The Differentiation of an Indefinite Integral.

By J. M. Whittaker.

(Received 15th May 1925. Read 5th June 1925.)

1. Theorem 1 needs very little explanation. It is the converse of the well known theorem * that the indefinite integral $F(x)$ of a function $f(x)$ possesses a derivate on the right at every point at which $f(x+0)$ exists. If $f(x+0)$ does not exist, nothing can be said as to the existence or otherwise of $F_{+}(x)$; but in a general way we might expect that the integral of a function which oscillates comparatively slowly, say $\sin (\log x)$ at $x=0$, would be more likely to possess a derivate than that of a function which oscillates more rapidly, say $\sin \frac{1}{x}$. It appears from Theorem 1 that this is not by any means the case. In fact the integral of $\sin (\log x)$ has not a definite derivate at $x=0$ while that of $\sin \frac{1}{x}$ has such a derivate. \dagger

The theorem is very similar in character to one due to Mr Hardy concerning summable series. \ddagger The relation between $f(x+0)$ and $F_{+}(x)$ is indeed just the same as that between the sum and the sum (Cl) of an infinite series.
2. Theorem 1. Let $f(x)$ be continuous at all points of the interval $(0, a)$ except possibly the point $x=0$, and let the integral of $f(x)$ from \in to $x,(0<\epsilon<x \leq a)$, tend to a limit $F(x)$ as \in tonds to zero.

[^0]Then $f(+0)$ exists and $=F_{+}(0)$ if
(i) $F_{+}(0)$ exists.
(ii) $(\alpha) \underline{D}_{+} f(x)<\frac{K}{x}$
$\left(0<x \leq x_{0}\right)$
or

$$
(\beta) \bar{D}_{+} f(x)>-\frac{K}{x}
$$

$\log x \sin \frac{1}{x}$ is an example of an unbounded function which satisfies all the conditions except (ii).

Writing

$$
g(x)=f(x)-F_{+}(0)
$$

we have to prove that each of the hypotheses (ii), say (α), combined with

$$
\int_{0}^{x} g(t) d t=x 0(1) \quad \text { as } x \rightarrow 0
$$

implies

$$
g(x)=0(1) .
$$

If this is not the case there must be a number h such that in every interval $0 \leq x \leq x_{1}$ there is a point ξ at which either

$$
\text { (a) } g(\xi)>h, \text { or }(b) \quad g(\xi)<-h .
$$

Take (a), and chose K so large that

$$
\frac{h}{\bar{K}}<1
$$

Fig. 1.

We consider only points x_{1} to the left of x_{0}.
From the point $A(\xi, h)$ draw a line $A B$ whose slope is $\frac{2 K}{\xi}$. Then the curve $y=g(x)$ must lie above this line. For if not let η be the abscissa of D, the nearest point to A at which the curve cuts the line. The existence of a nearest point follows from the continuity of $g(x)$. Then if P be on the curve between D and A it is clear from Fig. 1 that

$$
\frac{M P}{D M}>\frac{M L}{D M}
$$

or $\quad \frac{g(x)-g(\eta)}{x-\eta}>\frac{2 K}{\xi} \quad(\eta<x<\xi)$
and taking bounds

$$
\underline{D}_{+} f(\eta) \geq \frac{2 K}{\xi}>\frac{K}{\eta}
$$

since

$$
\eta \geq \xi-\frac{h \xi}{2 K}>\xi-\frac{1}{2} \xi=\frac{1}{2} \xi
$$

This contradicts (α). Since therefore the curve must lie wholly above the line $A B$ it is clear that

$$
\int_{\xi_{1}}^{\xi} g(t) d t>\triangle A B C=\frac{h^{2}}{4 \bar{K}} \xi
$$

But by (2.1)

$$
\begin{aligned}
\left|\int_{\xi_{1}}^{\xi} g(t) d t\right| & \leq\left|\int_{0}^{\xi} g(t) d t\right|+\left|\int_{0}^{\xi_{1}} g(t) d t\right| \\
& =\xi o(1)+\xi_{1} o(1) \\
& =\xi \circ(1)
\end{aligned}
$$

Thus for a set of values of ξ tending to zero

$$
\xi \circ(1)>\frac{h^{2}}{4 K} \xi
$$

The contradiction implies that hypothesis (a) is untenable.

Consider now the consequences of (b). There must exist a point \bar{x} such that if $0<x_{1} \leq \bar{x}$ there is at least one point ξ between

Fig. 2.
$\left(1-\frac{h}{4 K}\right) x_{1}$ and x_{1} at which the curve rises above the line $y=-\frac{h}{2}$. For if this is not so it is obvious from the diagram (Fig. 2) that
and we are led to a contradiction, as above.
Let x_{1} be a point to the left both of x_{0} and of x such that at $x_{1}\left(1-\frac{h}{4 K}\right)$ the curve is below the line $y=-h$. Then we have seen that there is a point $\xi, x_{1}\left(1-\frac{h}{4 K}\right)<\xi<x_{1}$, at which the
curve is above the line $y=-\frac{h}{2}$. From $A\left(\xi,-\frac{h}{2}\right)$ draw a line $A B$ of slope $\frac{2 K}{\xi}$ cutting $y=-h$ in B. The abscissa of B is

$$
\xi-\frac{h}{2} \cdot \frac{\xi}{2 K}=\xi\left(1-\frac{h}{4 K}\right)<x_{1}\left(1-\frac{h}{4 K}\right)
$$

so that B lies to the left of D.
Thus, as is clear from the diagram, the curve must cut $A B$ in order to get from E to F. This, as we have seen, contradicts (α). Thus hypothesis (b) is untenable and the theorem is proved.

The argument is similar if we assume (β) in place of (α).
Added 8th August 1925. 3. As an example consider the power series $\sum_{0}^{\infty} a_{n} x^{n} \equiv f(x)$, the coefficients a_{n} being real, supposed convergent for $|x|<1$. As in Theorem 1, let $f(x)$ possess an improper integral in (0,1). Then we deduce.

Theorrm 2

$$
\begin{array}{clc}
& f(x) \rightarrow A & \text { as } x \rightarrow 1-0 \\
\text { (i) } \frac{1}{1-x} \int_{x}^{1} f(t) d t \rightarrow A & " \\
\text { (ii) } & n a_{n}<K & \text { (Ck). }
\end{array}
$$

For, by (ii)

$$
\begin{aligned}
f^{\prime}(x) & =\sum_{1}^{\infty} n a_{n} x^{n-1}=(1-x)^{k} \sum_{1}^{\infty} S_{n}^{k} x^{n-1} \\
& <(1-x)^{k} \sum_{1}^{\infty} K A_{n}^{k} x^{n-1}=K(1-x)^{k}(1-x)^{-k-1} \\
& =\frac{K}{1-x} .
\end{aligned}
$$

[^0]: - Hobson, Functions of a Real Variable. 2nd Edition, I. p. 454.
 + Cf. Lakshmi Narayan, Bull. Calcutto Math. Soc., 8 (1916-17) p. 71.
 \ddagger Cf. Whittaker and Watson. Modern Analysis, 3rd Edition, p. 156.

