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Counting of finite topologies and a

dissection of Stirling numbers

of the second kind

V. Krishnamurthy

Certain new combinatorial numbers which arise in the counting of

finite topologies are introduced and formulae obtained. These

numbers are used to obtain a known formula for t . the number

n '

of labelled topologies on n points in terms of the Stirling

numbers S(n, p) and d , the number of labelled T -topologies

on n points. The numbers d are computed for n •S 5 with the

the help of a method of Comtet (1966) (which seems to have been

missed by later authors), reinterpreted for transitive digraphs.

1 . Introduction

Let X = {l, 2, ..., n} . Let t (and d ) stand for the number of

labelled topologies (and labelled ^--topologies) respectively, on X .

That

(1) tn=l Sin, p)dp

is well known (of. Evans, Harary and Lynn, [2], Conrtet, [1], Gupta, [3])

and implicit in Shafaat, [6]. Comtet, [I], also derived a formula for the

calculation of d and Shafaat, [6], has a similar formula.

Received 23 August 1971*. Propositions 1 and 2 and Theorem 1 were
done, a few years ago, jointly with M.S. Radhakrishnan and S. Raghunath.
{Publication of this paper was delayed to enable the author to make a
minor correction to Example 1. Editor}
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112 V. Kri shnamurthy

In this paper we introduce certain combinatorial numbers,

X(n : r : p) , which arise in the counting of finite topologies on X .

These numbers satisfy

(2) I X(n : r : p) = S(«, p) .
r

We prove, independently of (l), that

(3) t = H M» : r : p)d .
p r "

We then take up the calculation of d and provide, via t rans i t ive

digraphs, what seems to be an easier version of Comtet's formula. Our

computed values of X(n : r : p) and of d , n < 5 , lead to known

values of t as given in Comtet, [ J ] , and Evans, Harary and Lynn, [Z].

Shafaa+'s method [ 6 ] , which i s akin to that of Comtet, ends up in resul ts

for tr. and ts that are wrong.5 °

Unless otherwise mentioned al l our topologies and graphs are labelled.

2 . C o m b i n a t o r i a l numbers A(n : r : p ) and p r o o f o f ( 3 )

We start with the concept of 'Borel equivalence' introduced by Rayburn

[5] . Let T(X) be the set of all topologies on X . Two topologies on X

are said to be Borel equivalent if they generate the same Borel field;

that i s , a topology in which every open set is also closed, or, what Sharp,

[7] , calls, a symmetric topology. This equivalence partitions T(x) into

what are called Borel equivalence classes. 'How many topologies are there

in each Borel equivalence class?1 was a question posed by Rayburn.

Recall [2] that T{x) is in one-to-one correspondence with transitive

digraphs (shortly, transgraphs) in the following manner. Given T € T(x) ,

denote by B. the smallest T-open set containing i . Construct the

directed graph G(T) on X by stipulating that, for j ^ i ,

( i , j ) i G(T) if and only if j € B. . (Here, and throughout the paper,

(•£, j) means the directed edge leading from i to j .) The fact that

this construction results in G(T) being transitive and that the

correspondence x •* G(T) is bijective are proved in [2] and [4]. Under
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Topologies and Stirling numbers I 13

this correspondence, T.-topologies and Borel fields show themselves up as

two extremes in T(X) . Let us use the term 'dwicycle' to denote a

directed cycle of length two.

Then T-topologies correspond to transgraphs which have no dwicycles

(of. [2] and [7]) and Borel fields correspond to transgraphs in which every

edge is part of a dwicycle. These can be seen easily by noting that:

(1) x is a T -topology if and only if j € B. =* i t B. ; and
U "V Q

(2) T is a Borel field if and only if j € B. =* -i € B. {of.

Ray burn [5]).

Also note that T, is finer than Tp if and only if G(T,) is a

subgraph of ff(x„) . This tells us that, to generate the Borel field B

containing T , we have only to look at the subgraph of G(T) and pick the

largest subgraph G. which has nothing but dwicycles in it. This G

will be G[B ) . We have thus proved

PROPOSITION 1. If x € T(X) and B^, is the Borel field generated

by x then G(B ) can be obtained from G(T) by deleting all the edges

in the latter which are not part of dwicycles.

As an illustration, note the following transgraphs on three points:

2 • 3
/ \

2 * 3
/

2 3

G[B ) = G[B )

If T is in the Borel equivalence class 8(S) determined by B then

G(T) and ff(B) differ only in the single lines which do not form part of

dwicycles. To construct G(T) from G(B) , we have, therefore, only to

add other lines to G(B) in such a way that

(i) the resulting graph is a transgraph, and
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( i i) no new dwicycles are introduced.

Note that, in this construction, if (i, j) and (j, i) form a dwicycle
and k is any other vertex, either we add both (i, k) and ( j , k) or
not at all and similarly, either we add both (fe, i) and (k, j) or not
at a l l . So, for the purpose of this construction, we can identify pairs of
points which are connected by a dwicycle. Consider the resulting smaller
set X- of points and construct transgraphs on XQ without dwicycles.

For each such transgraph on X^ (which is now a T -topology on X~ ) we

can recover a topology on X which belongs to 8(5) . This is done by
recovering al l the identified points and the dwicycles connecting them.
Conversely every T_-topology on X- in the same way gives rise to a

topology on X which belongs to 8(S) . Thus the number of topologies in
8(S) is the number of T_-topologies on the set X- as obtained above.

Hence we have proved the following

PROPOSITION 2. Let B be a Borel field and c[G(B)) be the graph
obtained by identifying pairs of points in G(B) which are connected by
dwicycles. Let p be the number of vertices in C[G{B)) . Then the
number of topologies in the Borel equivalence class determined by B is

Now in order to count | T(X) | we have only to l i s t the various Borel
equivalence classes there are and sum up d for the various values of p

that arise. But i t happens that the same p may arise from distinct Borel
fields, as can be seen from the two transgraphs on four points shown below.

2 ' h

3

So i t is necessary to take into account the number r of dwicycles that
occur in G(B) . Each unlabelled Borel field B is determined by two
parameters r and p . So we make the following definition.
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T o p o l o g i e s and S t i r l i n g numbers ' ' 5

DEFINITION 1. Given integers n, r , p such that n > 2 ,

" and l < p ; » , X(n : r : p) denotes the number of labelled

Borel fields B on a set of n points , with r dwicycles and with

p = \c[G(B)) I . I f there i s no such Borel f ie ld for a pair (rQ, pQ) ,

^{n-rQ:p0) = 0 .

Putting aside the calculation of X(n : r : p) for awhile, we first

note that Proposition 2 and the discussion following i t gives us the

following

THEOREM . 1 . tn = H X(n : r : p)d .
p r p

Recall (of. Sharp [7]) that T(X) is in bijective correspondence with

the set of quasiorders (reflexive and transitive relations) on X , by the

rule

3 € B. *** iRj .

Under this correspondence T-topologies correspond to partial orders and

Borel fields correspond to equivalence relations. Given p , the problem

of constructing all the £ X(n : r : p) labelled Borel fields is the

r

problem of distributing n distinct objects (the vertices 1, 2, ..., n

in this case) into p distinct cells (the vertices of C[G(B)) , in this

case) . Hence

I X(n : r : p) = S(n, p) .
T

This observat ion completes the promised independent proof of ( l ) .

3 . Ca lcu la t ion of X(n : r : p)

When r = 0 , p = n , and clearly X(n : 0 : n) = 1 . We shal l

suppose r > 0 in the res t of t h i s section un t i l we come to Theorem 2.

The number r ar ises as follows. F i r s t , note t h a t , as a consequence of

t r a n s i t i v i t y , no dwicycle can exist in a transgraph except as part of a

complete sub-transgraph. The number r wi l l therefore be the sum of the

numbers of dwicycles in the complete subtransgraphs of G{B) . But the
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number of dwicycles in a complete subtransgraph is \A where It > 2 is

the number of vertices in the complete subtransgraph. So,

r =

with k. 2 2 , and k + fco + . . . = n . The number p is the number of

such complete subtransgraphs in G(B) . Thus, given the parameters

n, r, p we arrive at a unique unordered partition of the integer n into

p parts such that n = & . + • & + . . . + fc and r = / J" .

Conversely, given an unordered partition of the integer n which has

at least one part greater than 1 , the parameters r and p are

determined uniquely.

Thus this correspondence between unordered partitions with at least

one part greater than 1 and the triads of parameters n, r, p for which

X(M : r : p) > 0 is bijective. So, to determine \(n : r : p) , we take

the corresponding partition

and regroup the integers k_ , k^, ..., k into

a integers each equal to p. ,

r
a integers each equal to p , and so on.

(Note that we must have Y a.p. = n and at least one p. > 2 .) The

corresponding transgraph will consist of

a disjoint complete transgraphs each on p points;

a disjoint complete transgraphs each on p2 points; and so on;

subject to the understanding that wherever p. = 1 , the component
3

corresponding to that reduces to a single point. "In how many ways can

such a configuration arise, with n, r, p given?" is the question. The

choice of OL subsets of p vertices each can be made in
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ways. Having made this choice, the choice of ou subsets of p vertices

each can be made in

i- hr1) p2il ["-Vi-Pa] p-Vi- hr1) p2)
2 n ?2 r"[ p2 J

ways; and so on.

This completes the proof of the following

THEOREM 2. Let n be any integer greater than or equal to 2 ,

0 * r < r and 1 2 p < n euah that n = ^ + fcg + . . . + k and

(fc.-v rk.}

X where \^ = 0 if k. = 1 . Then

: p) =

where the integers k , k , ..., k have

a^. integers each equal to p.. , •

a integers each equal to p , and so on.

4. Ca lcu la t ion of d
P

It remains to calculate d for every p > 0 . Clearly d, = 1 and

dp = 3 . To arrive at a general formula for d , we proceed by the method

of Comtet but now use the concept of transgraphs intensively. Evans,
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Harary and Lynn [2] have done a similar computation but ours is different.

Let F be the set of transgraphs on n points without dwicycles.

Let y stand for an arbitrary element of T . We shall associate with

each y a unique ordered vector of non-empty subsets of X as follows.
Count the outdegrees of each vertex of y . (The outdegree of a vertex is
the number of directed edges leaving i t . ) We claim that at least one of
these outdegrees must be zero. To see th is , start with any vertex i € y .
If 3 € B. , then (i, «/) € y but («/, i) f y . Now look at B. . If

<- 3
k € B. then k can be connected only to points other than i and j ;3
this follows easily from the transitivity of y and the fact that i t has
no dwicycles. Continuing this process, we finally end up with a vertex p
which is not connected to any other vertex. Thus there exists a p such
that the outdegree of p is zero. Let S (y) be the set of a l l vertices

of y with outdegree zero.

Delete a l l vertices belonging to SAy) from the graph y and also

a l l the edges leading from or to such vertices. The resulting graph may be
called the f irs t truncation y. . Clearly i t is a transgraph without

dwicycles. Compute S [y ) and denote i t by S (y) . Delete from y ,

the points of SAy) and a l l edges leading from or to them, thus obtaining

the second truncation Yp • Continue this process until al l vertices of Y

are exhausted. The last set ^t(Y) will be such that al l i t s points have

outdegrees zero in the (fc-l)th truncation of y . Write

Thus, corresponding to y we have an ordered partition of non-empty
subsets of X . We write n(Y) = (S) . Note that n of the discrete

graph is U) .

PROPOSITION 3. (i) n is onto -the set of all ordered partitions of
non-empty subsets of X .

(ii) n is many-one.

Proof, (i) Given an ordered partition (5) = [s , S , . . . , s j of
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non-empty subsets of X , we produce a transgraph Y as follows. A

directed edge goes from every point of S to one or more points of 5 ,

q < p , in such a way t h a t , whenever p > 2 , x (. S , y f S , and

(x, y) € y » i t i s t rue t h a t , for every i 5 p-2 ,

s € S. and {y, z) i y =* (x, 3) € Y •

The resulting Y is clearly transitive. It has no dwicycles because

all directed edges go from points of S. to points of S. , i > j , and
t 3

never in the opposite direction. The points of S are all of outdegree

zero. So S = S (y) . y, = y\SAy) , the first truncation of Y , has the

JL X -L X

points of S as its set of vertices with zero outdegree. Hence

Sp = SAy) ; and so on. Thus H ( Y ) = (S) and (i) is proved.(ii) To prove (ii/l look at X = { l , 2 , 3} . Suppose

(S) = ({ l , 3}, (2>) . Then a l l the following 3-transgraphs have (S) as

the i r n-image.

1

/
2 • 3

1

/
2 3

1

2 >• 3

Let N(S) be t h e number of y ( T such t h a t TI(Y) = (•?) . N{S)

can be computed for each (S) (see Sect ion 4 ) . Given

(S) = [S , S ,
X t

where \S. | = s. , the number of ways in which the

n labelled vertices of y can "be distributed into 5' , S_, ... , 5, is
X C. rv

n! This proves the theorem of Comtet [?] as stated below.

THEOREM 3 .

= I , ! . . . 8 k !

\S.\=8.>0,S .c
If If %

Z 8 .=n
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where N(S) is the nwriber of transgraphs y on X y without daicyclea
euah that n(Y) = (5) .

5. Computation of d ,
n

X(n : r : p) , and t

NOTE. In this section and in the Tables at the end, ve use {xyz)
for {a:, y, z} .

In the computation of d the main problem is to calculate N(S) for
n

each possible form of (S) = [S , S , . . . , 5.) where

(|S1 | , \S \, . . . , \S. |) is an ordered partition of the integer n . Given

(S) we proceed as follows. For each point x of S and every q < p

we have to choose a point or points of 5 to which lines from x will

lead. In other words, for each x € 5 , one has to choose a non-empty-

I t helps to write a l l the possible choices for all p and
subset of S

<7 > p > q , in the form of a tableau as below with k - 1 rows and k - 1
columns where the square at the row t i t led 5 and the column t i t led S
l i s t s a l l the choices for the map 5 -»• set of non-empty subsets of S

Then a case by case checking is done for transitivity.

Let us i l lustrate this with two examples.

EXAMPLE 1 . n = 5 , ( 5 ) = ( 1 2 ) ( 3 ) (U) ( 5 ) .

(3)

(5)

^ ( 1 )

3 \ ! ( 2 )

^ (12)

^ ( 1 )

h^+ (2)

^ (12)

5 ^ (2)
^ (12)

h * (3)

5 - (3) 5 - (1*)

(12) (3) (1*)
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The choice 3 •*• ( l ) implies k •* ( l ) and 5 (1)

(12)
(12) and

5 •+ (12) . This gives 3 choices with 3 •* (l) . Similarly there are 3

choices with 3 •*• (2) . The choice 3 •*• (12) implies k •*• (12) and

5 •> (12) . Thus N(S) = 3 + 3 + 1 = 7 .

EXAMPLE 2 . n = 5 , (S) = (12) (3U) ( 5 ) .

(3U)

(5)

(12)

Start with 5 -*• (3) and 3 -•• ( l ) . This goes with any choice for the

image of k and implies 5 • Hence there are 6 choices.

(1)

3 ^ ( 2 )

(12)

5 £ ^
-» (1)

- (2)

* (12)

* ( 1 )

> (2)
^(12)

(3)

5 ^ (U)

^ » ( 3 l * )

Similarly there are 6 choices with 5 "*" (3) and 3 •*• (2) . There are

only 3 choices that go with 5 •*• (3) and 3 •+ (12) . Thus there are , in

a l l , 15 choices for 5 •*• (3) . Similarly there are 15 choices for

5 + (U) .

Now take up 5 + (3*0 . Then

(1) , k + (1)

3 •* (1),, U + (2) - 5 •* (12) ,

3 * (1) , U * (12) - 5 + (12) •

Thus 3 •* (1) gives k choices. Similarly 3 •* (2) gives k choices.

Finally 3 * (12) gives 3 choices. Thus 5 •* (31*) gives, in all,

k + k + 3 = 11 choices. Hence N(S) = 15 + 15 + 11 = 1*1 .

The completed results are tabulated in Table 1 for 2 5 n 5 5 .
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Table 2 gives the results for A(n : r : p) and the computations

obtaining t , 2 5 n 5 5 .

for

Table 1

Computation of <2 , 2 5 n 5 5

n

2

3

1*

5

ordered
partition

of n

2
11

3
12
21

1 1 1

It
13
31
22

112
121
211

1111

5
lit
Ul
23
32

221
212
122
311
1 3 1
1 1 3

1112
1121
1211
2111

11111

Typical form of (S)

(12)
(1) (2)

(123)
(1) (23)
(12) (3)
(1) (2) (3)

(123*0
(1) (23*+)
(123) (It)
( 1 2 ) (3U)
( 1 ) ( 2 ) (3U)
( 1 ) ( 2 3 ) (U)
( 1 2 ) ( 3 ) (U)
( 1 ) ( 2 ) ( 3 ) ( I t )

(123U5)
(1 ) (23U5)
(123U) ( 5 )
(12) (3«t5)
(123) (U5)
(12) (3U) ( 5 )
(12) ( 3 ) (1+5)
(1 ) (23 ) (1+5)
(123) (It) ( 5 )
(1 ) ( 2 3 M ( 5 )
(1 ) ( 2 ) (31+5)
( 1 ) ( 2 ) ( 3 ) Ct5)
( 1 ) ( 2 ) (3«») (5)
(1 ) ( 2 3 ) (It) (5)
(12) ( 3 ) (It) (5)
( 1 ) ( 2 ) ( 3 ) (>t) ( 5 )

N(S)

1
1

1
1
3
1

1
1
7
9
1
3
5
1

1
1

15
27
U9
Itl
9
9

19
7
1
1
3
5
7
1

Number of
S's of the

same form

1
2

1
3
3
6

l
h
it

6
12
12
12
2lt

1
5
5

10
10
30
30
30
20
20
20
60
60
60
60

120

Contribution
to d

n

1
2

1
3
9
6

1
It

28
51*
12
36
60
2lt

1
5

75
270
1+90

1230
270
270
380
l l tO

20
60

180
300
U20
120

d
Yl

3

19

219

It231
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Table 2
Values of \(n : r : p) and t

n

2

3

It

5

Unordered
partition

of n

11
2

111
21

3

1111
211

22
31

U

11111
2111

221
311

32
Itl

5

X(n : r : p)

X(2 : 0 : 2) = 1
X(2 : 1 : 1) = 1

X(3 : 0 : 3) = 1
X(3 : 1 : 2) = 3
X(3 : 3 : 1) = 1

X(lt : 0 : It) = 1
X(lt : 1 : 3) = 6
X(lt : 2 : 2) = 3 \
X(lt : 3 : 2) = It/
X(U : 6 : 1) = 1

X(5
X(5
X(5
X(5
X(5
X(5
X(5

0 : 5) = 1
1 : It) = 10
2 : 3 ) = 1 5 \
3 : 3 ) = 10f
It : 2) = 10\
6 : 2) = 5 J
10 : 1) = 1

Sin, p)

5(2, 2) = 1
5(2, 1) = 1

5(3, 3) = 1
5(3 , 2) = 3
5(3 , 1) = 1

5(lt, 1+) = 1
5(lt, 3) = 6

S(k, 2) = 7
5(lt, 1) = 1

5(5, 5) = 1
5(5 , It) = 10

5(5 , 3) = 25

S(5, 2) = 15

5(5 , 1) = 1

d
V

3
1

19
3
1

219
19

3
3
1

1+231
219

19
19

3
3
1

Contribution
to tn

3
1

19
9
1

219
lilt

9
12
1

It231
2190
285
190

30
15
1

t n

k

29

355

69>t2
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