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ON AN INTERESTING PROPERTY OF A 
COMBINATORIAL FUNCTION 

BY 

P. C. CONSUL AND M. J. KEMP 

1. Introduction. For any two integers n and k we take, as usual, 

v 0 < k < n g) «tan* 
[O, otherwise. 

Using the above symbol we define a new function F(q, 2ri) by a sum of two finite 
sums given by 

/2H-1\ / / I -1 \ 
2 n - l I / M l t f l ) 

(1.1) F(q,2n)= 2 (-l)'+"-lX - A f " 

(YX":1) 
+a (- 'ywi î-a-2 

for ij^q,r^\q—\ and I x ) =0 whenever # is an odd integer. 

The function F(q, n) is of frequent occurrence in some transformations of Gauss 
hypergeometric functions and in the evaluation of probability distribution functions 
(Anderson [1], Consul [2], Kemp [3]) of likelihood criteria. 

We shall prove the following important property of the function F(q, 2ri). 

2. Property. For all integral values of q and n such that q<2n, 

(2.1) F(q, In) = ( - l)n-1F(2n-q> 2n) 

and whenever n is an even integer 

(2.2) F(n, 2n) = 0. 

To prove this property we shall first prove two simple lemmas. 

LEMMA 1. For any integer n, q^2r + 2 andr<n — 2 

( 2 3 ) 2n~q (n~1) = -( n )+ q—(n"l\ 
^•ô) q-2r-2\ r ) \r+l)^q-2r-2 \r+l) 
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Proof. 

-Hi:>HU.)]('-2'-2>-'+Ffc2(:7!) 
which gives the result of Lemma 1. 

LEMMA 2. For i<m — \ and i^q, 

<"> iM"*; 1 ) - - (?)+£? (7--,*)-
Proof. 

q lm—\\ _ /fw — A , i_/m—l\ 

which gives the result of Lemma 2. 
Since the first sum in F(q, In) is zero when q is an odd integer, the property in 

(2.1) will now be proved separately for odd and even integral values of q. 
Case I. When q is an odd integer, 

which, by using Lemma 1 and some simplification, becomes 

By incorporating q'1 and the last term in first summation and rearrangement, 
the above expression gives 

Since the first summation is zero, the expression (2.5) can be put in the form 

F(q,2n) = ( " D — g l ^ f (-l)'-f 7>-20. 
Letting i=n — 1 — r in the above expression, we find that 

F(q, In) = ( - \)n-1F{2n-q, In). 
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Case II. When q is an even integer, say, q—2m. 

i#2m 

/ 2« - l \ »ri ( - l ) 3 " t r + 1 / i i - l \ 
+ l 2m j rf-o 2 ( m - r - l ) I r ) 

(26) _ ( - l ) m - x / « - 1 \ 2 n y 1 ( z j ) ^ m / 2 W - l \ 

(-l)2m + l / 2/2-1 \ »-l ( - l ^ - W J / H - n 
\2n-2m) rè0 m-r-1 \ r ) ' 
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+ - 2m 
rïm-l 

Now, by using Lemmas 1 and 2 and by some readjustment of terms, expression 
(2.6) becomes 

F(2m,2n) = ( - l r ^ " ^ ^ - ^ ) - 1 Y (-Di+1(2f) 

2n-l ( _ l ) i ^ 2 « - r 
i^! j-2/M 
i#2m 

(?-.')] 
+(-i)-»(2

2;_-^)U)-1 (-D"'(r:,) 
r^m- 1 

+ 1 <-»- fc!) 
2(m —r—1) 

By adding particular terms, two of the above summations become zero. Thus the 
above expression reduces to 

F(2m,2n) = ( - i r - 1 ( w ^ i 1 ) r { l + ( - l ) 2 ' " ( 2
2 ^ ) } ( 2 « - 2 m ) - 1 

s»-a ( - i y + i / 2 n - 1 \ 
«fb i + l - 2 m \ ï / 

i # 2m - 1 

+<->>a"i^i)[à{<-'>-i:;H 
(2.7) 

+ 2 
(—ï)'-1 /«—ï 

r=i 2m —2r ( " ; ' ) 
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which, on rearrangement and cancellation of two terms, gives 

(2.8) 

+ (_1)2m + 1(2n-l\y(ziri(»-l\ 
^ ' \2n-2m) ré0 2m-2r \ r ) 

By letting i=2n — l—j and r=n — \—s and with some trivial adjustment the 
above expression gets transformed into (—Y)n~1F(2n — 2m, 2ri) which establishes 
the property of the function F(q, 2ri). 

The proof of (2.2) follows trivially from (2.1). 
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