
Canad. J. Math. Vol. 63 (1), 2011 pp. 123–135
doi:10.4153/CJM-2010-077-0
c©Canadian Mathematical Society 2010

Strong and Extremely Strong Ditkin sets for
the Banach Algebras Ar

p(G) = Ap ∩ Lr(G)

Edmond E. Granirer

Abstract. Let Ap(G) be the Figa-Talamanca, Herz Banach Algebra on G; thus A2(G) is the Fourier

algebra. Strong Ditkin (SD) and Extremely Strong Ditkin (ESD) sets for the Banach algebras Ar
p(G)

are investigated for abelian and nonabelian locally compact groups G. It is shown that SD and ESD

sets for Ap(G) remain SD and ESD sets for Ar
p(G), with strict inclusion for ESD sets. The case for the

strict inclusion of SD sets is left open.

A result on the weak sequential completeness of A2(F) for ESD sets F is proved and used to show

that Varopoulos, Helson, and Sidon sets are not ESD sets for A2(G), yet they are such for Ar
2(G) for

discrete groups G, for any 1 ≤ r ≤ 2.

A result is given on the equivalence of the sequential and the net definitions of SD or ESD sets for

σ-compact groups.

The above results are new even if G is abelian.

1 Introduction

Let X be a locally compact space and C(X) [C0(X)] {Cc(X)}, denote the complex

bounded continuous functions [which tend to 0 at infinity] {which have compact

support} respectively. For v ∈ C(X), let sptv = cl{x; v(x) 6= 0}, where cl denotes

closure.

Let A(X) be a subalgebra of C0(X) with a norm that renders it into a Banach

Algebra, see [HR, (39.1)]. If F ⊂ X is closed, let IF = {v ∈ A; v = 0 on F} and

J0
F = {v ∈ A ∩Cc(X); F ∩ sptv = φ}. Denote, for u ∈ A,

‖u‖M[F] = sup{‖uv‖A; v ∈ IF, ‖v‖A ≤ 1},

the multiplier norm on IF . If F = φ, the void set, denote by ‖u‖M = ‖u‖M[φ], i.e. the

multiplier norm on A. Let A(F) = A(X)/IF .

Definition 1.1 (i) The closed set F is a set of synthesis (S) if cl J0
F = IF .

(ii) F is a Ditkin set (D) if for all v ∈ IF there exists a net vα ∈ J0
F such that

‖vvα − v‖
A
→ 0.

(iii) F is a Strong Ditkin (SD) [Extremely Strong Ditkin (ESD)] set if there exists a

net vα ∈ J0
F such that ‖vvα − v‖

A
→ 0 for all v ∈ IF and sup ‖vα‖M[F] < ∞,

[sup ‖vα‖M < ∞], respectively. (This is consistent with [Gi, Ro, Sch].)
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Note that φ is a SD set (if and only if φ is a ESD set) if and only if there exists a net

vα ∈ A ∩ Cc(X), such that ‖vvα − v‖
A
→ 0 for all v ∈ A, and sup ‖vα‖M < ∞, i.e.,

there exists an approximate identity in A ∩Cc(X), bounded in multiplier norm on A.

Definition 1.2 Let F ⊂ X be a closed set.

(i) F is a Helson set for A(X) if A(F) = C0(F).

(ii) F is a Varopoulos set for A(X) if there exist locally compact spaces E1, . . . , En

such that A(F) ≈ C0(E1)⊗̂ · · · ⊗̂C0(En) (projective tensor product), a Banach

space isomorphism.

G will denote all through a locally compact group with a left Haar measure λ = dx.

If G is discrete and amenable, then Helson sets for the Fourier algebra A(G), as in

[Ey1], are also called Sidon sets; see [Pic].

The following theorems of Graham [Grh] and of Varopoulos [Va1, Va2], [GMc,

11.8.4] for the Fourier algebra A(G) of the abelian group G are the motivation for the

above definition.

Theorem 1.3 If G is a metrisable abelian locally compact group and X1, . . . , Xn,

are perfect compact subsets of G then there are pairwise disjoint perfect subsets Y1 ⊂
X1, . . . ,Yn ⊂ Xn, such that Y j is either a Kronecker set or a translate of a Kp j

set and

A(Y1 + · · · + Yn) ≈ C(Y1)⊗̂ · · · ⊗̂C(Yn), an isomorphism (see [Grh]).

Thus Y = Y1 + · · · + Yn is a Varopoulos set.

Theorem 1.4 Let G be abelian discrete and infinite.

(i) Then G contains an infinite set F0, which is a 1/3-Kronecker set or a Kp-set for

some prime p > 1.

(ii) Let X, Y be countably infinite disjoint subsets of G, such that F0 = X ∪ Y . Then

A(X + Y ) = C0(X)⊗̂C0(Y ), an isomorphism (see [Va2], [GMc, 11.8.4]).

Thus Z = X + Y is a Varopoulos set.

For 1 < p < ∞, 1 ≤ r ≤ ∞, denote by Ar
p(G) = Ap ∩ Lr(G), with ‖u‖Ar

p
=

‖u‖Ap
+‖u‖Lr , a Figa-Talamanca, Herz, Lebesgue Banach Algebra on G, as defined and

studied in our paper [Gr1]; see history loc. cit. Here Ap(G) is a Figa-Talamanca, Herz

algebra on G as in Eymard [Ey2], (thus is Ap ′(G), a la Herz [Hz], where 1/p +1/p ′
=

1). Hence A2(G) = A(G) is the Fourier algebra of G as defined and studied in [Ey1].

Let A∞

p (G) = Ap(G) equipped with the Ap norm, (this being equivalent to the A∞

p

norm). Chose and fix some p and let 1 ≤ r < ∞. Let S, D, SD, and ESD (Sr, Dr, SDr,
and ESDr) denote the Synthesis, Ditkin, Strong Ditkin, and Extremely Strong Ditkin

sets for Ap ([Ar
p], respectively).

We have proved in [Gr1, p. 414] that S = Sr under the mild assumption that

(1.1) the empty set φ is an SD set for Ap.

We prove in Theorem 2.1 that D = Dr under the same assumption (1.1). Thus,

Ap(G) and Ar
p(G) have the same sets of Synthesis and the same Ditkin sets,
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in this case. This is not the case if r is fixed but p varies, as shown, even for abelian G,

in [Gr1, p. 414].

We are not able to prove for arbitrary G that φ ∈ Sr, even though φ ∈ S, as is well

known.

We consider next the equality question for SD sets and ESD sets.

Theorem 1.5 (i) For any group G, SD ⊂ SDr and ESD ⊂ ESDr.

(ii) If G is infinite discrete and is abelian or solvable or type I or FC, and p = 2 then

ESD 6=
⋂

{ESDr; 1 ≤ r ≤ 2},

thus there exist infinite subsets F (such as Sidon or Varopoulos sets, see sequel) that

are ESD for Ar
2(G), for all 1 ≤ r ≤ 2, yet they are not ESD for A2(G).

Haagerup has shown that G = SL(2, R) ∝ R2, does not satisfy (1.1) for A2 (see

[Do]), where R denotes the additive reals. We were unable to find a discrete group G

for which (1.1) does not hold for A2. Such G would satisfy for p = 2 that φ 6∈ SD but

φ ∈ SDr for all 1 ≤ r ≤ 2, hence the first inclusion in (i) would also be proper. We

conjecture that there exist some G, for which this inclusion is proper.

Note that if G is amenable, and the closed subset F is ESD for A2(G), then F is

a closed set in the coset ring R(Gd) of G with the discrete topology, as proved by

Cohen, LeFranc, Host, and Forrest (see [Ho] and [Fo1, Prop. 3.5]). This holds since

the norm and the multiplier norm on A2(G) are equivalent when G is amenable.

If G is a free group on 2 generators, it has to contain an infinite Leinert set L, thus

A2(L) = ℓ2(L), 1MA2(G) = IL, if M = G ∼ L and M and L do not belong to R(G), see

[Le, FTP]. L is a ESD set that is not in R(G). (By Haagerup’s result, see [Do], A2(G)

has an approximate identity vn ∈ A2 ∩Cc, thus 1Mvn is an approximate identity of IL

bounded in multiplier norm on A2(G).)

But if G is any discrete group, every subset of G is ESD for Ar
2(G) if 1 ≤ r ≤ 2, see

sequel, hence R(G) plays no role at all in this case.

The main result of Section 3 is the following.

Theorem 1.6 Let G be a locally compact group and H be an amenable closed subgroup.

Let F ⊂ H be closed. If F is ESD for A2(G), then A2(F) (hence any of its closed subspaces)

is a weak sequentially complete w.s.c. Banach space.

Thus infinite closed subsets F of H that are Varopoulos sets for A2(G) are not ESD

sets for A2(G).

The last part substantially improves a result mentioned in [DuR, p. 59] for ESD

sets in discrete abelian G.

Furthermore, using a result of De Michele and Soardi [MS] for the FC case and

[Ru, Rob, Tho], we get a result that improves Theorem 2.3(ii).

Corollary 1.7 Let G be a discrete group and H be a subgroup which is abelian or

solvable or FC or type I. Then every infinite subset of H contains an infinite Sidon

subset F and as such, is not ESD for A2(G), but is ESD for Ar
2(G), for all 1 ≤ r ≤ 2.

Question Can one assume only that H is amenable?
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As far as SD sets for discrete groups G are concerned we show in Proposition 3.7

that every subset F of G is SD for Ar
p(G) for all 1 ≤ r ≤ ∞, provided φ is SD for

Ap(G).

Section 4 is concerned mostly with the abelian case. As an application of Theo-

rem 2.3(i) we get an improvement of an important result of Saeki [Sa] namely

Theorem 1.8 Let G be a locally compact abelian group and F be a nowhere dense

closed subset. If F is SD set for A2(G), then F is a ESD set for Ar
2(G) for all 1 ≤ r ≤ ∞.

Recall that the closed interval [0, 1] is SD, but is not ESD for A2(R), see [Ru, Ro,

GMc].

The main result in Section 4 is the following.

Theorem 1.9 Let G be an abelian, metrisable, locally compact group. Let F be a

compact scattered subset of G and 1 ≤ r ≤ ∞. If Ar
p(F) is w.s.c., then F is finite.

Corollary 1.10 Let G be a metrisable locally compact group and H be a closed abelian

subgroup. Let F ⊂ H be a compact scattered subset. If F is a SD for A2(G), then F is

finite.

In Section 5 we prove that the sequential and the net definitions of SD [or ESD]

sets are equivalent, provided the group G is σ-compact.

2 Strong and Extremely Strong Ditkin Sets

Let 1 < p < ∞ be fixed. If F is a closed subset of G, let Ir
F = {v ∈ Ar

p; v = 0 on F},

for 1 ≤ r ≤ ∞. If r = ∞, let Ir
F = IF . Denote by, J0

F = {v ∈ Ap ∩Cc; F ∩ sptv = φ},

thus J0
F ⊂ Ir

F if 1 ≤ r ≤ ∞. For u ∈ Ar
p, denote by

‖u‖Mr[F] = sup{‖uv‖Ar
p
; v ∈ Ir

F, ‖v‖Ar
p
≤ 1}

and if F = φ, the void set, then denote by ‖u‖Mr[φ] = ‖u‖Mr , the multiplier norm

on Ar
p. Furthermore if r = ∞, omit r and denote for example ‖u‖Mr = ‖u‖M (the

multiplier norm on Ap, etc. . . . )

In the sequel we will study D, SD, and ESD sets for the algebras Ar
p(G), 1 ≤ r ≤

∞. To clarify these notions we note the following:

(1) The closed interval [a, b] for a < b is SD but not ESD for A2(R), see [Ro, p. 188].

However, F = [a, b] × {0} ⊂ R2 is D but not SD for A2(R2), see [Ru, 7.5.2] and

[Ro, p. 187] or [GMc, p. 73], for much more.

(2) If G is a discrete abelian group, then infinite Sidon sets are SD but not ESD for

A2(G) (see [DuR, p. 59]), yet they are ESD for Ar
2(G) for all 1 ≤ r ≤ 2. We prove

in the sequel that the above and substantially more holds true.

(3) In the context of arbitrary G, clearly

φ is a SD set for Ap(G) if and only if there exists a net vα ∈ Ap ∩Cc such that

‖vvα − v‖Ap
→ 0 for all v ∈ Ap(G) and sup ‖vα‖M < ∞.

(a) This is the case if G is amenable. This is also the case for p = 2 if G is the free

group on n > 1 generators and for many more nonamenable groups (see

[dCH] and [Do, p. 709]).
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(b) If G = SL(n, Rn) ∝ Rn, and n > 1, then the void set φ is not SD for the

Fourier algebra A2(G) by Haagerup’s result, see [Do].

Theorem 2.1 Let G be arbitrary, F a closed subset and 1 ≤ r < ∞. Assume that φ is

an SD set for Ap(G). Then F is a D set for Ap(G) if and only if F is a D set for Ar
p(G).

Proof Let F be a D set for Ap. Let uα ∈ Ap ∩ Cc be an approximate identity for

Ap such that ‖uα‖M ≤ B < ∞. Let v ∈ IF ∩ Cc. There exist vn ∈ J0
F such that

‖vnv − v‖Ap
→ 0. But then ‖vnv − v‖Lr → 0, since v ∈ Cc. Thus ‖vnv − v‖Ar

p
→ 0.

Assume now that v ∈ Ir
F . By [Gr1, Cor. 2], Ar

p has an approximate identity eα ∈
Ap ∩Cc.

Let ∈> 0 and α0 satisfy ‖veα − v‖Ar
p

<∈ /2 if α ≥ α0. Since veα0
∈ IF ∩ Cc, let

vn ∈ J0
F satisfy ‖vnveα0

− veα0
‖Ar

p
→ 0, by the above. Chose m such that

‖vmveα0
− veα0

‖Ar
p
< ∈ /2.

Thus ‖v − vmeα0
v‖Ar

p
<∈. Hence F is a D set for Ar

p(G).

Assume now that F is a D set for Ar
p. If v ∈ IF ∩ Cc ⊂ Ar

p, there are vn ∈ J0
F

such that ‖vnv − v‖Ap
≤ ‖vnv − v‖Ar

p
→ 0. If now v ∈ IF and ∈> 0, let α0 satisfy

‖vuα0
− v‖Ap

<∈ /2.

Let v0 ∈ J0
F satisfy ‖vuα0

v0 − vuα0
‖Ap

<∈ /2. Then ‖v − vuα0
v0‖Ap

<∈ and

uα0
v0 ∈ J0

F . (We only used that φ is a D set for Ap in this part.)

Remark (i) This theorem has been proved in the case where F is a single point

in [Bu1].

(ii) It does not seem to be known whether for A2(RN ), a set F is an S set if and only

if it is a D set (see [RS, (2.5.5)]).

Lemma 2.2 For any closed subset F of G and u ∈ IF, ‖u‖Mr[F] ≤ ‖u‖M[F], for all

1 ≤ r < ∞. In particular ‖u‖Mr ≤ ‖u‖M .

Proof If u ∈ IF , then ‖u‖∞ ≤ ‖u‖M[F]. Since x /∈ F, let V be a neighborhood of x

such that its closure V̄ is compact and disjoint from F. There is some v ∈ Ap such

that sptv ⊂ V and 1 = v(x) = ‖v‖Ap
. Then

|u(x)| = |u(x)v(x)| ≤ ‖uv‖Ap
≤ ‖u‖M[F]‖v‖Ap

= ‖u‖M[F].

Hence if u ∈ IF , v ∈ Ir
F , then

‖uv‖Ar
p
= ‖uv‖r + ‖uv‖Ap

≤ ‖u‖∞‖v‖r + ‖u‖M[F]‖v‖Ap

≤ ‖u‖M[F]

(

‖v‖r + ‖v‖Ap

)

= ‖u‖M[F]‖v‖Ar
p
.

Hence ‖u‖Mr[F] ≤ ‖u‖M[F].

Let G be discrete. Then G is FC if and only if it has finite conjugacy classes. If G

is countable, then G is Type I if and only if G is an extension of a finite group by an

abelian one, see [Dix, 13.11.12]. All of these are amenable groups, see [MS].
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Theorem 2.3 Let G be arbitrary, F be a closed subset ,and 1 ≤ r < ∞. Then,

(i) if F is SD [F is ESD] for Ap(G) then F is SD [F is ESD] for Ar
p(G), respectively;

(ii) let G be discrete and contain an abelian or solvable or type I or a FC group H. Let

p = 2. Then every infinite subset E of H contains an infinite subset F, such that

A2(F) = C0(F). The set F, is ESD for Ar
2(G), for all 1 ≤ r ≤ 2, but is not ESD for

A2(G).

Proof (i) Let, vα ∈ J0
F satisfy ‖vαv − v‖Ap

→ 0 for all v ∈ IF and sup ‖vα‖M[F] = B,

[sup ‖vα‖M = B]. Then ‖vα‖∞ ≤ B. Hence ‖vα − 1‖
∞

≤ 1 + B. If v ∈ Ir
F and

∈> 0, let K ⊂ G be compact and satisfy (1 + B)r
∫

G∼K
|v|r dλ <∈. Chose α0 such

that
(

‖(vα − 1)v‖Ap

)r
<∈ /λ(K) if α ≥ α0. Hence

∫

|(vα − 1)v|
r
≤

∫

K

|(vα − 1)v|
r

+ (1 + B)r

∫

G∼K

|v|r < 2 ∈ if α ≥ α0.

Thus ‖vαv − v‖Ar
p
→ 0 for all v ∈ Ir

F .

But by the above lemma ‖u‖Mr[F] ≤ ‖u‖M[F],
[

‖u‖Mr ≤ ‖u‖M

]

, respectively.

Hence F is a SD set [ESD set] for Ar
p, respectively.

(ii) In such discrete amenable groups H, E has to contain an infinite Sidon subset

F (i.e., such that A2(F) = C0(F)) by [Ru, Rob, Tho], and especially [MS]. And such

infinite sets F satisfy the above; see Corollary 3.6 for much more.

Question Do there exist groups G and subsets F that are SD for Ar
p(G), for some

1 ≤ r < ∞, but are not SD for Ap(G)?

Conjecture There exists a discrete group G such that φ is not a SD set for A2(G) (a

candidate for such G could be SL(2, Z) ∝ Z2, see [HaKr], and compare with Miao

[Mi]). Since φ is a SD set for Ar
2(G) for 1 ≤ r ≤ 2, a proof of this conjecture would

show that the above question has an affirmative answer.

3 Subsets of G that are not ESD

At times we denote A2(G) by A(G). The main tool in this section is the following

lemma.

Lemma 3.1 Let G be any locally compact group and F ⊂ G be a closed subset. If 1F ∈
B(Gd), then A(F) (hence any of its closed subspaces) is a weak sequentially complete

(w.s.c) Banach space.

Proof If vi ∈ IF and u ∈ A(G), then 1F(u + v1) = 1F(u + v2). If w ∈ A(F), there is

some w ′ ∈ A(G) such that w ′(x) = w(x) for all x ∈ F. Define by eF(w) ∈ B(Gd), the

function eF(w) = 1Fw ′. Clearly eF : A(F) → A(G)1F ⊂ B(Gd) is linear, one-to-one,

and onto. But

(3.1) ‖eF(w)‖B(Gd) = ‖1Fw ′‖B(Gd) ≤ ‖1F‖B(Gd)‖w‖A(F) ∀w ∈ A(F).
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Since for all v ∈ IF , 1F(w ′ + v) = 1Fw ′ thus

‖1Fw ′‖B(Gd) = ‖1F(w ′ + v)‖B(Gd) ≤ ‖1F‖B(Gd)‖w ′ + v‖A(G).

By taking inf. over all v ∈ IF , we get (3.1). We have used above that for all u ∈ A(G),

‖u‖A(G) = ‖u‖B(G) = ‖u‖B(Gd), by [Ey1, (2.24), pp. 202, 208]. Hence eF : A(F) →
A(G)1F ⊂ B(Gd) is 1 − 1 continuous and onto.

We will show that A(G)1F is a norm closed subspace of the w.s.c. Banach space

B(Gd) (as any predual of any W ∗ algebra by [Tak, p. 148, Cor. 5.2]. But closed sub-

spaces of w.s.c. Banach spaces are also w.s.c. , see below. It will hence follow that

A(F) is w.s.c..

Let {un1F} be a norm Cauchy sequence in A(G)1F hence in B(Gd), with un ∈
A(G). Clearly IF = {v ∈ A(G), v = 0 on F} is a norm closed subspace of A(G) hence

of B(Gd) (it may not be an ideal in B(Gd)). Let t : B(Gd) → B(Gd)/IF denote the

quotient map into the quotient Banach space B(Gd)/IF . Now t(un1F) ∈ A(G)/IF ⊂
B(Gd)/IF thus, for some u ∈ A(G)/IF = A(F), t(un1F) → u, in the norm of A(F).

Let u ′ ∈ A(G) satisfy t(u ′) = u. Then u ′(x) = u(x) for all x in F and eF(u) =

1Fu ′ ∈ A(G)1F . But {un1F} is norm Cauchy in B(Gd), hence un1F → w in the norm

of B(Gd), for some w ∈ B(Gd). But ‖v‖
∞

≤ ‖v‖B(Gd). Hence un1F(x) → w(x) for

all x in G. But if x ∈ F, t(un1F)(x) = un(x) → u(x), since t(un) ∈ A(G)/IF and

‖v‖
∞

≤ ‖v‖A(F), for v ∈ A(F). Hence eF(u) = u ′1F = w, and w ∈ A(G)1F .

Any closed subspace Y of a w.s.c. Banach space X is w.s.c. Since a weak Cauchy

sequence in Y is such in X, it hence converges weakly to some element of X, which

has to belong to Y .

We recall the following results of Herz [Hz1, p. 92], which are needed for the next

lemma.

Let H be a closed subgroup of the locally compact group G. Then :

(i) Restriction of functions from G to H is a contraction from Ap(G) onto Ap(H).

(ii) For all h ∈ Ap(H) and ∈> 0 ∃g ∈ Ap(G), such that g = h on H and ‖g‖Ap(G) ≤

‖h‖Ap(H)+ ∈.

(If p = 2, one may take ‖g‖Ap(G) = ‖h‖Ap(H)).

Lemma 3.2 Let H be a closed subgroup of G and F ⊂ H be a closed subset. If F is SD

[ESD] for Ap(G), then it is SD [ESD] for Ap(H), respectively.

Proof Denote by

IG
F = { f ∈ Ap(G); f = 0 on F}, IH

F = { f ∈ Ap(H); f = 0 on F}, and

J0G
F = { f ∈ Ap ∩Cc(G); F ∩ spt f = φ}, J0H

F = { f ∈ Ap ∩Cc(H); F ∩ spt f = φ}.

Let uα ∈ J0G
F satisfy ‖uαw − w‖Ap(G) → 0 for all w ∈ IG

F . Let vα = uα on H. Then

vα ∈ J0H
F , since F ∩ sptvα ⊂ F ∩ sptuα = φ. If v ∈ IH

F , let u ∈ Ap(G) extend v. Then

u ∈ IG
F and ‖vαv − v‖Ap(H) ≤ ‖uαu − u‖Ap(G) → 0.
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Let ∈> 0 and v ∈ IH
F , ‖v‖Ap(H) ≤ 1. Let u ∈ Ap(G), ‖u‖Ap(G) < 1+ ∈, extend v to

G. Then

‖vαv‖Ap(H) ≤ ‖uαu‖Ap(G) ≤ ‖uα‖MG[F](1+ ∈).

Thus ‖vα‖MH [F] ≤ ‖uα‖MG[F], for arbitrary closed F, in particular for F = φ.

The main result of this section is the following theorem.

Theorem 3.3 Let H ⊂ G be a closed amenable subgroup of the locally compact group

G. Let F ⊂ H be closed. If F is ESD for A2(G) then A2(F) (hence any of its closed

subspaces) is a w.s.c. Banach space.

Proof By Lemma 3.2, F is ESD for A2(H) and H is amenable, hence the multiplier

norm and the actual norm coincide on A2(H). Thus by [Fo1, Lemma 3.3], 1F ∈
B(Hd). By our Lemma 3.1, AH

2 (F) = A2(H)/IH
F is w.s.c. But A2(G)/IG

F = AH
2 (F),

as a set of functions. Let v ∈ A2(H), w ∈ IH
F , and let u, w1 ∈ A2(G) extend v, w

to G. Then ‖v + w‖A2(H) ≤ ‖u + w1‖A2(G). Hence ‖v‖AH
2 (F) ≤ ‖u‖A2(F). By the open

mapping theorem, AH
2 (F) and A2(F) are isomorphic. Thus A2(F) is w.s.c.

Corollary 3.4 Let H ⊂ G be a closed subgroup that is amenable and F ⊂ H be closed.

If F is an infinite Varopoulos set for A2(G), then F is not an ESD set for A2(G).

Proof By definition A2(F) ≈ C0(E1)⊗̂ · · · ⊗̂C0(En), an isomorphism. If the right

hand side is w.s.c. so is every subspace and in particular so is each C0(Ei). But then

the identity I : C0(Ei) → C0(Ei) is a weakly compact operator, by [DS, Theorem

VI.7.6] Hence I2 is a compact operator, by [DS, Theorem VI.7.5. p. 494], and C0(Ei)

is finite dimensional and F is finite.

Remark The above is a vast improvement of [DuR, (5.5.5), p. 59] who mentioned

it for Sidon subsets of discrete abelian groups.

Example Let G = Z denote the additive integers. Let F ⊂ Z be an infinite

1/3-Kronecker set, see [Va1, Va2], or [GMc, 11.8.4]. For any decomposition of F

into disjoint infinite subsets as F = X ∪ Y , the set X + Y is a Varopoulos set, and as

such, is not an ESD set for A2(Z), yet it is an ESD set for Ar
2(Z), for all 1 ≤ r ≤ 2. Z

can be replaced by any discrete abelian group G.

Proposition 3.5 Let G be discrete and 1 ≤ r ≤ max(p, p ′). Then every subset F of G

is ESD for Ar
p(G).

Proof If G ∼ F = E is finite, let eα = 1E. Then for all v ∈ Ir
F , eαv = v, and

‖eα‖Mr ≤ ‖1E‖Ar
p

< ∞. Thus F is ESD for Ar
p. If E is infinite, it is proved in

[Gr1, Theorem 7] that Ar
p(G) = ℓr(G), with norm equivalence, for the above r. Let

Eα ⊂ E be a net of finite sets such that Eα ↑ E and let eα = 1Eα
.

If v ∈ Ir
F , then

‖eαv − v‖Ar
p
≤ d‖eαv − v‖ℓr(G) = ‖1E−Eα

v‖ℓr(G) → 0.

And, ‖eαv‖ℓr(G) ≤ ‖v‖ℓr(G) thus ‖eα‖Mr ≤ d ′, where d, d ′ are constants.
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Corollary 3.6 Let G be a discrete group. Assume that G contains an infinite subgroup

H that is abelian (or solvable, or type I or FC). Then every infinite subset E of H contains

an infinite subset F that is ESD for Ar
2(G), for all 1 ≤ r ≤ 2 but is not ESD for A2(G).

Proof As mentioned before E contains an infinite Sidon set F for A2(H), by [Ru,

Rob, Tho, MS]. Hence A2(G) restricted to F coincides with C0(F), which is not w.s.c.

F is a ESD set for Ar
2(G), for all 1 ≤ r ≤ 2, by Proposition 3.5.

Question Does there exist an infinite discrete group G for which all subsets are

ESD for A2(G)?

Proposition 3.7 Let G be discrete and satisfy that φ is SD for Ap(G) (amenable groups

or, free groups for p = 2, are such). Then any subset F of G is SD for Ar
p(G) for all

1 ≤ r ≤ ∞.

Proof By [Gr1, Cor. 2] there exists a net eα ∈ Ap, with finite support, such that

‖eαv − v‖Ar
p
→ 0 for all v ∈ Ar

p and sup ‖eα‖Mr = B < ∞. Let E = G ∼ F and,

uα = eα1E. Then uα ∈ Ar
p(G), since it has finite support. Clearly uα ∈ Ir

F and

uαv = eαv for all v ∈ Ir
F . Hence, for v ∈ Ir

F ,

‖uαv − v‖Ar
p
= ‖eαv − v‖Ar

p
→ 0 and ‖uαv‖Ar

p
= ‖eαv‖Ar

p
≤ B‖v‖Ar

p
.

Thus ‖uα‖Mr[F] ≤ B < ∞.

4 Some Results for the Abelian Case

Theorem 2.3 allows one to improve a powerful result of Saeki [Sa], which definitively

improves [Ro, Thm. 1.3]. Saeki’s result, namely the r = ∞ case, is assumed in the

proof.

Theorem 4.1 Let G be a locally compact abelian group and F be a closed nowhere

dense subset. If F is a SD set for A2(G), then F is an ESD set for Ar
2(G), for all 1 ≤ r ≤

∞.

Proof By Saeki [Sa] this holds for A2(G) i.e., for r = ∞. Now apply Theorem 2.3(i).

Remark Recall that [0, 1] is SD but not ESD for A2(R). Meyer and Rosenthal have

proved that a polygon P in R2 is never SD. And the closure of its exterior is SD if and

only if P is convex, and analogously in Rn, see [GMc, p. 73].

Theorem 4.2 Let G be an amenable SIN group, see [HR], and H be a closed abelian

subgroup. Let F ⊂ H be a closed, nowhere dense subset of H. If F is SD for A2(G), then

F is ESD for Ar
2(G), for all 1 ≤ r ≤ ∞.

Proof By Lemma 3.2, F is SD for A2(H). Hence by Theorem 4.1, with r = ∞ (i.e.,

Saeki’s result) F is ESD for A2(H). Thus F is a closed set in R(Hd), the ring generated

by cosets of all subgroups of Hd, see [Sch]. Thus F ∈ R(Gd). But then by Forrest
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[Fo2, Theorem 3.11], IF has an an approximate identity, bounded even in the norm

of A2(G). Since F is a set of synthesis, (loc. cit.), the approximate identity can be

chosen in J0
F . Thus F is ESD for A2(G).Now apply Theorem 2.3(i).

In a sense, the next result complements and improves Theorem 3.3 in the case

where G is a locally compact abelian group.

Let G be an abelian metrisable locally compact group. If F is a compact and scat-

tered (i.e., countable) subset of G, then F might be a Helson set for A2(G) in which

case A2(F) = C(F) is not w.s.c. unless F is finite.

However there exist countable and compact subsets F of R, which are not Helson

sets, see [Ru, (5.6.7), (5.6.8)]. Can A2(F) be w.s.c.? The next result shows that the

answer is vastly NO.

Theorem 4.3 Let G be an abelian, metrisable, locally compact group. Let F be a

compact scattered subset of G and 1 ≤ r ≤ ∞.

If Ar
p(F) is w.s.c., then F is finite.

Proof By [Gr1, Lemma 2], Ar
p(F) and Ap(F) are isomorphic Banach algebras. We

will prove the result for Ap(F). Now Ap = Ap ′ , since G is abelian ([Hz2, p. 72]), so

let 1 < p ≤ 2.

F is scattered and hence is a set of synthesis by [Ey2, p. 10]. Hence in the notation

of [Lu2], CV p(F) = Ap(F)∗. By [Lu2, Theorem 2.8], Ap(F)∗ has the RNP afortiori

has the WRNP, if 1 < p ≤ 2, see [Saa2, p. 422]. Hence by [Saa1, Theorem 1], by

taking there the set K as the closed unit ball in Ap(F)∗, we get that every bounded

sequence in Ap(F) has a weak Cauchy subsequence.

If F is infinite, let x0 be a nonisolated point of F. Let Vn be a neighborhood base

at x0 such that V̄n is compact. Let un ∈ Ap(G) be a tenting sequence at x0, i.e.,

‖un‖Ap
= 1 = un(x0), and un = 0 off V̄n. Let vn ∈ Ap(F), satisfy vn(x) = un(x) for

x ∈ F.

There exists a subsequence of vn, again denoted by vn, which is weak Cauchy. If

Ap(F) is w.s.c., there is some v ∈ Ap(F) such that (φ, vn) → (φ, v), for all φ ∈ Ap(F)∗.

But M(F) ⊂ Ap(F)∗. Hence vn(x) → v(x), for all x ∈ F. Thus v(x0) = 1 and v(x) = 0

if x 6= x0. But v ∈ C(F), which cannot be. Thus Ap(F) is not w.s.c.

Corollary 4.4 Let G be a metrisable locally compact group and H be a closed abelian

subgroup. Let F ⊂ H be a compact scattered subset. If F is a SD set for A2(G), then F is

finite.

Proof By Lemma 3.2, F is SD for A2(H). By Saeki’s part of Theorem 4.1, F is ESD for

A2(H). By Theorem 3.3, A2(H)/IH
F is w.s.c., where IH

F = {u ∈ A2(H); u = 0 on F}.

Hence by Theorem 4.3, F is finite.

Remark One cannot replace the condition that “F is scattered” by “F is nowhere

dense”. Since if G = T2
=

{

(eix, ei y); 0 ≤ x, y < 2π
}

, then (T, 1) =

{

(eix, 1); 0 ≤

x < 2π
}

, is a closed infinite subgroup, hence is an ESD set, which is nowhere dense

in G. See Rosenthal [Ro, pp. 187–190] for more.
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5 When Sequences are Enough

The definition of SD and ESD sets in Gilbert [Gi], Rosenthal [Ro], and Schreiber

[Sch] is given in terms of sequences of approximate identities (for the Fourier algebra

of a locally compact abelian group). It is stated in [Ro, p. 191] and in [Sch, p. 811]

that their results hold true if SD and ESD are defined in terms of nets, as done in this

paper.

For which groups are these definitions equivalent? The next result shows that this

equivalence, and more, holds for the case of σ-compact groups and for all the algebras

Ar
p(G).

Theorem 5.1 Let G be a σ-compact locally compact group, F be a closed subset, and

1 ≤ r ≤ ∞. If F is SD [ESD] for Ar
p(G), then there exists a sequence vn ∈ J0

F such that

‖vnv − v‖Ar
p
→ 0 ∀v ∈ Ir

F and sup ‖vn‖Mr[F] < ∞,
[

sup ‖vα‖Mr < ∞
]

,

respectively.

If a sequence vn ∈ J0
F , which is an approximate identity for Ir

F , exists, then F is a SD

set but is not necessarily a ESD set for Ar
p.

Proof Let F be a SD [ESD] set and let vα ∈ J0
F satisfy ‖vαv − v‖Ar

p
→ 0 for all v ∈ Ir

F

and sup ‖vα‖Mr[F] < ∞, [sup ‖vα‖Mr = B < ∞], respectively.

Since G is σ-compact, so is G ∼ F. Hence let Kn be compact, and let Un = U−1
n

be neighborhoods of e satisfying that Ūn is compact and KnU 2
n ⊂ Kn+1 and

⋃

Kn =

G ∼ F. Let hn = λ(Un)−11KnUn
∗ 1Un

. Then hn = 1 on Kn and hn = 0 off KnU 2
n . Let

vαn
satisfy ‖vαn

hn − hn‖Ar
p
≤ 1 and let wn = vαn

+ hn − vαn
hn. Then

‖wn‖Mr[F] ≤ 1 + ‖vαn
‖Mr[F] ≤ 1 + B,

[‖wαn
‖Mr ≤ 1 + B], respectively. Thus wn = 1 on Kn and wn = vαn

off KnU 2
n . Hence

wn ∈ J0
F .

Assume now that v ∈ J0
F . Then there is some n0 such that sptv ⊂ Kn if n ≥ n0.

Thus wnv − v = 0 if n ≥ n0.

Let v ∈ Ir
F be arbitrary and ∈> 0. F is a synthesis set, hence there is some u ∈ J0

F

such that ‖v − u‖Ar
p
<∈. Hence

‖wnv − v‖Ar
p
≤ ‖wn(v − u)‖Ar

p
+ ‖wnu − u‖Ar

p
+ ‖u − v‖Ar

p

< (1 + B) ∈ + ∈ +‖wnu − u‖Ar
p
.

But there is some n0 such that ‖wnu − u‖Ar
p
= 0 if n > n0. Thus ‖wnv − v‖Ar

p
→ 0

for all v ∈ Ir
F . This proves the first part.

Let G be abelian, discrete, and countable and let F be an infinite Sidon set for

A = A2(G). Then F is a SD set but not an ESD set for A. Hence there exists a sequence

vn ∈ J0
F such that ‖vnv − v‖A → 0 for all v ∈ IF . Thus sup ‖vn‖M[F] < ∞. But there

is no net vα ∈ J0
F such that ‖vαv − v‖A → 0 for all v ∈ IF and sup ‖vα‖M < ∞ (note

that ‖u‖M = ‖u‖A), since F is not an ESD set for A.
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Remark Only the σ-compactness of G ∼ F has been used in the proof. This theo-

rem improves [Gr1, p. 408(iii)].
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[Dix] J. Dixmier, Les C∗ algèbres et leur représentations. Deuxième ed., Cahiers Scientifiques, XXIX,
Gauthier-Villars, 1969.

[dCH] J. deCannière and U. Haagerup, Multipliers of the Fourier algebras of some simple Lie groups and
their discrete subgroups. Amer. J. Math. 107(1985), no. 2, 455–500. doi:10.2307/2374423

[Do] B. Dorofaeff, The Fourier algebra of SL(2, R) ⋊ Rn, n ≥ 2, has no multiplier bounded
approximate unit. Math. Ann. 297(1993), no. 4, 707–724. doi:10.1007/BF01459526

[DuR] C. F. Dunkl and D. E. Ramirez, Topics in harmonic analysis. Appleton-Century Mathematics
Series, Appleton-Century-Crofts. New York, 1971.

[DS] N. Dunford and J. T. Schwartz, Linear operators. I. General theory. Pure and Applied
Mathematics, 7, Interscience Publishers, New York, 1958.
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[Ey2] , Algèbres Ap et convoluteurs de Lp . Séminaire Bourbaki 1969/70, Lecture Notes in Math.,
180, Springer, Berlin, 1971, pp. 364–381.

[Fo1] B. Forrest, Amenability and bounded approximate identities in ideals of A(G). Illinois J. Math.
34(1990), no. 1, 1–25.

[Fo2] , Amenability and ideals in A(G). J. Austral. Math. Soc. Ser. A 53(1992), no. 2, 143–155.
doi:10.1017/S1446788700035758
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