THE PROPERTIES OF POPULATION I WO STARS

R.L. Kingsburgh and M.J. Barlow Department of Physics & Astronomy University College London Gower St., London. WC1E 6BT.

ABSTRACT: High and low resolution UV and optical spectra of the four Population I WO stars originally classified by Barlow and Hummer (1982), Sanduleak 1, 2, 4 and 5, have been analyzed. Reddenings, terminal velocities and the relative abundances of He²⁺, C⁴⁺ and O⁶⁺ have been determined. The results are presented in Table 1.

The WO stars show strong OVI 3811,34 Å, CIV+HeII 4658+86 Å and CIV 5801,12 Å emission. The oxygen lines are stronger in these stars than in the WC class and the WO stars are believed to be the next evolutionary stage after WC stars.

P Cyg line profiles in the UV spectra of Sand 1 and 2 yielded wind expansion velocities. In the case of Sand 1, the terminal velocity (v_{∞}) was obtained from $v_{\rm black}$ of the saturated CIV 1548,50 Å profile in a high resolution IUE spectrum. Sand 1 was used to check which optical lines were most appropriate for determining v_{∞} . Half the FWZI's of HeII 1640 Å and of CIV 5801,12 Å (corrected for instrumental profile and doublet separation) were found to give the best agreement with the CIV 1548 Å $v_{\rm black}$, so these were used to derive v_{∞} for the other WO stars.

The abundance ratios C^{4+}/He^{2+} and O^{6+}/He^{2+} were derived from recombination lines which were assumed to be optically thin at T=50000K and log(n_e)=11, using the method described by Barlow and Hummer (Proc. IAU Symp. 99, p. 387, 1982).

Table 1: WO Properties	Sand 1	Sand 2	Sand 4	Sand 5
Other names	Sk 188, AB 8	Brey 93, FD 73	WR 102	WR 142, ST 3
Spectral Type	WO4+O7	WO4	WO1	WO2
EW(OIV 3400) (Å)	68±1	299±3		-
EW(OVI 3434)	_	_	74±8	60±20
EW(OIV 3811,34)	64±1	336±5	1740 ± 30	990±30
EW(CIV+HeII 4658,86)	90±5	531±5	150 ± 10	380±10
EW(OVI 5290)	10±1	45±3	71±3	62±8
EW(OV 5590)	25±1	110±10	30±5	25±5
EW(CIV 5801,12)	200±30	2450 ± 40	150±5	320±10
E(B-V)	0.05	0.19	1.65	2.04
\mathbf{v}	13.52	16.35	14.56	13.37
M_V	-5.4	-2.6	(-2.8)	-2.8
D(kpc)	57.5	46.8	(2.9)	0.9
$v_{\infty} \ (km \ s^{-1})$	4200	4500	4600	5500
$n(C^{4+})/n(He^{2+})$	0.51	0.38	0.66	0.20
$n(O^{6+})/n(He^{2+})$	0.08	0.03	0.10	0.03

101

K. A. van der Hucht and B. Hidayat (eds.), Wolf-Rayet Stars and Interrelations with Other Massive Stars in Galaxies, 101. © 1991 IAU. Printed in the Netherlands.