest. The objective is to keep these populations genetically
constant, but because they are necessarily limited in size, some genetic drift will
occur. The magnitude of this random variation in gene frequency affects the
efficiency of the population as a control.

Gowe, Robertson & Latter (1959) have recently discussed two designs for control
populations and the genetic drift expected from either design. The 'pedigreed
flock' is one in which every attempt is made to choose one male from each sire
family and one female from each dam family as parents of the next generation.
The 'random breeding flock' is one in which the required number of males and
females are chosen at random from all available offspring.

Crow & Morton (1955) derived an expression for the sampling variance of gene
frequency in a population, taking into account unequal sex ratio and variation
in family size. Their definition of gene frequency as a weighted average of fre-
quencies in the two sexes is not appropriate to experimental situations, because in
experimental populations the frequency in each sex is of equal importance,
regardless of the actual sex ratio. Latter (1959) derived an expression for genetic
drift in random breeding flocks based on an unweighted average for the sexes,
and this expression was used by Gowe, Robertson & Latter (1959) in their
discussion.

Random changes in gene frequency can be regarded as occurring in two stages.
Starting from a given group of breeding individuals, gene frequency may change
through sampling of gametes from these individuals in the formation of offspring.
Following this, gene frequency may change again when the next set of breeding
individuals is chosen. The actual point of division here is somewhat arbitrary.
This second sampling stage could, for example, be further subdivided, into a
random change occurring when it is decided which individuals are to be included
in the breeding operation, and a random change occurring when matings are made
up. The magnitude of this last change would be affected by operational pro-
cedures, such as whether each individual of a given sex was allotted the same num-
ber of mates, whether the numbers of mates per individual were allotted at random,
or whether mass matings were used. Changes of this nature can with advantage be
assimilated into the first class, changes due to sampling of gametes, the differences
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between the various procedures being then described by the distribution of family
sizes. Changes in the second class are then regarded as complete when the indi-
viduals to be included in the breeding programme are chosen. General descriptions
applying to all operational procedures are then possible.

In dealing with this second stage of sampling, Latter (1959) based his discussion
on the assumption that each chosen individual is sampled at random from all
surviving individuals of the same sex, i.e. sampling with replacement. In experi-
mental populations, the actual procedure is to choose a set of parents at random
from among all possible such sets. This is sampling without replacement, and can
be expected to lead to a slightly smaller sampling variance, because in sampling
with replacement there is a finite probability that any individual may be sampled
more than once, whereas this is not true under sampling without replacement. In
this paper, genetic drift when parents are sampled without replacement will be
considered.

James & McBride (1958) analysed a poultry flock under selection by means of
changes in 'percentages of genes' from various ancestors. Where pedigrees are
available, this technique can be applied to control populations, with the difference
that changes in percentages of genes are due to chance instead of selection. Since
sampling of parents contributes to genetic drift, changes in percentages of genes
will be related to genetic drift, and this relationship will also be investigated in this
paper.

A model of a random mating population based on sampling without replacement
is now put forward, and, on the basis of this model, equations are derived for the
sampling variances of gene frequency, Gs and GD, where Gs is the proportion of
genes from a sire in the matings of bis progeny, and (rD is the corresponding term
for a dam.

II. DERIVATIONS

It is assumed that there are T individuals (male and female) available for choice
as parents of the next generation. These T individuals are the offspring of m sires
and / dams which have been mated at random, the ith sire, S^ contributing kt

males and lt females, Kt in all, and the jth. dam, ~Dj, contributing a3 males and bj
females, Aj in all. Then mk (= fa) is the number of males and ml (= fb) is the number
of females available, so that

mk + ml = fa+fb = mK = fA = T.

A set of M males is then chosen at random from among all possible such sets
which may be formed from the mk males, and a set of F females similarly chosen
from the ml females available. Sf contributes vf sons and wt daughters, and D̂
contributes Xj sons and y; daughters to these sets. Then

mv = fx = M,

mw = fy = F.
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Latter (1959) has shown that if Sqm is the change in gene frequency from sampling
oflFspring of males, and Sgy the change from sampling offspring of females, then

8 [M F M2
mV(w) 2mCov(vw)

• +
F2 MF !•

with a corresponding equation for V(Sgy). In these equations the symbols V and
Cov stand for the variance and covariance respectively of the bracketed terms
associated with them. Further, if Aq is the total change in gene frequency,

To predict the genetic drift from the model above, it is therefore necessary to
obtain variances and covariances of v, w, x and y in terms of the parameters of the
model. In what follows, a typical expression is derived, the other expressions being
derived in the same way.

The probability that exactly r sons of St are chosen is given by

P ( r ) =

where I5) = <x!//?!(a—j8)!, so that vt has the hypergeometric distribution. If vt i

the mean number of sons of S$ chosen, it follows that

If V(t)f) is the variance of number of sons of St chosen, it also follows that

_ ki(mk — k^ (k — v) v
= P(mJfc-l)

This value of V ^ ) is needed to find V(v), the variance of numbers of sons chosen
from different sires, i.e.

and since v^ — v = Vi — v^ + v± — v,
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because (Vi — Vf) and (Wj —v) are uncorrelated.
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Hence, since vt = -= kh
fC

i = l

( ) y ( i ) + i f
1 isis written V(h), the equation becomes

When the previously found expression for V^j) is substituted, it turns out that

By a similar argument,

Cov(vw) =
TO

~Cov(M).

Since males and females are chosen independently, Cov(i;iwi) = 0, and

Cov(vw) = -jjCov(kl).

Since there are similar expressions for the variances and covariances of other
terms, the expected genetic drift in any particular situation may be worked out.
It would, however, be useful to express the results in a form which may be fairly
generally applied. For this purpose it is convenient to assume that at the time of
sampling a random individual has equal probabilities of being either male or female.
The result obtained is still too cumbersome to be convenient, so to reduce it to a
more manageable form it is further assumed that the actual numbers of males and
females equal their expected value of \T. This allows a very considerable simplifi-
cation, and the error introduced by the approximation will be discussed later. It
is possible under these conditions to make the substitutions

Cov(W) = l\V(K)-K],

ml = \T.
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When this is done, it turns out that

T7. , M

and Cov(wo) = —^-Rm,
mr

, _, V(K)-K
where Rm = ^ 2 •

It should be noted that the size and structure of the breeding flock are assumed
predetermined, as is the case in most experimental control populations. This means
that, for example, v is fixed, with no sampling variation, so that no degree of freedom
is used in its estimation, all degrees of freedom remaining for estimation of V(v).

It is convenient to express genetic drift in terms of effective population size,
JVE, defined by the equation

After algebraic manipulation, it turns out that, for the present model,

J_ = y - l f l 1 RmRf] T \F + M/1 + Rm
iVE T-2\4M 4F 4m 4f\ T-2[4FM\ 4m

where Rf=^>

T-2[4/m 4FM

-A

Of particular interest is the case where the numbers of sires and dams remain
constant, when

J_ _ T-l\l + Rm l+Jg/l T \
iVE T-2[ 4M 4F J T-2[4FM \ 4M 4F

Denoting the effective size obtained by Latter for sampling with replacement as

J_ = » , f
NL 4M + 4F '

so that NE is slightly larger than N^.
If all individuals of the same sex have equal reproductive capacities, family size

1 4FM
is binomially distributed, and Rm = Rf= — -= • In this case, NL ~ =—^ • Thus when
numbers of males and females remain constant, and reproductive capacities are
equal for members of the same sex,

1 _T-1/F + M\Y F + M 11
W^ ~ T — 2\ 4Filf/[ ~ 4Filf ~Tj
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Denoting =—=^ as JVW (after Wright) it can be seen that when T and iVw are fairly

large,

The effective size under sampling without replacement is about one more than
under sampling with replacement.

The proportion of genes, GS(, from Ŝ  in the matings of his offspring is, according

to the definition of James & McBride (1958), given by GS( = -rjtf + Tj?'

The variances of Gs and (rD, the proportions of genes from different sires and
dams in the matings of their offspring, are given by

vir \ - Y{v) i Y{w) i
y s> 16M2+16F2 16MF '

, 2Cov(xy)
16MF '

It then follows that

which gives the relation between genetic drift and changes in proportions of genes.
It seems unnecessary to give explicit results for variances of Gs and (?D, but when

T is fairly large, and the breeding flock has constant size and structure, it turns out
that the equations

are approximately correct.
The error introduced by the assumption that k and I equal their expectation of

T/2m will obviously depend on by how much the assumption is incorrect. It can be

shown by tedious algebra that the error in rj=- is roughly — —= =- , when
i>B iol(ml)(mk)]

m = M, f = F, and Bm = Rf = 0. This should provide a rough guide to the more
general case.

Since the probabilities of each sex are assumed equal, mJc (or ml) is distributed
approximately normally with mean \T and variance \T if T > 10. Thus about
§ of the values of wife will lie within the range \T ± \^JT. Substituting mh = \T ± \\/T
in the above expression, we obtain as the approximate error lftT— I)2. Since NE

will be at most of order T, it would seem that provided T is of the order of 50, the
approximation will be reliable.
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III. UNIVERSITY OF QUEENSLAND CONTROL POULTRY FLOCK

The theory developed here has been applied to the University of Queensland
control poultry flock, which was formed in 1955 from a strain of Australorps under
selection for egg production since 1953. Since 1955 it has been maintained by mating
randomly chosen males and females, full pedigrees being kept. Females have been
chosen by use of a table of random numbers, as have males since 1957. Previously
the first males picked up from the yards had been used. I t has been customary
to allot approximately the same number of females as mates for each male.

Table 1 gives the number of parents used in each year. In 1955 only ten males
were used at any one time, but one male died during the breeding season and was
replaced.

Table 1. Numbers of males and females used
Year 1955 1956 1957 1958 1959

$ 11 12 12 10 10
$ 63 84 80 60 60

From the family sizes for sires and dams (K and A in the present notation) values
of Rm and Rf have been calculated for each year and are given in Table 2. Both are
consistently greater than zero, and this may be interpreted as evidence of the action
of natural selection. In 1957 a deficiency of riboflavin in the diet of the chicks
caused a heavy mortality, and both Rm and R{ increased, suggesting that mortality
was not random over all families. The high value oiRm for 1955 was caused by the
cockerel's death mentioned above.

Table 2. Non-randomness of family size
Year 1955 1956 1957 1958
Bm 0-2346 00411 01638 00756
Rf 0-4530 0-2595 0-8013 0-3845
T 698 555 299 677

T is the total number of offspring available for sampling, and Rm and Rf
are defined in the text.

From the values of v, w . . . in each year the proportions of genes from each male
and female in the matings of their offspring have been calculated. For convenience
calculations have been made on the percentages of genes ys and yD. Thus V(ys)
and V(yD) are 10* times V((?s) and V(GD) respectively, and their values in different
years are given in Table 3, together with their expected values based on the exact
predictive formulae of the previous section.

From these formulae, V(yD) should be roughly M/F times V(ys). This holds
reasonably for expected values, but not at all well for the actual values. It will
also be noted that both V(ys) and V(yD) are less than expected in three of the
years, while in 1956 both are more than expected. This suggests some systematic
bias in sampling, but there seems to be no feature of the sampling procedure which
would lead to bias.
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Year

V(ys)
«?{V(ys)}

V(yD)
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Table 3. Variances of gene percentages
1955

90524
9-6859
0-9926
1-2096

1956

7-4617
5-3029
0-8349
0-7951

1957

3-7905
8-3949
0-8116
1-2062

1958

4-3750
8-4349
11690
1-4556

ys and yD are the percentages of genes, from sires and dams respectively,
represented in the matings of their progeny, and their expected
variances are as calculated from the formulae given in the text.

The actual effective size of the flock for each year, iVE, has been calculated from
the values of M, F, v, w, etc. The values of N^ estimated from equation (1), S'(N-E),
have also been calculated. For comparison NL, the effective size given by Latter's
formula, and JVW, the effective size given by the well-known formula due to Wright,
have also been calculated; and all four sets of values are presented in Table 4.

Table 4. Effective population sizes
Year 1955 1956 1957 1958

iVE 35-6 35-8 36-2 38-5
331 400 29-5 31-5
32-3 39-1 28-5 30-6
4 2 0 41-7 34-3 34-3

iVE is the actual effective size as calculated from the data.
effective size given by the equation derived in the text, N^ and Ny/
being the values given by the formulae of Latter and Wright.

It can be seen that, as expected, (?(iVB) in each case is roughly N-L+ 1, but that
actual values of JVE have differed from their expectations by as much as 7. In 1957
and 1958 the values of iVE are considerably above expectation, though in these
years the selection of breeders was made by using a table of random numbers,
instead of the earlier practice of choosing the first ones picked out from the rearing -
yards. It would thus seem that the deviations from expectation must be attributed
to sampling, as the sex ratio among available offspring is near equality. Such
deviations must always be expected, as only the average situation is described
by the predictive equation.

The average inbreeding coefficient has been calculated for the flock in each
generation, and the increase has averaged 1-27% per generation, compared with
an average increase of about 1-37% expected from the effective numbers.

IV. DISCUSSION

A control population may be considered to have two sizes: (a) its breeding size,
N-s; and (b) its census size, T.

The breeding size determines its efficiency in maintaining genetic stability,
while its census size determines its efficiency as an estimator of environmental
variations because the sampling variance of the mean is proportional to l/T.
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These two functions are not entirely independent, for genetic drift will be con-
founded with environmental changes, so that iVE also affects the efficiency of
environmental corrections. On the other hand, 2VB is not independent of T, though
if T is at all large, this effect is likely to be negligible.

The variance in the control flock mean expected from genetic drift is Vg/IVE,
where Vg is the genetic variance, while the sampling variance is Vp/2\ where Vp

is the phenotypic variance. Thus the relative importance of genetic drift and
sampling of phenotypes as factors reducing efficiency is TA2/iVB. If phenotype can
be measured in one sex only, this ratio becomes ?7A2/2iVr

E, with equality of sex
ratio.

I t has been shown by Gowe, Robertson & Latter (1959) that if IVP is the effective
size of a pedigree flock (P),

1 _ _ 3 _ 1
WP ~~ 16M+16F

and that JVp is considerably greater than N-%, the effective size of a similarly consti-
tuted random breeding flock (R). It is therefore likely that experimenters will
choose P flocks in preference to R flocks where this is practical. The experimenter
may choose to do this in two ways. He may set aside a fixed amount of facilities
for his control and use a P flock to reduce genetic drift, or he may decide on a
tolerable value of iVE and use a P flock to reduce the facilities needed. The alter-
natives may be illustrated by reference to the University of Queensland control
poultry flock.

For the first alternative we may suppose 10 males and 60 females used for either
R or P flocks. Then NK = 34-3 and Nv = 50-5. T may be taken for convenience as

V V
3F, here 180. Then since the variance of errors of estimation is — +-^, the gain in

-"E J-

efficiency is not 47%, but, if h2 = 0-2, about 21%. For the second alternative,
suppose N-E is set at 35 and the male/female ratio is again 1/6. For an R flock,
we have M = 10, F = 60, T = 180, and for a P flock we have M = 7, F = 42,
T = 126. Again taking h2 = 0-2, the efficiency of an R flock is 20% greater than
that of a P flock. A variation of this approach is to set a fixed error variance, say
that obtained by an R flock with M = 10 and F = 60. A P flock is then constructed
to match this error. Under the above conditions it turns out that about 50 females
are needed for breeding and about 150 phenotypes must be measured. The reduction
in facilities needed is less than would be expected from consideration of genetic
drift alone. In these examples it has been assumed that Rm = Rf = 0.

The above considerations apply only to changes from one generation to the next.
Usually the statistic of interest will be pt — p0, the change in population mean over
t generations, as this will be compared with the corresponding change in the mean
of the selected population. The variance of the error of estimation associated with
this measure of environmental change is given by
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The number of measured individuals will usually lie between F and 20F, and
when heritability is not high, the major component of the error at the lower end of
this range will arise from phenotypic sampling, while at the other end of the range
genetic drift will be most important. At the lower end of the range it may pay
to devote facilities to increasing the number of individuals measured, rather than
to reducing genetic drift.

For traits with high heritabilities more attention should be paid to genetic
drift, but it should be stressed that it is not the only feature which should be con-
sidered. The efficient design of a control flock requires that the effects of T, t, h2

and iVE in giving rise to error should all be taken into consideration.

SUMMARY

1. The effect of genetic sampling, when this sampling is without replacement,
on variation in gene frequency is studied, and equations describing the genetic
drift are derived. The effective size turns out to be about one greater than under
sampling with replacement.

2. The relation between ' spread of genes' and genetic drift is worked out.
3. The University of Queensland control poultry flock is analysed by these

methods.
4. The design of control populations is discussed with particular reference to

the relative importance of genetic drift and phenotypic sampling.

Part of this work was done while the author held a fellowship supported by the Rural
Credits Development Fund of the Reserve Bank of Australia. I wish to thank Dr G. MeBride
for his helpful comments, and the referee, whose criticisms have been most valuable.

REFERENCES

GROW, J. F. & MORTON, N. E. (1955). Measurement of gene frequency drift in small popula-
tions. Evolution, 9, 202-214.

GOWE, R. S., ROBERTSON, A. & LATTER, B. D. H. (1959). Environment and poultry breeding
problems. 5. The design of poultry control strains. Poult. Sci. 38, 462—471.

JAMES, J. W. & MCBRIDE, G. (1958). The spread of genes by natural and artificial selection
in a closed poultry flock. J. Qe.net. 56, 55-62.

LATTER, B. D. H. (1959). Genetic sampling in a random mating control population of constant
size and sex-ratio. Aust. J. biol. Sci. 12, 500-505.

https://doi.org/10.1017/S0016672300003074 Published online by Cambridge University Press

https://doi.org/10.1017/S0016672300003074

