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1. Introduction

in Lee (submitted), the G W-integral (the generalized Riemann integral using
Wiener measure) is defined. The object of this article is to define stochastic
integral in the set up given in Lee (submitted). We also investigate the connection
between the stochastic integral defined with the Legesgue counter part, the Paley-
Wiener-Zygmund integral in Paley, Weiner and Zygmund (1933). Applications of
the stochastic integral will be explained elsewhere.

2. GWS-Integral

Notations given in Henstock (1963, 1967, 1968) and Lee (submitted) will
be used freely without further explanations.

Let / ( / ) be a real function defined on \a,b). We put

S(<5;/) = {(®)lf(t)(v - u)}

where 3> is a division of [a, b) compatible with the function 3 > 0 defined on
[a, b~}. Suppose / is (generalized Riemann) integrable with respect to the usual
interval function on [a, b). Then it can be shown that

n s<<5;/) = f fdt
<5> 0 J a

Let

S*(K ; 5;f) = {(9)2AtXx(i>) ~ x(u))

where Q> is a division of \a,b) compatible with 6 > 0 and x(t)e^o. Recall that
(€o is the set of all continuous functions defined on [a, fe] and x(a) = 0. Obviously,
S*C<?O; 8;f) is a set of functional defined on ^0.

Suppose that there exists some functional k[x] defined on (€o with the
property that, given c > 0 there exists S > 0 such that
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(I) (G) I | s -k[x] | 2</W; < r.

for all s e S * ^ , , ;5;f). Then we say that k[x] is the stochastic integral o f /
with respect to x(i)&<€0 for the generalized Riemann integral using Wiener
measure, in short GWS-integral. It is not difficult to see that k[x] is unique
almost everywhere if it exists. Indeed, if k*[x] is another such functional satisfying
(1) with 5 replaced by 8*, then we have

%•

((C) f |k[x] - k*[x] \2dW.)* ^ ((C) f | k[x] - s[x] \2

+ ((G) f | s[x] - k * [ x ] \2dWrf < e* + e* = 2c*

for all s eS*(# 0 ; S';f) where S' = min((5,<5*). That is

(C) f |k[x]-k*[x]|2r/W; = 0.
Hence we write

\
Ju

fdx{f).

REMARKS, (i) (GWS) fb
afdx(t) is not the same as the usual tffdx(i) for

each X E ? ( . But, if / is of bounded variation in [a, ft], then f*fdx(t)
= (GWS) $bJdx(t) as we shall see.

(ii) Other norms in (1) may also be used. In this article we use only this norm.
For other norms, we explain in a subsequent article.

Before going further, we introduce further notations. Let 9) be a division
of [a, b) and (/, t) be an interval-point pair from S>. We define 4>{^) to be the
step function such that for all /' e /, <f>(t') = f(t). If &> and 2>* are two such
divisions, then we write 3> V &>* to be the division of [a, b) which includes all
the division points from 2 and Si*. Note that 3i V S* is not necessarily com-
patible with 5 in the usual sense. Then we define (<j> - <f)*)(S> V ^*) to be the
step function such that for each / • from 2 V ®*, (4> - 4>*)(t*) = <£(<*) - <t>*(t*)
for all /* e / • from 9 V ®* and </>(t*) - 4>*(t*) = constant in /*.

LEMMA. Let tt (i = 0 , 1 , ••-,«) be the division points of &. If

where cf are arbitrary fixed values and x , = x(t,), i = 0 , 1 , • • • , « , ftoen F [ x ] is

GW-integrable (see Lee (submitted)) and

(G)
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PROOF. Using the Lemma 4.2 in Lee (submitted), we can easily show that
F[x] is GW-integrable. Hence we need only to show the equality.

By the New Fubini's Theorem (Theorem 4.1 in Lee (submitted)), we have

(G) I (F[x-])2dWlt = («T22;r)-l2( f\ (t, - ti+1)\

(2)

f
JR

x f
In succession, we put x, = x ,_ , + yt(t,- — r,-_,)* (/ = l , 2 , - - , / i ) . Then the right

hand side of (2) is equal to

2 f f £ cfyiv, -/,_,

x exp/-(2<T2)-' I yf\dyfdyn

= (a227r)-* £ c2(r; - / ,_,) f ^2
exp(-(2ff

2)-VMy = a2 £ cf(t,~ /,_,)
i = l J-v. 1 = 1

using the fact that

f f (x,-x,_,Xx,_, -xi_2)exp(-(2(72)-1((x,.-xI._1)
2

J — v> J — r̂

+ (xi_1 - X i - z ) 2 ) ^ ^ , , ! = 0 , i = 2,3, ••-,«+ 1.

By the Lemma, we have the following result for GWS-integral:

PROPOSITION. Let f eL2([a,b~\). Then (GWS) $bJdx(i) exists except in a
set of Wa-variation zero and

)2a1 I/la = (G) f ((GWS) f fdx(t))2dWa

where | • ||2 is the L2([a,b])-norm.

PROOF. By the hypothesis that / e l}([a, b]), we have given £ > 0, there
exists <5 > 0 such that

r -f)2dt<s

for each §(2$) and Si is a division of [a, b) compatible with 5 > 0. (See Theo-
rem 47.2 in Henstock (1967)). Hence for any two simple (step) functions
and </>*(&>*) where 9s and 9* are compatible with S, we have
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V - <t>*)(t*))2(v - «))*= | J ( 0 -tf>*)2rff)

That is

(3) 9 = (@ V ^*) I (0 - 0*)2(« - M) < 4c.

Define s(£#) = (^)Z/(0W") — *("))• Now we observe that for the corres-
ponding s(^), s*(®)eS*(^ ; <5;/), the functional s(^) - s(S>*) depends on the
division points of 2 \J S>* only. Therefore by the Lemma, (3) and the New
Fubini's Theorem, we have

(G) I ;
Jfn

2 l z ( ) 1 f Vn ('/ - '•-1)) 1 f
ii = 1 / J R"

x ^ ( - ( l a 2 ) - 1 £ (Xi~Xi~l)2 dXl-dx
i = l ' i ~ » i - l

f y2exp(-cy
2l(

where xt = x(/;), x(a) = x(tn) = 0, X(/J) = x(/n) (/ = 1,2,---,«) for some

Setting em = e2~m (m = 1,2, •••), and dm > 0 corresponding to em in (3),
we observe that (s(^m)} where s(@m)sS*C£0; 8m;f) is a Cauchy sequence in
^C2C^o)-norm. Hence by the completeness of ^)2('«f<)), we conclude that there
exists a functional k[x] defined on f€0 such that

lim sOm) = k[x]
m-»on

in l£2(ff,o). Take S arbitary and compatible with S, and 2* as ^m in (3). Then by
the Lemma, Fatou's lemma, and (3)

0 g (G) f ( s (S ) -kH) 2 < l l f ^ l i r a in / (C j f (s(S) 2

= lim inf(9 V ^m) I (<M )̂ - 0(^m))2(/)(y - M) ^ 4e.
m-* CQ

It follows that

lim s(9J = k[x] = (GWS) fdx(t).
m-* oo Ja

in
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Now, using the Lemma and the New Fubini's Theorem, we have

(G) f W9m))\dW. = <t>2(£>J I <fm{tXv - u)
Jto

where 4>m = <f>(@m). Further, we observe that

(G) f (k[x] - s(^J)2dWa and (G) f |k[x](k[x] - s (^J) | dWa

tend to 0 as m -» oo by the given condition of s(^m) and Cauchy-Schwarz
inequality. Also, we obtain the equality

Urn (G) f (k[x] - s(&m))2dWn
m-»co JfCo

= -(G) f (k[x])Wff + 2 /im (G) f k[x](k[x]-

+ Urn (G) f (%{2m))2dWa

by the identity (a - b)2 = — a2 + 2a(a - b) + b1. Consequently

(G) [ k2[x]dW;= /im (G) f
J^o m-* oo Jf€

as lim
m-»oo

This completes the proof.

REMARK. Note that the linear mapping / - > (GWS) \b
afdx(t) can be

seen as 'nearly' isometry embedding of L2([a, ft]) into ^?2(^o). This is rather
important as we shall see in subsequent articles.

COROLLARY. Let f be a function of hounded variation on [a, ft]. Then
(GWS) tffdx(t) exists and

(GWS) f fdx(t) = f fdx(t)
Ja J a

where the integral on the right hand side is the generalized Riemann inte-
gral.

PROOF. By the Proposition, (GWS) j*fdx(t) exists as /eL2([a,ft]). Further
I = Ja/^x(0 exists as the generalized Riemann integral and the Riemann-
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Stieltjes integral since / is of bounded variation. Besides, their values are equal.
(See Henstock (1967)). Hence

I = (GR) f fdx(t) = (RS) f fdx(t) = lim s ( ^ J
Ja Ja m-»oo

where 3>m(m = 1,2, •••) has the same meaning as in the proof of the Proposition
while (GR) and (RS) denote the integrals exist in the generalized Riemann and
Riemann-Stieltjes senses respectively. Hence we have

I = (GR) f fdx(t) = (GWS) \ fdx(t).
Ja Ja

3. GWS-Integral and Paley-Wiener-Zygmund Integral

First of all, we recall the definition of Paley-Wiener-Zygmund integral,
written as PWZ-integral. Let {\)ik(t)} be an orthonormal basis of L2([a, ft]) and
each of \pk(t) be of bounded variation in [a,ft]. Furthermore, let ^k'Zoakxl/k be
the Fourier expansion of / in L?([a, ft]). Then the PWZ-integral is given by

(PWZ) ffdx(t) = lim (L) f (i akUt))dx(t)
Ja n-»oo Ja \Jfc = 0 /

except in a set of Wiener measure zero where (PWZ) and L) mean the integrals
exist in PWZ and Lebesgue senses respectively.

We are now in the position to prove the following result which links up the
GWS-integral with PWZ-integral.

THEOREM. Let f, {^k(t)} be given as above. Suppose £*°=oa*l/'*(0 JS the
Fourier expansion of f in L2([a, ft]). Then

(GWS) f fdx(t) = lim (GWS) f ( I a ^ o W * )
Ja n-*cc Ja \ k = O 1

= lim (GR) f ( £ a^k(t)\dx(t)= lim (L)\ ( z ak^k(t)\dx(t)
n->oo Ja U = 0 / n-»oo J a \*=O /

= (PWZ) f fdx(i)
J a

except in a set of M^-variation zero.

PROOF. Using the ideas as in the proof of the Proposition, we have

(4) (G)[ (s(S>)-(GWS) I* fdx(t)\ dWa < E
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(C)f (s*($*)-(GWS) f ( £ akUt)\
•/«•„ Ja U = O /

\dx(i))2dWa < e

for a fixed m which may depend on e, for all s*(@*)eS*^t>o; 8; Zr=o«*'/'*(0).

(6) f ( £ a^t(/)
J a U=0

f(t))2<lt
Ja

(7)

and

(8)

by taking S small enough and m large enough, where <f>3 and (^s. denote the
simple functions <f>(^) and <f>{S>*) respectively.

Combining (4), (5), (6), (7) and (8) we have

= ((G) f fdxU) - (GWS) J ( £

+ ((G) f /(CWS) f ( £ ak^t

since, by the Lemma

j ' = 5e!

lU) -fU))2dtY dtj

)

Hence
N < 25e

for all sufliciently large m. Therefore

(G) f |(GH^5) [ fdx(t)-(GWS) ( ( I. ak<l/k(t))dx(t)
JKO I Ja Ja\k=0 I

dWa < 25F.

for all sufficiently large m as (G)$,£odWa = 1. The assertion now follows readily.
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4. Conclusions
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The GWS-integral is in fact related to the so-called stochastic integral in
Probability Theory. However, the kind of stochastic integrals we have discussed
is merely the simplest kind. For the more general stochastic integrals, we shall
explain the theory in subsequent articles. At the moment, the author has applied
the theory to study the so-called Jto-belated integral given by McShane (to
appear). The theory here is also generalized to more general division spaces.

The GW-jntegral and GWS-integral can also be used to simplify many
proofs of Wiener integrals. We shall publish these works elsewhere.
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