
Can. J. Math., Vol. XXXV, No. 1, 1983, pp. 117-130 

NEW LATTICE PACKINGS OF SPHERES 

E. S. BARNES AND N. J. A. SLOANE 

1. Introduction. In this paper we give several general constructions 
for lattice packings of spheres in real w-dimensional space Rw and complex 
space Cn. These lead to denser lattice packings than any previously known 
in R36, R64, R80, . . . , R128, . . . . A sequence of lattices is constructed in Rn 

for n = 24m ^ 98328 (where m is an integer) for which the density A 
satisfies log2 A œ — (1.25 . . .)n, and another sequence in Rn for n = 2m 

(m any integer) with 

log2 A ~ - \n log2 log2 n. 

The latter appear to be the densest lattices known in very high dimen
sional space. (See, however, the Remark at the end of this paper.) In 
dimensions around 216 the best lattices found are about 2131000 times as 
dense as any previously known. 

Minkowski proved in 1905 (see [20] and Eq. (23) below) that lattices 
exist with log2 A > - w a s w - ^ o o , but no infinite family of lattices with 
this density has yet been constructed. Lattices with log2 A ̂  — \n log2 n 
were given in [2] (see also 2.2(e) below), nonlattice packings with 
log2 A ~ — \n log2 log2 n were given in [14], [15], and nonlattices with 
log2 A > — Qn + o(n) in [21]. The latter two families of packings were 
obtained by applying Construction C of [15] to certain sequences of codes. 

Our first construction, Construction D (see 2.1), resembles Construc
tion C in that it is also based on a sequence of codes, but differs in pro
ducing lattices provided only that the codes are binary, linear and nested. 
In this way we obtain new record densities for lattices in dimensions 36, 
64, etc., and an infinite sequence of lattices with 

log2 A ~ — \n log2 log2 n 

(see 2.2(f) and Table I). We also give a complex version of Construction 
D (2.3), which applies to codes over GF(3) and GF(4), and another 
version, Construction D' (2.5), which defines a new lattice by congruences 
(obtained from the parity-check equations defining a nested family of 
codes) rather than by a set of generating vectors. 

In a recent paper Bos [3] has generalized Construction C so as to 
combine several copies of an w-dimensional lattice A to produce what is 
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TABLE I Center density ô of w-dimensional lattice packing^ obtained 
from BCH codes. (*: equals old record; **: new record) 

n log2 8 n log 2 Ô n log 2 Ô 

4 -3* 256 250** 16384 57819** 
8 _4* 512 698** 32768 130510** 
16 _4* 1024 1817** 65536 290998** 
32 0* 2048 4502** 131072 642300** 
64 19 4096 10794** 
128 85 8192 25224** 

in general a nonlatt ice packing in dimension mn (Construction C is the 
case m = 1). In Section 3 we give a new general construction which was 
inspired by Bos's, bu t differs from it in always producing lattices. Our 
construction also differs from his in making essential use of a certain 
linear transformation T t h a t maps the minimal vectors of A into "deep 
holes" in t ha t lattice, i.e., into points of R™ which are a t maximal distance 
from the nearest point of A (cf. [7], [10]). By means of this construction 
we are able to construct several new and very dense lattices having the 
same density as Epos's nonlatt ice packings (see 3.7 and Table I I ) . Fur ther
more, using knowledge of the holes in the Leech lattice (see [7], [9], [10]), 
we use t h a t lattice to construct the extremely good sequence of lattices in 
dimensions 24m :g 98328 mentioned in the opening paragraph (see 3.7(d) 
and Table I I I ) . Finally, Table IV shows the quite spectacular improve
ment obtained in dimensions around 216. 

Notation. (See [15], [17], [20], [22].) T h e norm of a vector x is its 
squared length x • x. T h e minimal norm M of a lattice L in Rn is min 
{x - x\x £ L, x 5* 0}, its de te rminant det L is the volume of a funda
mental parallelepiped, and the densi ty of the packing is 

A = (W~M)nVn/det L, 

where Vn is the volume of a sphere of radius 1 in Rw. T h e center density 

8 = A/V„. 
An [n, k} d] code over GF(q) is a linear code containing qk codewords of 

length n separated by a Hamming distance of a t least d. 

2. C o n s t r u c t i o n s D a n d D' . 

2.1 Construction D. This construction uses a nested family of binary 
codes to produce a lattice packing L in RJ1. I t generalizes a construction of 
Barnes and Wall [2], and has some features in common with Construct ion 
C of [15], al though differing from it in always producing latt ice packings. 

Let 7 = 1 or 2, and let Co 3 Ci 2 • • • 3 Ca be binary linear codes, 
where Cz has parameters [n, kiy di], with dt ^ 4*/7 for i = 1, . . . , a, 
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and Co is the trivial [n, n, 1] code GF(2)n. Choose a basis ch . . . , cn for 
GF(2)n such that ch . . . , cfct- span C* for i = 0, . . . , a. Define the map 
at : GF{2) —» R by o-j(x) = x/2i~1 (x = 0 or 1), for i = 1, . . . , a, and 
let the same symbol a{ denote the map GF(2)n —> R* given by 

(Ti(xi, . . . , xn) = (cr^xi), . . . , <Ti(xn)). 

Also let ka+i = 0. Then the new lattice L in Rw consists of all vectors of 
the form 

z=l j=\ 

where / G (2Z)W and a/z ) = 0 or 1. 

THEOREM 1. L is a lattice, with minimal norm at least 4/7, determinant 

a 
n— 2-J hi 

(2) det (L) = 2 i=1 

and hence center density 
a 

2~, ki—n 

(3) ô ^ 7-n/22 i==1 . 

This is a consequence of Theorem 3 below. 

An integral basis for L is given by the vectors (T^CJ) for i = 1, . . . , 
a,j = ki+i-\-l,...,kj, plus n — k\ vectors of the shape (0, . . . , 0, 2, 0, 
. . . , 0 ) . 

2.2. Examples, (a) If a = y — 1 and G has minimum distance 4, 
Construction D coincides with an important special case of Construction 
A of [15]. A typical example is obtained when C\ is the [8, 4, 4] Hamming 
code (see [17]). We may take 

a = (1, 1, 1, 1 ,0 ,0 ,0 ,0 ) , 
c2 = ( 0 , 0 , 0 , 0 , 1, 1, 1, 1), 
c, = (l, 1, 0, 0, 1, 1, 0,0) , 
c, = (1,0, 1,0, 1,0, 1,0), 
Cb = (l, 0, 0, 0, 0, 0, 0, 0), 
c& = (0, 1 , 0 , 0 , 0 , 0 , 0 , 0 ) , 
c7 = (0, 0, 1, 0, 0, 0, 0, 0), 
cs = ( 0 , 0 , 0 , 0 , 1 ,0 ,0 ,0) . 

Then L is a version of the E8 lattice (see [5], [10], [15]), is spanned by 
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the rows of the matr ix 

1 1 1 1 0 0 0 0 
0 0 0 0 1 1 1 1 
1 1 0 0 1 1 0 0 
1 0 1 0 1 0 1 0 
2 0 0 0 0 0 0 0 
0 2 0 0 0 0 0 0 
0 0 2 0 0 0 0 0 
0 0 0 0 2 0 0 0 

and has minimal norm 4, de te rminant 24, and 5 = 2~4. 

(b) When a = y = 2, G is the trivial [n, n — 1,2] code, and C2 has 
minimum distance 8, Construction D coincides with an impor tan t special 
case of Construction B of [15]. For example if C2 is the [16, 5, 8] Reed-
Muller code (see [17]) we obtain Barnes and Wall ' s 16-dimensional 
lattice Aie with center density 5 = 2"4 (see [2], [10], [15]). 

(c) Whenever Construction C of [15] can be applied to codes which are 
linear and nested, Construction D produces a lattice packing with the 
same density. 

For example let G and C3 be the trivial [36, 35, 2] and [36, 1, 36] codes, 
and let C2 be the [36, 20, 8] code found by Rao and Reddy [19]. Then L is 
a 36-dimensional lattice with ô = 4, a new record. Similarly one can obtain 
ô = \ / 2 , 2 and 2 \ / 2 in dimensions 33, 34 and 35 respectively. Bos [3] had 
used Construction C with these codes to obtain nonlatt ice packings with 
the same densities. 

(d) We obtain a new record of ô = 222 for lattice packings in R64 using 
the following sequence of extended cyclic codes: [64, 64, 1] 3 [64, 57, 4] 
2 [64, 28, 16] 3 [64 ,1 , 64] (cf. § 6.6 of [15]). 

(e) Generalizing Example (b), if the d are all Reed-Muller codes of 
length n = 2m, we obtain a sequence of lattices found by Barnes and Wall 
[2]. Asymptotical ly these have log2 A ~ —\n log2 n, and contact number 

T = (2 + 2) (2 + 22) . . . (2 + 2m) ~ 4.768 . . . 2w(m+1>/2. 

Nonlat t ice packings with the same parameters had been obtained in [15] 
using Construction C. 

(f) Similarly the 2w-dimensional nonlatt ice packings P2mb obtained 
from BCH codes in [15] may now be converted to equally dense lattice 
packings B2m. We have calculated their density by computer for m ^ 17, 
and the results are shown in Table I. The BCH bound [17, Chapter 7] was 
used to est imate the dimension of the codes involved, so except in small 
dimensions the actual density of these packings may be slightly greater 
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than is shown in the table. (Tables of BCH codes of modest length are 
given in [17], [18].) In Tables I—III, a star indicates that the density 
equals the old record for a lattice packing, while two stars indicate a new 
record. Asymptotically the density of Bn, n — 2m, satisfies 

log2 A ~ — \n log2 log2 n 

(as was proved for the corresponding nonlattice packings in [15]). For 
n ^ 217 these seem to be the densest lattices yet constructed, although for 
500 < n S 98328 we shall construct denser lattices in 3.7(d). The contact 
number of B2m is at present unknown. 

2.3. A complex version of Construction D. Just as Constructions A and 
B of [15] can be generalized to complex lattices (see [23], [24]), so can 
Construction D. We shall give a version which is applicable to codes over 
GF(3) and GF(4), although since this has not yet led to any new lattices 
our treatment will be brief. 

The lattices produced are Z[co]-modules in Cn, where œ = e2lri/z, or in 
other words they are closed under addition and under scalar multiplica
tion by the Eisenstein integers E = {a + bcj\a, è f Z). The construction 
works because 0 = 1 + 2co = \/ — 3 and 2 are primes in E with E/0E = 
GF(3) and E/2E ^ GF(4) (see [24]). 

The complex Construction D. Let TT = 6 and q = 3, or w = 2 and q = 4. 
Let Co 2 Ci 3 • • • 2 C be linear codes over GF{q), where d has 
parameters [n, ku di] and C0 is the trivial [n, n, 1] code. Choose a basis 
Ci, . . . , cn for GF(q)n such that ci} . . . , cki is a basis for Cif i = 0, . . . , a. 
Define at(x) = 7r_(7_1) • x and ka+i = 0. Then the new lattice L in Cn con
sists of all Eisenstein-integral combinations of the vectors / G En and 
<Ti(Cj), for i = 1, . . . , a and ki+i + 1 ^ .7 ^ kt. 

2.4. Examples, (a) With -K = 6 and a = 1, the trivial [3, 1, 3] ternary 
code produces a complex 3-dimensional lattice for which the correspond
ing 6-dimensional real lattice is the root lattice ^6 (cf. [24, § 5.8.2]). This 
is perhaps the simplest presentation of £6 . 

(b) When w = 0, a = 1 and G is the [4, 2, 3] ternary code we obtain a 
complex 4-dimensional version of Es (cf. [24, § 5.8.3]). 

(c) When TT = 0, a = 2 and Cu C2 are the trivial [6, 5, 2] and [6, 1, 6] 
ternary codes, we obtain a complex 6-dimensional version of the Coxeter-
Todd lattice K12 (see [11], [24, § 5.8.5]). 

(d) When TT = 2, a = 1 and C\ is the [6, 3, 4] hexacode over GF(4i) we 
again get Kn ([24, § 5.7.3]). 

2.5. Construction D'. This construction generalizes another of the con
structions in [2], and converts a set of parity-checks defining a family of 
codes into congruences for a lattice, in the same way that Construction D 
converts a set of generators for a family of codes into generators for a lattice. 
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Let 7 = 1 or 2, and let Co 3 C\ 3 • • • 2 Ca be binary linear codes, 
where Ct has parameters [«, ki} dt] and d* ^ 7 • 4* for i = 0, . . . , a. Let 
/ii, . . . , hn be linearly independent vectors in GF(2)n such that, for 
i = 0, . . . , a, d is defined by the r{ = n — kt parity-check vectors 
hi, . . . , hri, and let r_i = 0. Considering the vectors &_> as integral vectors 
in Rw, with components 0 or 1, we define the new lattice U to consist of 
those x £ Zn that satisfy the congruences 

(4) hrx = 0(mod2'+1) 

for all i = 0, . . . , a and ra-i-\ + 1 ^ J ^ ra_*. 

THEOREM 2. 77&e minimal norm of L' is at least 7 • 4a, and 
a 

E n 
(5) detZ/ = 2 i=0 . 

Proof. (5) holds because for each i = 0, . . . , a the lattice satisfies 
ra-i — ra-i-i independent congruences modulo 2 f+1. The proof of the 
minimal norm is straightforward and is omitted. 

By changing the scale and relabelling the codes, Construction D may 
be restated in such a way that the norms and determinants of L and L' 
agree. Then if the Ct are Reed-Muller codes, as in Example 2.2(e), the 
two lattices coincide. In general however the two constructions produce 
inequivalent lattices with the same density. 

3. A new general construction. The following rather general con
struction includes Construction D as a special case. Starting with a lattice 
A in Rm that satisfies certain conditions, we form a new lattice in Rmn 

from a union of cosets of Are = A © A © . . . © A, the cosets being 
specified by a family of linear codes Co 2 Ci 3 . . . 3 Cfl over a field 
GF(2b). Construction D corresponds to the case m = 1, A = 2Z. 

3.1. Conditions to be satisfied by A. We assume that A satisfies four 
conditions. 

(i) The minimal vectors of A span A. 
(ii) There is a linear map T from Rm to Rm that sends all the minimal 

vectors of A into elements of \ A which have norm R2 and are at a distance 
R from A. 

(iii) There is a positive integer v dividing m and an element A G Aut ( A) 
such that 

(6) T' = \A 

and 

(7) \{Al - A) = E f l t r ' , at£ Z. 

Set b = m/v and q — 2b. 
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(iv) A C T A and 

(8) [TA : A] = q. 

It follows from (6) that T = tP where / = 2~1/" and P is an orthogonal 
transformation satisfying P" = A. If i f is the minimal norm of A, we 
have / = R/\/rM, and from (8) 

(9) tm = |det T\ = 2~b = - . 

These conditions are quite restrictive, but as we shall see there are 
several lattices which satisfy them. Condition (7) is imposed only to 
ensure that the new packing is a lattice, and the construction (see 3.6) 
may still be successful even if (7) fails. In most of our examples A = I 
and (7) is trivially satisfied. The construction may be generalized to allow 
T to map A into (l/p) A for a prime p > 2, although we shall not discuss 
this in the present paper. 

3.2. Examples. In these examples R is the covering radius of A and T 
maps the minimal vectors of A into deep holes in A (cf. [7], [10]). 

(a) Take A = 2Z, T = \I, where I denotes the identity map; then 
m = v = 1, t = %, A = I and q = 2. 

(b) Let A be the root lattice D4 (see [1], [5], [8], [15]), in the version in 
which the minimal vectors have the shape (=fc21, 03) and (zbl4), and let 

T = 

then T does map the minimal vectors of D± into the 24 deep holes with 
coordinates of the shape (d=l2, 02) and m = 4, v = 2, t = l / \ / 2 , A = I 
and q = 4. 

(c) Let A be the version of Eg constructed in Example 2.2(a), with 
minimal vectors of the shape (zh2x, 07) and (=Ll4, 04), and let 

1 1 0 0 
1 - 1 0 0 
0 0 1 1 
0 0 1 - 1 

r = i 

l i i i i i i i 
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then m = 8, v = 2, t = l/y/2, A = I and q = 24. Again it is easy to check 
that T maps minimal vectors into deep holes (cf. [8], [10]). 

(d) Let A be the Leech lattice A24 ([6], [13], [15]) in Miracle Octad 
Generator (or MOG) coordinates (see [7], [10]), with det A = 1, M = 4, 
and R = y/2. We take T = %(I + i), where i is the element of the 
Conway group Aut (A24) = -0 shown in Figure 1. This element satisfies 

ÉÉ 
FIGURE 1. The element i of Aut (A24) in MOG notation. In the first column the 1s t and 

3 r d components are to be exchanged, and the 2nd and 4 t h , and then the 2nd and 3 r d com
ponents are negated. Similarly for the other columns. 
i2 = — I, and T maps the minimal vectors of A24 into deep holes of type 
Ax

u (see [7], [9]). We have m = 24, v = 2}t = \/y/2,A = i and q = 212. 
Equation (7) reads 

*(** - ») = -T. 

3.3. The lattices A*. Let Vi, . . . , vm be minimal vectors of A that span 
A. Then Tvu . . . , Tvm span the lattice TA. From (8), TA/A is an 
elementary abelian group of order q = 2&, so that there are b vectors 

Ui(1) = TVn, • • • » ^6 ( 1 ) = Tvrb, 

for appropriate ru . . . , rb, such that TA/ A is isomorphic to the modulo-2 
span of U\{1\ . . . , ub

(l). Define 

A* = T% 

UjH) = T*vrj e Auj = 1 ft, 

for all i Ç Z. The lattice At has minimal norm t2iM, and 

(10) dist (up, A,_i) è Z*"1^. 

The vectors in A will be said to have level 0, and those in A*\Ai_i for 
some i = 1, 2, . . . to have level i. 

3.4. The maps o> Let wi, . . . , œb be generators for GF(2b) over GF(2), 
so that a typical element of GF(2b) can be written as 

^ a;co;, «j = 0 or 1. 
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Define er< : GF(2h) -» A* by 

( b \ b 

where on the right-hand side a,- is regarded as a real number. We use the 
same symbol cr* for the map GF(2b)n —» Kmn given by 

(11) *,(&, . . . , & ) = (*<(&), . . • ,*,(£,)) . 

Note that, for ? G GF(2&), <r*(£) = 0 if and only if € = 0; hence in (11) 
the number of nonzero components on the right-hand side is equal to the 
Hamming weight of (£i, . . . , £n), and the norm of the right-hand side of 
(11) is at least 

(12) t**-*R* • wtO-u . . . , £ , ) . 

3.5. The codes Ct. Let Co 2 C\ 3 . • • 2 Ca be linear codes over GF(2b), 
where Ci has parameters [», &*, d j and C0 is the trivial [w, w, 1] code. 
Set Ct = Co for i < 0. Choose vectors Ci, . . . , c6/l in GF(2b)n such that 

( &*,• 
C* = ) 2 a i c i l a i = 0 or 1 

for all i 6 Z. 

3.6. 77&e construction. Finally, after these preliminaries, we can give the 
construction. The new lattice L in Rmw consists of all vectors of the form 

a bkj 

(13) * = / + EZ«/'Wcy), 

where l £ An and «/*> = 0 or 1. If x = (xi, . . . , xn), xt £ Rm, we call the 
%i the components of x. 

THEOREM 3. L is a lattice and is fixed under the transformation A which 
applies A simultaneously to each component. The minimal norm of L is 

(14) M = min jAf, ~^nfor i = 1, . . . , a | , 

and i/s determinant is 

(det A)n 

(15) de tL = —a - . 

n 2m 

77ze center density of L is 

(16) M^/2/2mn det L. 

Proof. Let the level of a vector x G Lof the form (13) be the largest 
level of any of the components of x. Then the a/ i } in (13) are zero when i 
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exceeds the level of x. Let Lt consist of all points in L of level ^ i, so t ha t 

Lo = An, and 

Li = \y + g a ; U V , ( c , ) b € £ < - i , « / ° = Oor l | 

for i = 1, . . . , a. We first prove t h a t L* is a latt ice fixed under ^4, using 
induction on i. This is trivially t rue for i = 0. For the inductive step we 
shall show tha t — a^Cj) and A (Ti(c3) are in Lt for all j = 1, . . . , bk{. 

Let r be the transformation which applies T simultaneously to each 
component , so t ha t Tv = \A. From the definition of tr* we have 

(17) afa) = Pn-nic,), 

for 1 ^ j ^ bki and h = 0, 1, 2, . . . . When h = v we obtain 

(18) 2<r,(ci) = Âai-v(Cj)} 

(19) —Viicj) = ViiCj) - 4̂ ffi-^Cj). 

It follows from (7) t h a t 

2TV • f^i^yicj) = T'vi-^Cj) + ^2,ahf
hai-v{Cj) 

for 1 ^ j ^ bku i = 1, 2, . . . , or in other words 

(20) Â • <T,(c,) = (T,(Cj) + Y^a^i+h-v{Cj). 

T h e identi ty (19) proves t h a t L< is closed under subtract ion (since, by 
induction, Âai-V(c3) G £*-» £ £*-i) and hence is a lat t ice; and (20) 
shows tha t A leaves L{ invariant . Since La = L, this proves the first 
s t a tement of the theorem. 

I t is easy to see t h a t the representat ion (13) of a point x is unique, and 
so L is the union of Y[at=i %bki cosets of An. This implies (16). 

Finally, to show t h a t the minimal norm of L is given by (14), let x ^ 0 
be a point of level i. If i = 0 then N(x) è M by the definition of M. If 
i > 0 we can write x = y + s, where y G -£>?:-i and 

Z = Z^CXj'1 <Ti(Cj) 9^ 0. 

Since Ĵ A Ç | A . 2<r,(£) G A<_i for all £ G GF(2&). Hence x = y' + z' 
where y' G £*-i and JS' ^ 0 has level i. Also z' has a t least dt components 
of level i, namely those in the same positions as the codeword 

hki 

(Xj Cj 
3=1 

of Ct. From (12) the norm of z (and therefore of x) is a t least 

dtt
2i-2R2 = dtR^/M*-1. 
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3.7. Examples {continued), (a) (continued). When A = 2Z we obtain 
Construction D. Theorem 1 then follows from Theorem 3. 

(c) (continued). Using A = E8 we obtain a number of good lattice 
packings in dimension ^ 136. We take 

uj» = ( 1 , 1 , 0 , 0 , 0 , 0 , 0 , 0 ) , 

W2d) = ( 1 , 0 , 1 , 0 , 0 , 0 , 0 , 0 ) , 

z*3(1) = ( 1 , 0 , 0 , 0 , 1 , 0 , 0 , 0 ) , 

Ml — \2i 2> 2> 2> 2» 2> 2> 2 /> 

and let C\ be an [n, k{ = w — 2* + 1, d* = 2'] maximal distance separable 
code over GF(2*) (see [17, Chapter 11, Theorem 9]). Ct exists provided 
2* ^ n ^ 17. The resulting lattices, which exist in dimensions N — Sn for 
n ^ 17, have the density shown in Table II. In dimensions 8, 16, 32 and 

TABLE II Center density ô of iV-dimensional lattices obtained 
from Es. 

N l0g2 Ô n N log 2 Ô w iV log2 8 

8 -4* 7 56 12 13 104 60** 
16 -4* 8 64 20 14 112 68** 
24 -4 9 72 28** 15 120 76** 
32 0* 10 80 36** 16 128 88** 
40 4* 11 88 44** 17 136 100** 
48 8 12 96 52** 

40 this density agrees with the present record (see [10], [15]), in dimen
sions 24, 48, . . . , 72 it is poor, but in dimensions 80, 88, . . . , 136 these 
appear to have a greater density than any lattice previously known. 
Bos [3] had earlier found nonlattice packings with the same parameters. 

(d) (continued). Here A = A24 and we take d to be an [w, ^ = n 
— 2* + 1, dt = 2{] maximal distance separable code over GF(212). d 
exists provided 2* ^ n ^ 4097. The construction gives a lattice QN in 
dimension N = 24w, for 1 ^ n ^ 4097, for which the center density 5 
satisfies 

(21) log2 Ô = 12((w - l)n - 2m + m + 1) 

if 2W_1 g w ^ 2m — 1. Some examples are shown in Table III. The case 
n — 2 is the laminated lattice A48 (see [10]). We see that while the density 
of QN is poor for N ^ 150, for 150 S. N ^ 500 it is quite respectable, and 
for 500 < N ^ 24 • 4097 = 98328 these are easily the densest (lattice or 
nonlattice) packings known. Thus when n = 2m — 1 the unnormalized 
density A of QN Ç R*, N = 24w, satisfies 

(22) log2 A = -1 .25 ...N+ 0(log2 N), 
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TABLE 111 Center density b of iV-dimensional lattices QN obtained from the Leech lattice 

n N log 2 Ô n N log 2 Ô n N log25 

1 24 0* 10 240 228 171 4104 11400* 
2 48 12 11 264 264 342 8208 26808' 
3 72 24 21 504 696** 683 16392 61608' 
4 96 48 22 528 744** 1366 32784 139488' 
5 120 72 43 1032 1896** 2731 65544 311496' 

6 144 96 86 2064 4752** 4097 98328 491832' 

from (21) (the coefficient of N is — i log2 (48/tf7r)), which is not far off 
the Minkowski lower bound 

(23) A è p 

(see [20, p. 4]). Unfortunately the maximal distance separable codes 
needed to construct QN have only been constructed for n ^ 4097 (see [17, 
Chapter 11]). Beyond that one may use BCH codes over GF(212) [17, 
Chapter 9], but the results are not so impressive. Table IV compares 

TABLE IV Comparison of center 
densities in dimensions near 65536 

lattice log2 5 

Barnes and Wall (in R^se) 180224 

B 65536 290998 

Q65520 311364 

(?65544 311496 
Bounds in R6&536. 

Minkowski lower bound 324603 

Levenshtein (1979) 
upper bound 353768 

Rogers upper bound 357385 

the various densities in dimensions around 65536. This table gives Barnes 
and Wall's lattice [2] (the old record for a lattice), the BCH lattice 2*65536 
(whose density is equal to the old record for a nonlattice packing), QN for 
values of N bracketing 65536, the Minkowski lower bound (23), the 
Rogers upper bound [15, p. 743], and Levenshtein's 1979 upper bound 
(see [16, Eq. (22)] and [4]). (The Kabatiansky and Levenshtein upper 
bound (see [12], [25]) appears to be weaker than the last two bounds in 
this dimension.) 
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Added in proof. In a sequel to this paper even denser lattices have been 
constructed in Rw, for n very large. See A. Bos, J. H. Conway and 
N. J. A. Sloane, Further lattice packings in high dimensions, Mathematika 
29 (1982), 171-180. 
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