THE PROPERTIES OF POPULATION I WO STARS

R.L. Kingsburgh and M.J. Barlow
Department of Physics \mathcal{E} Astronomy
University College London
Gower St., London. WC1E 6BT.

Abstract

High and low resolution UV and optical spectra of the four Population I WO stars originally classified by Barlow and Hummer (1982), Sanduleak 1, 2, 4 and 5, have been analyzed. Reddenings, terminal velocities and the relative abundances of $\mathrm{He}^{2+}, \mathrm{C}^{4+}$ and O^{6+} have been determined. The results are presented in Table 1.

The WO stars show strong OVI $3811,34 \AA$, CIV + HeII $4658+86 \AA$ and CIV $5801,12 \AA$ emission. The oxygen lines are stronger in these stars than in the WC class and the WO stars are believed to be the next evolutionary stage after WC stars.

P Cyg line profiles in the UV spectra of Sand 1 and 2 yielded wind expansion velocities. In the case of Sand 1, the terminal velocity (v_{∞}) was obtained from $v_{\text {black }}$ of the saturated CIV $1548,50 \AA$ profile in a high resolution IUE spectrum. Sand 1 was used to check which optical lines were most appropriate for determining v_{∞}. Half the FWZI's of HeII 1640 \AA and of CIV $5801,12 \AA$ (corrected for instrumental profile and doublet separation) were found to give the best agreement with the CIV $1548 \AA v_{\text {black }}$, so these were used to derive v_{∞} for the other WO stars.

The abundance ratios $\mathrm{C}^{4+} / \mathrm{He}^{2+}$ and $\mathrm{O}^{6+} / \mathrm{He}^{2+}$ were derived from recombination lines which were assumed to be optically thin at $T=50000 \mathrm{~K}$ and $\log \left(n_{e}\right)=11$, using the method described by Barlow and Hummer (Proc. IAU Symp. 99, p. 387, 1982).

Table 1: WO Properties	Sand 1	Sand 2	Sand 4	Sand 5
Other names	Sk 188, AB 8	Brey 93, FD 73	WR 102	WR 142, ST 3
Spectral Type	WO4+O7	WO4	WO1	WO2
EW(OIV 3400) (\AA)	68 ± 1	299 ± 3	-	-
EW(OVI 3434)	-	-	74 ± 8	60 ± 20
EW(OIV 3811,34)	64 ± 1	336 ± 5	1740 ± 30	990 ± 30
EW(CIV+HeII 4658,86)	90 ± 5	531 ± 5	150 ± 10	380 ± 10
EW(OVI 5290)	10 ± 1	45 ± 3	71 ± 3	62 ± 8
EW(OV 5590)	25 ± 1	110 ± 10	30 ± 5	25 ± 5
EW(CIV 5801,12)	200 ± 30	2450 ± 40	150 ± 5	320 ± 10
E(B-V)	0.05	0.19	1.65	2.04
V	13.52	16.35	14.56	13.37
MV	-5.4	-2.6	(-2.8)	-2.8
D $(k p c)$	57.5	46.8	(2.9)	0.9
$v_{\infty}\left(k m s^{-1}\right)$	4200	4500	4600	5500
$\mathrm{n}\left(C^{4+}\right) / \mathrm{n}\left(\mathrm{He}^{2+}\right)$	0.51	0.38	0.66	0.20
$\mathrm{n}\left(\mathrm{O}^{6+}\right) / \mathrm{n}\left(\mathrm{He}^{2+}\right)$	0.08	0.03	0.10	0.03

K. A. van der Hucht and B. Hidayat (eds.),

Wolf-Rayet Stars and Interrelations with Other Massive Stars in Galaxies, 101.
© 1991 IAU. Printed in the Netherlands.

