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ON THE DISTRIBUTION OF VALUES OF

FUNCTIONS IN THE UNIT DISK

JAMES R. CHOIKE*

1. Introduction.

Let f(z) be a function analytic and bounded, \f(z)\ < 1, in \z\ < 1.

Then, by Fatou's theorem the radial limit f*(eίθ) = l i m ^ f(reiθ) exists

almost everywhere on \z\ = 1. Seidel [8, p. 208] and Calderόn, Gonzalez-

Domίnguez, and Zygmund [1] (see also [9, pp. 281-282]) proved the fol-

lowing: if f*(eίθ) is of modulus 1 almost everywhere on an arc a < θ < b

of \z\ — 1, then either f(z) is analytically continuable across this arc or

the values f*(eίθ), a < θ < b, cover the circumference \w\ — 1 infinitely

many times. In this paper we shall be primarily concerned with the

behavior of f*(eίθ) on each side of a singular point P = ei9°, a < θo< b,

for f(z).

2. One-side Limits.

We shall say that f(z) has a right-sided (left-sided) limit at eiθ° if

there is a positive number δ such that f*(eίθ) exists and is continuous

for all θ, θ0 - δ < θ < θ0 (θ0 < θ < θ0 + δ). We, now, state the first result

of this paper which extends the theorem of Seidel and Calderόn, Gonzalez-

Domίnguez, and Zygmund.

THEOREM 1. Let f(z) be analytic and bounded, | / ( « ) | < 1 , in \z\<l.

If f*(eίθ) is of modulus 1 almost everywhere on an arc a < θ < b of

\z\ = 1 and if P = eu\ a < θ0 < b, is a singular point for f(z), then

either

i) the values of f*(eίθ), a < θ < θ0, cover \w\ = 1 infinitely many

times and f(z) has a left-sided limit at eiH of modulus 1, or

ii) the values of f*(eίθ), θ0 < θ < δ, cover \w\ = l infinitely many times
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and f{z) has a right-sided limit at eiH of modulus 1, or

iii) the values of /*(e*O for both arcs a < θ < θ0 and ΘQ < θ < b,

respectively, cover \w\ — 1 infinitely many times.

Proof. Without loss of generality, we may assume a = 2π — γ, b = γ,

ΘQ == 0 where 0 < γ < π.

Suppose f*(eίθ) assumes a, |or| = 1, only finitely many times on the

arc 2π — γ < θ < 2π. Then, we may also assume, without loss of gen-

erality, that f*(eiθ) omits a on the arc 2π — γ < θ < 2π.

Let ζ = L(w) be a bilinear transformation mapping \w\ < 1 onto

Re (ζ) > 0 such that L(a) = oo. The function L(f(z)) is analytic in \z\ < 1.

The harmonic function Re (L(/O))) is positive in |s | < 1 with boundary

values 0 almost everywhere on the arc 2π — γ < θ < 2π. Thus,

= 1 [2πe-±Λdμ(t) + i Im (L(/(0)))

where μ(£) is a bounded non-decreasing function [0,2π] [9, p. 152]. Let

= 1 Γ 1-^ dμ(t)
2 τ r J o l + r 2 - 2 r c o s ( ^ ί ) ^

and

+ r2 — 2r cos (θ — t)

We wish, now, to examine the function μ(θ). Since μ(0) is non-

decreasing on [0,2τr], its derivative //(#) exists almost everywhere on

[0,2π\. The harmonic function u(r, θ) tends radially to μ'(0) at every

point of differentiability of μ{θ). Since u(r, θ) has boundary values 0

almost everywhere for 2π — γ < θ < 2π, μ'(β) = 0 almost everywhere on

2π - γ < θ < 2π.

Suppose μ(θ) is not absolutely continuous on 2π — γ < θ < 2π. Notice

that μ(θ) is of bounded variation on [0,2τr]. Then one of the following

is true: i) μ(θ) is continuous and not identically constant on (2τr —r,27r),

ii) there exists θ*, 2π — γ<θ*<i2π, such that μ(θ) is discontinuous at θ*.

If i) is the case, then from a theorem in Saks [7, p. 128] it follows that

there exists θ19 2π — γ < θx < 2π, such that μ'{θ) exists and is infinite
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at θ = θλ. Thus, lim^i u(r, θx) = //(ft) = +00. This implies that f*(eiθl)

= α, which is a contradiction. If ii) is the case, then by a lemma of

Lohwater [4, p. 244] l i m ^ u(r, θ*) = +co. Again, we have a contradic-

tion, namely, f*(eίθ*) == a. Thus, it follows that μ(θ) is absolutely con-

tinuous on 2π — γ < 0 < 2π.

Since //(#) = 0 almost everywhere on 2π — γ < θ < 2τr, μ(0) is con-

stant on 2π — γ < θ < 2π. Therefore, L(f(z)) is analytic at each point

eίθ, 2π — γ < θ < 2π, and, in particular, we have

i Im

on 2π — γ < θ <2π. Hence, f(z) is analytic at each point eίθ, 2π — γ <

^ < 2τr, and |/(e*0| = 1 at each eiβ, 2π - γ < θ < 2π.

Let ε be a sufficiently small positive number. Since

v(X,θ) = Im(L(/(0))) + 1 Γ" r s ί

2τrJo 1 — — ί)

- Im (L(/(0))) + i f r cot he - t)dμ(t)
ZπJo 2

Γ Γ cot 1(« + e -
2πJo 2

ε) ,

it follows that as θ approaches 2π through increasing values in {2π — γ,2π),

f(eίβ) moves along \w\ = 1 in a counterclockwise direction. Since f(eίθ)

omits a, \a\ = 1, on (2τr — ^, 2ττ), /(e<fl) cannot wind indefinitely around

|w| = 1 as θ approaches 2τr, 2τr — γ < β < 2ττ. Hence, f(z) has a right-

sided limit w1 of modulus 1 at θ0 = 0.

Suppose, next, that there exists a complex value /3, |/3| = 1, such that

f*(eiθ) assumes β only finitely many times on the arc 0 < θ < γ. Then,

by the above argument, it follows that f{z) has a left-sided limit w2 of

modulus 1 at 0O = 0. By a well-known theorem of Lindelof, wλ — w2 [2,

p. 43]. Another well-known theorem of Lindelof [6, p. 75], then, implies

that the cluster set of f(z) at P = 1 is C(/, 1) = {wj. But, since P = 1

is a singular point for /(«), a theorem of Seidel [2, p. 95] states C(/, 1)

={\w\ < 1}. We have a contradiction. Thus, /(z) cannot have right-

sided and left-sided limit at P = 1 simultaneously. This completes our

proof.
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A natural question which theorem 1 raises is this question: can

functions f(z) analytic and bounded, | / ( s ) | < l , in | « | < 1 be found which

exhibit each type of behavior as described in theorem 1? With regard

to this question, we shall show by means of Blaschke products that

theorem 1 is sharp in this sense. In fact, we shall give a necessary and

sufficient condition for a Blaschke product to have a right-sided limit at

3. Blaschke Products.

Let {ak} be a sequence of points in \z\ < 1 such that

Σ ( l - | α * | ) < +oo .
k = l

Then, the infinite product

B(z) = l M ί AΠ
*=i ak 1 — akz

is a bounded, non-constant, holomorphic function in \z\ < 1. The func-

tion B(z) is called a Blaschke product with zeros {ak}. By Fatou's theo-

rem the radial limit Z?*(e*O exists almost everywhere on \z\ — 1. It is

also known that the modulus of B*(eίθ) is 1 almost everywhere on |2| = 1.

The following result of Frostman [3] (see also [2, p. 33-35]) gives a ne-

cessary and sufficient condition for B*(eiβo) to be of modulus 1.

THEOREM A. Let B(z) be a Blaschke product with zeros {ak}. Then,

a necessary and sufficient condition that B(z) and all its partial products

have radial limit of modulus 1 at eίθ° is the convergence of

*=i\eiθ0 - ak

Remark. Geometrically, Frostman's condition implies that at most

a finite number of zeros {ak} of B(z) lie in any Stolz angle at eίθQ.

For further properties of Blaschke products we refer the reader to

[2, p. 28-38] or [9, p. 271-285].

THEOREM 2. Let B{z) be a Blaschke product with zeros {ak} which

have eiH as a limit point and which lie in a Stolz angle at eiH. • Then,

for each δ, 0 < δ < π/2, the values of B*(eίθ) for the arcs θ0 — δ < θ < θ0

and θ0 < θ < θ0 + δ, respectively, cover \w\ — 1 infinitely many times.
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Proof. Suppose B(z) had either a right-sided or a left-sided limit
at eiθ\ This limit would, of course, be of modulus 1. Then, by a
theorem of Lindelδf, B(z) would have angular limit at eiH of modulus 1.
But, this cannot happen, since the sequence {αfc}, by assumption, lies in
a Stolz angle at eiθo. Thus, theorem 2 follows from theorem 1.

We, now, state the main result of this section.

THEOREM 3. Let B(z) be a Blaschke product with zeros {ak}. Then,
B(z) and all its partial products have a right-sided limit of modulus 1
at eίθo if and only if

< +oo ,
K — L\t5 — Uik

and there exist positive numbers δ and ε, ε < 1, such that there are no
zeros {ak} in the region

A = {z\ 1 - ε < \z\< 1, 0O - δ < arg(z) < θ0} .

Proof. Utilizing the proper rotation of \z\ < 1, we may assume that
θ0 = 0. Suppose the zeros {ak} of B(z) satisfy:

(1) Σ 1 " l ° * 1 < +oo ,

and there exist positive numbers δ and ε, ε < 1, such that

(2) K,α2,α3, ..} Π {z\l - ε < \z\ < 1, -δ < arg(z)< 0} = 0 .

Choose δ so that 0 < δ < π/2. Let {amj} be the set of zeros {ak} of
B(z) lying in {z\ \z\ < 1, 0 < arg(z) < π/2}. Let {anj} be the remaining
set of zeros {ak} of B(z). From theorem A, (1) and (2), it follows that
the radial limit B*(eiθ) exists and is of modulus 1 for all θ, -δ/2<θ<0.
In order to prove that conditions (1) and (2) are sufficient for B(z) to
have a right-sided limit at z = 1 it suffices to show that arg (B*(eίθ)) is
continuous for θ, —δ/2<θ< 0. To do this we shall prove that for k
sufficiently large

ak 1 — akreί

is dominated by positive numbers Mk whose sum forms a convergent
series. By virtue of this, we assume that {amj} and {anj} are both sub-
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sequences of {ak}.

It is clear that

arg
l\ak\ ak-reiθ\\_
\ ak 1 — ajcTe1 arg

- reίθ)

- akreί

- akrei

— a*, s in i

= arc sin

|1 _ akreίθ

" — ak sin

where ak — ak + iβk. Since arc sin x < πx/2 for 0 < x < 1, it suffices to

show that, for k sufficiently large, the argument of the arc sin is domi-

nated by positive numbers whose sum is a convergent series.

We, first, consider the zeros {anj}. Let

d1 = inf

and

— reτ , 3 = 1,2,3,

/7 — ίvif i/y r/pί^ι // — 1 2 8 1 ε < ' r < ' l <

By (2), we have dx > 0 and d2 > 0. Let d = min (d19 d2). If k =

from the way in which d was chosen,

, then,

(1 - - aksinθ\ 4(1 - \ak[

— akreι

\ak\
2\ak-re iθ

-=- - re1

for 1 - ε/2 < r < 1 and -3/2 < β < 0.

Next, we consider the zeros {amj}. Let Lx and L2 be chords of

1̂1 < 1 drawn from z — 1 inclined from the radius to z — 1 by an angle

of δ/2 and 3/4, respectively. Let Δ1 be the triangle with sides Lγ and

the radii to the endpoints of the chord Lx. Let Δ2 be the triangle

formed in the same way as Δlf but, instead of L19 we use the chord L2.

For θ, —3/2<θ<0, let Δ2{0) be the triangle obtained by rotating Δ2
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through an angle of θ about its vertex z ~ 0 (see figure 1). Let L2(θ)

be the side of Δ2(θ) which is a chord of \z\ < 1. From the construction,

it is clear that

( 3 )

Fig. 1

for -±

By (1) and the remark following theorem A, there exists a positive
integer / such that am. lies outside Δx for j > /. Let s(α, b) denote line
segment joining the complex numbers a and b. Then, we denote by
φj(0) the angle formed at eiθ by s(0,eiβ) and s(amj,e

iβ), —3/2 < Θ < 0.

We lengthen the segment s(am.,eίθ) so t h a t it is a chord Ly(0) of \z\ < 1

(see figure 2). Then,

( 4 ) Z/y(0) Π 0

for i < J and —3/2 < 0 < 0. Thus, from (3) and (4) we have that the

arc of \z\ — 1 cut off by L2(θ) is greater than the arc of \z\ — 1 cut off

by Vβ) for j > J and -δ/2 < θ < 0. Thus,

π - ^-
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Fig. 2

for j > J and — δ/2 < θ < 0. Also, since am. lies outside Δλ for j > /,

φj(O) > δ/2 > δ/4 for y > /. Thus, φj(θ) > δ/4, for y > / and -δ/2 <Θ<Q.

This implies

\am.-reiθ\>\amj- ei

\ sin

for j>J and — δ / 2 < # < 0 . But, for all j and — δ/2 <[θ < 0,

αm. - ei9\. Thus,

— sin θ ^ — sin ^ 1
\am.-reiθ\ \am. - eίθ\ sin (δ/4)

~ sin (δ/4)

for j > J and - δ / 2 < θ < 0. Also,

Im (αm.) = /3W. < |α m . - r e w |

for all j and - δ / 2 < 0 < 0. Therefore,

( 5 ) ~ s m
^

sin (δ/4)
= C < +oo

https://doi.org/10.1017/S0027763000015294 Published online by Cambridge University Press

https://doi.org/10.1017/S0027763000015294


DISTRIBUTION OF VALUES 85

for j > J and - δ / 2 < θ < 0.

Let γj be the angle between s(am., 1) and s(0,1). Recalling that am.

lies outside άx for j > J, we have τr/2 > ̂  > δ/2 for j > J and — δ/2 < ̂  < 0.

Hence,

1
— rez

Im

- am.\ sin 1-
L\

for i > J and - δ / 2 < ^ < 0. Thus,

1
( 6 )

\l/am.-τeίθ\ | l - α m j | s i n ( δ / 2 )

for j > J and - δ / 2 < θ < 0.

Using the estimates (5) and (6), we have, for j > J, —δβ<θ<0,

and 0 < r < 1,

(1 - \amj\
2)r \βmj cos θ - amj sin θ\ < 2(1 - |αmJ)(j8TO> - sin^)

2C 1 - a

-\amj\*sm(δβ)\l-amj

Thus, for a positive integer K chosen sufficiently large, we have

^(1 - \ak\) = Mk , if fc = n, ,
1 1/γ I

—— /I// ί-P L» _ _ /yyi

— IVl k , 11 /t — Λ/t'j ,

arg
\

- re1

akrei

1 —

for fc > K and 1 - ε/2 < r < 1, - δ / 2 < θ < 0, where d and C2 are

constants. Note that

< Cx f; (1 - |αfc|) + C2 < +co .

Note, also, that for any integer K'\ Kf > K,

Σ arg — re1

a Λ _ n τiθ

<Σ

arg

arg

/y>s)ΐθ

ak 1 — akreίθ + Σ ^
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for 1 - ε/2 < r < 1 and - δ / 2 < θ < 0.

Choose an arbitrary, but fixed, point reiθ, 1 — ε / 2 < r < l and

— δ/2 < θ < 0. Let ε0 be an arbitrary positive number. We can choose

an integer Kf > K sufficiently large that

arg B(τeίθ) — arg f] — re1

fc=i ak 1 — α f e r β *

and

Then,

arg B(reίθ) —

Σ

- reί

arg

— OjkΎί

κr

) — Σ
 a r s

arg B(reίθ) — arg f[
=ι ak 1 — akreίθ

+ Σ

Σ

for 1 — ε/2 < r < 1 and — δ/2 < 6 < 0. Since ε0 is arbitrary, we have

argB(re") - Σ arg (1^1 ^ -_rβ^
fc=i \ α Λ 1 — akreι

for 1 — ε / 2 < r < l and — δ/2 < ^ < 0. Also, this series converges uni-

formly, with θ fixed, in the region 1 — ε / 2 < r < l and — δ/2 < θ < 0,

and the uniform convergence implies

arg = lim Σ
akτeiθ

for — δ/2 < 0 < 0. Finally, we remark that

l\ak\ ak - eiθ

arg <Mk

for fc > K and — δ/2 < θ < 0. This implies that the series

ιk 1 — afce*
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converges uniformly to argJ5*(eίέ?) for -δ/2 < θ < 0. Thus, argB*(e*0

is continuous for — δ/2 < θ < 0. This completes the proof of theorem 3

in one. direction.

It is clear that the same conclusion holds for all partial products of

B{z).

Conversely, let us assume that B(z) has right-sided limit of modulus

1 at eiβ0. Then, by a theorem of Lindelδf, B(z) has angular limit of

modulus 1 at eίθ\ and, hence, radial limit of modulus 1 at eiθ\ Thus,

by theorem A, the zeros {ak} of B(z) satisfy the condition

£ilβ"° - ak\

Since B{z) has right-sided limit of modulus 1 at eί6°, there exists

δ > 0 such that B*(eίθ) exists and is continuous for all θ, θ0 — δ < θ < θ0.

Let R = {z\\z\<l, ΘQ — δ < arg(z) < ΘQ}. Now, in the sector R, we

have that B(z) is analytic and bounded. Moreover, B(z) has radial limit

of modulus 1 at eίθo and right-sided limit of modulus 1 at eίβ\ Thus, by

another theorem of Lindelof, B(z) converges to a value of modulus 1 as

z tends to eίθo, zeR. It follows that R contains at most a finite number

of zeros of B(z). Thus, there exists ε, 0 < ε < 1, such that there are no

zeros {ak} in the region

Δ = {z\l- ε < \z\< 1, θ0 - δ < a rg(z) < ΘQ} .

This completes the proof of theorem 3.

A direct consequence of theorem 3 is the following theorem.

THEOREM 4. A necessary and sufficient condition for a Blaschke

product B(z) with zeros {ak} to have a right-sided limit of modulus 1 at

eίe° but not a left-sided limit at eί6° is that the zeros {ak} satisfy the fol-

lowing properties:

i) eiθo is a limit point of {ak},

ϋ) Σ i 7 K

<+~,t=i \et'o - ak\

iii) there exist positive numbers δ and ε, ε < 1, such that there are

no zeros {ak} in the region

Δ = {z\ 1 - ε < \z\< 1, θ0 - δ < arg (z)< θ0} .

Proof. Theorem 1 and theorem 3 imply that properties i), ii), and
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iii) are sufficient for B(z) to have right-sided limit at eίθo but not left-
sided limit at eίθo. This follows easily once we notice that property i)
implies that eίe° is a singular point for B(z) and properties ii) and iii)
imply that B(z) has right-sided limit at eίθ\ The Blaschke product B(z)
cannot have left-sided limit at eίθ°, otherwise we contradict theorem 1.

To prove that properties i), ii), and iii) are necessary, let us suppose
that B(z) has right-sided limit of modulus 1 at eiθo, but not left-sided
limit at eiθ\ Thus, by theorem 3, we have that

>̂  1 — lαJ . .

and that there exist positive numbers δ and ε, ε < 1, such that there are
no zeros {ak} in the region

Δ = [z\l -£<\z\<l,θ0-δ< a rg(z) < ΘQ} .

Since B(z) does not have left-sided limit at eίθ°9 P = eiH is a singu-
lar point for B(z). Suppose eiβ° is not a limit point of the zeros {ak}.
Then, there exists a positive number p such that there are no zeros {ak}
in Δr = {z\\z\ < 1, \z — eiβ0\<p}. Thus, by theorem A, B*(eiβ) exists and
is of modulus 1 for each eίθ on the boundary of Δf. But, by a theorem
of Lohwater [5, p. 153], since P = eίθ° is a singular point for B(z), there
exists a point eίθ* on the boundary of Δf such that B*(eίθ*) = 0. This is
a contradiction. Therefore, eie° is a limit point of {ak}. This completes
the proof of theorem 4.

Remark. We point out that theorem 3 and theorem 4 can be mod-
ified in the obvious way to give necessary and sufficient conditions for
B(z) to have left-sided limit of modulus 1 at eίθ\

Acknowledgment. The author is grateful to Professor W. Seidel for
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