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Axisymmetric numerical simulations of the hydrodynamics around rising bubbles are
performed in order to investigate the impact of surfactants on the bubble dynamics.
Surfactants are assumed to be insoluble. The transport of the adsorbed surfactants is
computed along the deforming surface at large surface Péclet number, and Marangoni
stresses are taken into account. This simulation model leads to the stagnant-cap regime,
with partially immobile interfaces. A parametric study is performed on cases at given
Archimedes number, by varying the degree of contamination (Marangoni number) but
maintaining a nearly constant Eötvös number. The presence of surfactants affects the
rise velocity for oblate bubbles less than for spherical bubbles: the increase of the drag
coefficient, due to interface contamination, is mitigated by a lower bubble deformation.
When the cap angle θcap belongs to the southern hemisphere, the aspect ratio χ is found to
decrease with contamination: the dynamic pressure responsible for the bubble distortion
is lowered, related to the decline of kinetic energy. As soon as θcap lies in the northern
hemisphere, the pressure stress causing distortion becomes independent on θcap : χ no
longer evolves with contamination, and already matches the prediction for fully immobile
interfaces. Mass transfer of a passive scalar across the contaminated interface is also
analysed. Surprisingly, the Sherwood number Sh is found to follow the same law as
for spherical shapes (Kentheswaran et al., Intl J. Heat Mass Transfer, vol. 198, 2022,
123325), allowing us to predict the decrease in Sh due to contamination. These results
reveal the couplings between interface immobilisation, bubble deformation, rise velocity
and interfacial mass transfer.
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1. Introduction

Mass transfer between a dispersed gas and a liquid phase is a general phenomenon
encountered in industrial processes (bubbly columns, chemical or bio-reactors) as well
as environmental flows (breaking waves, lake aeration systems, . . .). Both the bubble
deformation and the surface contamination influences the rate of gas dissolution (Levich
1962; Clift, Grace & Weber 1978; Takemura & Yabe 1999), it is therefore crucial to address
their coupled effects on the bubble dynamics and mass transfer performance.

The bubble shape, during its rise motion, results from the competition between
deforming stresses due to the outer flow, which are of inertial nature at high Reynolds
number Re (based on the bubble rise velocity), and the capillary stresses which resist to
deformation. For ellipsoidal bubbles, the distortion can be well characterised by the aspect
ratio χ . In the case of clean bubbles, several theories or correlations have been proposed
to quantify χ : the potential flow theory with a rotational correction to include dissipation
from the boundary layer by Moore (1965); or predictions issued from experimental or
numerical investigations by Clift et al. (1978), Ryskin & Leal (1984a,b), Duineveld (1995),
Loth (2008), Rastello, Marié & Lance (2011), Legendre, Zenit & Rodrigo Velez-Cordero
(2012) and Sharaf et al. (2017). In these works, χ is a function of two dimensionless
parameters among the Weber, Morton, Reynolds or Eötvös numbers. Besides, the drag
coefficient CD of clean bubbles at large Reynolds number has also been widely studied
(Moore 1963, 1965; Duineveld 1995; Veldhuis 2007; Dijkhuizen et al. 2010; Rastello et al.
2011) in the case of either spherical or oblate bubble shapes.

Regarding the gas–liquid mass transfer around ellipsoidal bubbles, it has been
theoretically investigated by Lochiel & Calderbank (1964) in the case of either fully mobile
or immobile interfaces, at high Schmidt (Sc) and Péclet numbers. In the case of very large
Reynolds number, for interfaces with a slip condition, the authors provided an analytical
expression of the Sherwood number Sh based on the potential flow theory: they introduced
a correction based on χ to the Sherwood number of a spherical bubble from Boussinesq
(1905), which revealed that the effect of bubble eccentricity is very small provided that the
bubble is an oblate spheroid. Later, Figueroa-Espinoza & Legendre (2010) investigated
the external mass transfer around a clean ellipsoidal bubble based on boundary-fitted
numerical simulations. The authors confirmed this unexpected finding: the Sh for clean
deformed bubbles can be reasonably well evaluated by the Boussinesq solution for spheres
in a large range of Schmidt and Reynolds numbers, provided that the equivalent diameter
is used as the characteristic length to define the Péclet number. They proposed corrective
functions f (χ) in order to adjust the solution for ellipsoidal bubbles with χ ≤ 3 at several
Re, by noting that the correction is less than 10 % for Re ≥ 100.

For the applications, configurations of interest are, however, generally rich in
contaminants and surfactants, i.e. amphiphilic molecules which adsorb to the interfaces
and affect the surface tension. At large concentration, surfactants can confer complex
rheological properties to the interfacial film, which are elastic and viscous properties,
either due to the variation of the chemical composition of the interface or to interactions
between the adsorbed surfactants, as classified by Verwijlen, Imperiali & Vermant (2014).
As bubble surfaces are particularly sensitive to their surroundings (Dollet, Marmottant
& Garbin 2019), this induces huge consequences on the bubbly flows. In this way, even
when only traces of surfactants are present, in such a way that the surface tension remains
very close to that of a clean interface, contaminants provide a Gibbs elasticity to the
bubble surface, and significantly affects the interfacial motion (Lakshmanan & Ehrhard
2010; Lalanne, Masbernat & Risso 2020; Manikantan & Squires 2020) through Marangoni
stresses. As a consequence, a small concentration of adsorbed surfactants is sufficient to
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Figure 1. Deformed rising bubble in a quiescent liquid: representation of the contamination angle θcap in the
stagnant-cap regime.

drastically impact the hydrodynamics and rates of transfer across the interface, including
significant effects on the drag force (Levich 1962; Cuenot, Magnaudet & Spennato 1997;
Zhang & Finch 2001; Pesci et al. 2018), the lift force (Takagi & Matsumoto 2011;
Hessenkemper et al. 2021; Atasi et al. 2023) or the bubble path instabilities that surfactants
can trigger (Tagawa, Takagi & Matsumoto 2014) since they depend on the vorticity
production at the interface.

Surfactants are known to decrease the bubble rise velocity down to the one of a solid
sphere of the same size in the worst case (Zhang & Finch 2001): the velocity of the fluid
at the interface is retarded due to the Marangoni stresses, caused by the surface tension
gradients resulting from the advection of the surfactants along the surface (Levich 1962;
Clift et al. 1978; Bel Fdhila & Duineveld 1996; Takemura 2005; Takagi & Matsumoto
2011). In practical conditions, surfactants are soluble: they adsorb continuously from the
bulk phase to the interface, mostly at the front of the bubble, then are convected towards
the rear of the bubble where the locally high concentration leads to desorption (Cuenot
et al. 1997; Palaparthi, Demetrios & Maldarelli 2006). The present study focuses on the
configuration where the rate of surface convection of surfactants is much higher than
(i) the rate of exchange between the bulk and the interface (limited by either transport
in the bulk or adsorption kinetics) and (ii) the rate of surface diffusion. In that case,
surfactants can be assumed to be insoluble: the adsorption/desorption rates are neglected.
This regime results in a characteristic stagnant-cap angle θcap formed by the advected
surfactants at the rear of the bubble, which splits the surface into a part with mobile
interface and another one with immobile interface, as illustrated in figure 1. In the case
of contaminated spherical bubbles, the reduced drag coefficient is known to be a function
of θcap from the works of Sadhal & Johnson (1983), Zhang & Finch (2001) and Piedfert
et al. (2018). Concerning the case of oblate bubbles, Dijkhuizen et al. (2010) reported that
experimental drag coefficients are mostly higher than in pure systems, due to the presence
of impurities. From comparisons between numerical simulations and experiments, they
suggested that contamination induces much less deformed bubbles. Empirical models
have been proposed for the drag coefficient of deformed bubbles in the presence of
surfactants, depending on (Re, Eo) by Tomiyama et al. (1998) or on (Re, χ) by Chen
et al. (2019) for a fully contaminated interface, but there is no general correlation relating
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the drag coefficient to the stagnant-cap angle of contamination for intermediate cases.
Regarding the aspect ratio, Aoyama et al. (2018) analysed the bubbles’ shapes in liquid
solutions where Triton X-100 and 1-octanol were added as surfactants: the interfaces were
considered as fully immobile since the point where the drag coefficient is independent
on the surfactant concentration was reached. They proposed an empirical correlation
χ(Re, Eo) to predict the aspect ratio, validated in the basis of experimental data involving
other types of surfactants: sodium dodecyl sulphate (SDS), 1-decanol. Generality of their
correlation in the case of contaminated bubbles is still an open question. A systematic
investigation on the influence of surfactants on the bubble deformation is therefore not yet
achieved.

Regarding gas–liquid mass transfer in the presence of surfactants, it has been reported
by several experimental or numerical investigations that the rate of transfer declines for
an interface which includes a (partial) no-slip condition (Garner & Hale 1953; Takemura
& Yabe 1999; Vasconcelos, Orvalho & Alves 2002; Jimenez et al. 2014; Weiner et al.
2019; Dani et al. 2021; Lebrun et al. 2021; Abadie et al. 2022): when increasing the
contamination rate, the Sherwood number of a spherical bubble decreases from the
prediction for a clean bubble, given by Colombet et al. (2013) and Takemura & Yabe
(1998), until the value for a solid sphere, estimated by Ranz & Marshall (1952) and
Frössling (1938). In particular, provided that the bubbles are spherical, and in a case
where the adsorption and desorption rates of surfactants are very slow (leading to the
stagnant-cap regime), the decline of the Sherwood number was previously investigated,
by means of direct numerical simulations by Kentheswaran et al. (2022). This work
revealed that the mass transfer decrease results from both (i) the decrease of the bubble
rise velocity due to the partial interface immobilisation, and (ii) local phenomena related
to the progressive change of hydrodynamics, even in the remaining mobile part of the
interface. Indeed, on the one hand, in the mobile part, the tangential velocity of the fluid
is lower than for a clean bubble at the same Re, which reduces mass transport: this was
characterised by a dimensionless maximum tangential velocity u∗

max, normalised by that
around a bubble with slip condition. On the other hand, the part of the interface which
is immobilised induces a thicker mass boundary layer for the transfer of the solute, i.e. a
lower contribution of Sc in the global Sherwood number. Finally, a correlation to predict
Sh around contaminated bubbles has been proposed, based on both global (Re, Sc) and
local parameters (θcap, u∗

max). However, such a correlation has been established only in the
case of spherical gas bubbles, without taking into account the impact of distortion on the
transfer rate.

Here, direct numerical simulations of rising deformable bubbles in the stagnant-cap
regime are performed, in order to mimic the effect of a monolayer of surfactants present
in dilute concentration at the interface (no interaction between surfactant molecules at the
interface is modelled). Surfactants are considered as insoluble: they are already adsorbed
on the interface and are only transported along the bubble surface. The numerical approach
consists in solving the Navier–Stokes equations with the Marangoni stresses as a jump
condition on the tangential stresses at the interface. A parametric study is carried out,
by defining seven cases at given Archimedes and Eötvös numbers, and by increasing the
amount of surfactant so as to vary the Marangoni number. In this way, each case represents
the progressive contamination of rising bubbles of given properties, in the inertial regime
where oblate shapes are obtained. The contamination angle θcap, the bubble aspect ratio χ

and the Reynolds number are not imposed but result from the numerical computation.
Axisymmetric conditions are assumed: as the range of investigated Reynolds numbers is

between 10 and 70, the flow is always stable, below the limit of path instability known for
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an ellipsoidal clean bubble, given by Magnaudet & Mougin (2007), or reported for oblate
bubbles in the presence of surfactants by Tagawa et al. (2014).

Besides, the mass transfer of a passive scalar dissolving from the gas to the liquid phase
is also computed around the contaminated distorted bubble, at several Schmidt numbers.
It is assumed that the solute is dilute enough (low mass flux) so that the bubble volume
remains constant. The rate of mass transfer is then computed at steady state, in the form of
a Sherwood number.

The main objectives of this paper are to investigate the impact of surfactants on the drag
coefficient and the bubble distortion, then to analyse the consequences on the Sherwood
number describing the gas–liquid mass transfer rate, in the case of bubbles with a portion
of the interface which is immobile.

2. Governing equations and numerical methods

2.1. Mathematical formalism, simulation conditions
In this study, an incompressible flow is considered, described by the following mass and
momentum conservation laws, in a one-fluid approach:

ρ

(
Du
Dt

+ (u · ∇)u
)

= −∇p + ∇ · (2μD) + ρg + σκδIn, (2.1)

∇ · u = 0, (2.2)

where ρ and μ are, respectively, the fluid density and viscosity, u the velocity field, p the
pressure, D the rate of deformation tensor, g the gravity acceleration, σ the surface tension,
κ = −∇ · n the interface curvature, δI the Dirac distribution centred on the interface,
and n the interface normal vector. The jump condition on the normal stresses due to the
capillary force is considered according to the following equation:

[n · τ · n] = σκ, (2.3)

where τ = −pI + 2μD is the stress tensor, and [·] stands for the interface jump condition
operator between liquid and gas. As both the tangential and the normal velocity (no
phase change due to mass transfer is considered) are continuous across the interface, the
following equation is satisfied:

[u] = 0. (2.4)

The transport of surfactants along the deforming bubble surface is considered, through
the surface advection–diffusion equation (Levich 1962; Stone 1990),

∂Γ

∂t
+ us · ∇sΓ + Γ ∇s · u = Ds
sΓ, (2.5)

where Γ is the surface concentration of surfactants, us the tangential velocity of the
fluid at the interface, ∇s = (I − n ⊗ n)∇ the surface gradient operator, Ds the surface
diffusion coefficient and 
s the surface Laplacian operator. Note that the partial time
derivative of (2.5) is written along the normal direction to the interface. Equation (2.5) is
solved by using an extended Γ̃ field in the normal direction to the interface, as defined
in the following section. Note that an infinite surface Péclet number for the surfactant
transport is assumed, based on typical values of the surface diffusion coefficient as
given by Valkovska & Danov (2000), allowing us to neglect the surface diffusion term.
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The Marangoni interfacial stresses are taken into account as a jump condition of the
tangential viscous stresses across the interface,

[t · τ · n] = −t · ∇sσ, (2.6)

with t the tangential vector to the interface.
The surface tension σ depends on the local surfactant concentration. Here, it is assumed

to follow a Henry isotherm,
σ = σ0 − RgTΓ, (2.7)

where σ0 is the surface tension of reference around which its variations are linearised, Rg
the gas constant and T the temperature. Note that (2.7) corresponds to a perfect gas model,
which does not take into account any interaction between the adsorbed molecules. All the
computations are performed by using this model for the surface tension.

Regarding the mass transfer of a single species from the gas to the bulk liquid, the
concentration field C in the liquid phase is computed by means of the convection–diffusion
equation (resistance to mass transfer is considered to be only in the external liquid phase),

∂C
∂t

+ u · ∇C = D∇ · (∇C), (2.8)

where D is the diffusion coefficient associated with the dilute binary mixture.
Here, axisymmetric simulations are performed. The system of (2.1), (2.2), (2.5) is

computed until steady-state in the frame moving with the bubble, with their jump and
boundary conditions, to compute the hydrodynamics of the deformed bubbles in the
presence of surfactants. Then (2.8) is solved on the converged hydrodynamics.

2.2. Numerical methods
The equations presented in the previous section are implemented in the in-house code
DIVA (Tanguy, Menard & Berlemont 2007; Lalanne et al. 2015b; Lepilliez et al. 2016;
Rueda Villegas et al. 2017). The latter has been validated on problems involving the shape
oscillation dynamics of rising bubbles in Lalanne et al. (2015a), mass transfer around
bubbles in Butler et al. (2021) and the effect of surfactants by Piedfert et al. (2018) and
Kentheswaran et al. (2022).

The interface is captured by a level set distance function φ, and its evolution is obtained
by solving the following convection equation:

∂φ

∂t
+ u · ∇φ = 0, (2.9)

where negative and positive values of φ, respectively, correspond to the gas and liquid
phases. In order to maintain φ as a signed distance function, a reinitialisation step is used
at each time step, as proposed in Sussman, Smereka & Osher (1994).

An extrapolation Γ̃ of the surfactant concentration Γ is defined on both side of the
interface at each time step, so as to be constant in the normal direction, by solving the
following equation during a fictitious time τ :

∂Γ̃

∂τ
+ sign(φ)n · ∇Γ̃ = 0. (2.10)

Then, in the numerical implementation, (2.5) is solved on the field Γ̃ , which enables us
to compute the time derivative as the usual Eulerian derivative, as developed in Pereira
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& Kalliadasis (2008), and which facilitates the calculation of the surface convection term
from the gradient of Γ̃ as its derivative in the normal direction is zero (see validation of
this implementation in Piedfert et al. (2018)).

The incompressible Navier–Stokes equations are solved by a projection method. In
order to ensure a sharp description of the jump conditions across the interface, both in
the normal and tangential direction, the discontinuities are taken into account by the
ghost fluid method (Fedkiw et al. 1999). In the normal direction (2.3), the pressure and
viscous normal stress discontinuities are computed following the ghost fluid conservative
viscous method presented in Lalanne et al. (2015b), or Lepilliez et al. (2016) with implicit
formulation. In the tangential direction (2.6), the jump condition due to the Marangoni
stress is computed by means of the ghost fluid primitive viscous method, originally
proposed by Kang, Fedkiw & Liu (2000), and further described in Lalanne et al. (2015b).
In this way, the tangential force at the interface, calculated from the gradients of surface
tension, is included in the viscous stress tensor jump, on the basis of the expression
provided by Piedfert et al. (2018) or Kentheswaran et al. (2022). A detailed validation
of this methodology is shown in Dalmon et al. (2020).

In the equations, all the convection terms are computed with a fifth-order weighted
essentially non-oscillatory (WENO-Z) scheme while the diffusion terms are discretised
by using second-order schemes, and temporal derivatives are treated with a second-order
Runge–Kutta scheme. A blackbox multigrid (BBMG) solver from Dendy (1982)
permits us to efficiently compute the Poisson equation resulting from the projection
step.

Finally, concerning the resolution of (2.8) for the solute mass transfer from the gas
to the liquid, the concentration Cint is assumed to be known at the interface and to
remain constant, following the standard Henry law. In this paper, any potential hindrance
effect associated with the presence of surfactants at the bubble surface, as discussed
by Bothe (2022), is neglected. In the simulation, Cint is set by an immersed Dirichlet
boundary condition at the interface (Gibou et al. 2002). In order to propose an accurate
calculation of the concentration gradients and their transport around the interface,
quadratic extrapolations of the concentration field in the liquid phase are computed inside
the bubble, following the methodology from Aslam (2003).

2.3. Numerical procedure and boundary conditions
In the simulations, the bubble is initialised as spherical, but only the final state is analysed,
once the bubble is steadily deformed. The rising bubble is maintained at the centre of
the domain of size lr × lz = 8Req × 16Req (it has been verified that the domain size is
sufficient to neglect the confinement in the channel for the bubble Reynolds number
values of the present simulations), by means of a method similar to Mougin & Magnaudet
(2002).

For the velocity field, symmetric and wall conditions are, respectively, imposed at
r = 0 and r = lr, and free boundary conditions are imposed at the top and bottom
boundaries.

First, the hydrodynamics of the rising bubble in the presence of the adsorbed surfactants
is computed at steady-state. Then, mass transfer is solved based on the converged velocity
field. The following boundary conditions are imposed for the concentration field of the
solute: a Dirichlet condition Cint = 1 at the bubble surface, a Neumann condition with a
zero flux at r = 0 and Dirichlet conditions with C∞ = 0 at r = lr, z = 0 and z = lz.
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3. Statement of the problem

The simulations are performed at constant density and viscosity ratios of 815 and 63,
respectively, which corresponds to an air bubble in water. Three other dimensionless
parameters are required to characterise the hydrodynamics of contaminated and
deformable bubbles: the Archimedes number Ar,

Ar = gdeq
3ρliq(ρliq − ρgas)

μliq2 ; (3.1)

the Eötvos (or Bond) number Eo as the ratio between gravitational to capillary forces,

Eo = (ρliq − ρgas)gd2
eq

σ̄
; (3.2)

and the Marangoni number Ma as the ratio between the Marangoni over the viscous
stresses,

Ma = RGTΓ̄

μliqU∞
. (3.3)

These are chosen to define the cases, where σ̄ is the average surface tension, Γ̄ the
average surfactant concentration obtained once the bubble shape is converged, U∞ the
rising velocity at steady state, and deq the equivalent diameter (i.e. the diameter that a
spherical bubble of same volume would have). Other parameters are relevant to analyse
the results, such as the Reynolds number Re,

Re = ρliqU∞deq

μliq
, (3.4)

the Weber number We as the ratio between inertial and capillary stresses,

We = ρliqU2∞deq

σ̄
(3.5)

and the bubble aspect ratio χ as the ratio between the large axis and the small one.
The set of parameters are chosen to obtain ellipsoidal bubble shapes from the diagram

of Clift et al. (1978). First, simulations of different bubbles with fully mobile interfaces
(Ma = 0) have been performed at different couples (Ar, Eo), to define seven cases, listed
in table 1, with Reclean and χclean as reference values for each one.

Then, for each case at given Ar, simulations are carried out in the presence of insoluble
surfactants by considering a surface concentration of the latter at the interface, leading to
a value of the Marangoni number Ma and an Eötvös number Eo which is nearly conserved
compared with Eoclean. Indeed, note that, based on the chosen values (see the Appendix),
Eo varies less than 5 % when varying the surfactant concentration (due to the variation of
the average surface tension), except for Case 4 for which Eo differs from Eoclean by 16 %
at most.

Let us also remark that, as the bubble is initialised spherical, of diameter deq, and
covered by a given concentration of insoluble surfactants, both its surface area S(t) and
its average concentration Γ̄ (t) evolve during the simulation, as the total mass of adsorbed
surfactant Γ̄ (t)S(t) is conserved.

In this study, 500 ≤ Ar ≤ 5600, 0.7 ≤ Eo ≤ 11.4 and 0 ≤ Ma ≤ 20, leading to rising
bubbles in inertial conditions at moderate Reynolds numbers 10 ≤ Re ≤ 70, with aspect
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Ar Eoclean Reclean χclean

Case 1 2.05 × 103 0.71 63.3 1.17
Case 2 3.03 × 103 2.28 66.1 1.55
Case 3 3.93 × 103 5.41 61.5 2.08
Case 4 5.63 × 103 11.4 60.4 2.97
Case 5 5.06 × 102 1.62 20.4 1.16
Case 6 8.28 × 102 6.23 23.3 1.66
Case 7 1.05 × 103 10.2 24.3 2.04

Table 1. Simulation conditions for the clean bubble cases. Each one serves as a basis for the simulations in
the presence of different concentration of adsorbed surfactants, for which the parameters are shown in the
Appendix.

ratios 1 ≤ χ ≤ 3. The contamination angle θcap is a direct result from the numerical
resolution, cases between θcap = 0 and θcap = π are obtained for each simulation case.

In order to quantify the variations of surface tension along an interface when it is
submitted to a deformation, the Gibbs elasticity is defined as

− Γ̄
dσ

dΓ
= RGTΓ̄, (3.6)

in the case of insoluble surfactants and based on the isotherm used for this study (2.7).
The Gibbs elasticity is then normalised by the average surface tension, leading to the
dimensionless elasticity number E,

E = RgTΓ̄

σ0
. (3.7)

Here, from the values of Γ̄ at steady state, the elasticity number varies from E = 0.02 to
E = 0.66, giving a wide range of applicability: from weak surface-active effects (very
small E), which correspond to the case of residual contaminants at an interface like
impurities, to stronger impacts on surface tension due to a higher surfactant concentration.

Regarding the gas–liquid mass transfer computation, the concentration field of the solute
is solved at different Schmidt numbers Sc by varying the molecular diffusivity, from Sc =
1 to Sc = 100. Simulations then allow us to compute the global mass transfer rate around
the deformed bubble.

4. Results on the hydrodynamics

In this section, the hydrodynamics of the contaminated bubbles issued from the different
cases is investigated.

First, results on the drag coefficient and the aspect ratio of extreme interface conditions
(clean and fully immobile interface) are presented, i.e., respectively, when θcap = π and
θcap = 0, and compared with existing works. Then, an analysis of the different parameters
is proposed for partially contaminated bubbles, including the Marangoni stresses over the
interface.
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CD for different meshes References

Clean 128 × 256 256 × 512 512 × 1024 1024 × 2048 CD
clean
1 CD

clean
2

Case 3 1.50 1.47 1.46 1.46 1.56 1.23
Case 6 2.60 2.52 2.56 2.60 2.40 2.43

Table 2. Spatial convergence on the drag coefficient at θcap = π (clean interface) for Case 3 and Case 6,
compared with the correlations of (4.3) from Dijkhuizen et al. (2010) and (4.6) from Chen et al. (2019) for a
clean ellipsoidal bubble.

The drag coefficient is calculated with the equivalent diameter deq as follows:

CD = ‖FD‖
1
2(πd2

eq/4)ρliqU2∞
, (4.1)

where FD is calculated as the sum of the pressure and the viscous drag forces,

FD =
∮

S
−pI · n dS +

∮
S

2μD · n dS. (4.2)

4.1. Validations: fully mobile and immobile interfaces
This section focuses on the extreme cases of the clean (fully mobile) interface and the
fully immobile one. Existing correlations from either experimental or numerical works
are used to benchmark the code and identify scaling laws of reference to further analyse
the intermediate cases in terms of interface mobility.

4.1.1. Drag coefficient
The spatial convergence of our simulations is shown in table 2 for the drag coefficient of
clean and deformed bubbles. The mesh 1024 × 2048, i.e. with approximately 64 nodes per
radius, is used for all the simulations in this study.

Concerning the case of clean bubbles with mobile interface, the analytical expression
CD(χ) from Moore (1965) is found to overestimate the drag coefficient when the aspect
ratio is larger than 1.6, the prediction being consistent with our simulations for Cases 1, 2
and 5 (less distorted bubbles). Indeed, this expression is not the most suitable at moderate
Reynolds numbers (the maximal value considered here is Re = 66).

Empirical correlations have been proposed as alternatives, such as that of Dijkhuizen
et al. (2010),

CD
clean
1 (Re, Eo) =

√
Cclean

D (Re)2 + CD(Eo)2, (4.3)

which is based on the drag coefficient of a spherical bubble Cclean
D (Re) from Mei, Klausner

& Lawrence (1994)

Cclean
D (Re) = 16

Re

[
1 +

(
8

Re
+ 1

2

(
1 + 3.315

Re1/2

))−1
]

, (4.4)

and which is corrected by a function of Eo defined on the basis of their numerical results
and the experimental data from Duineveld (1995) and Veldhuis (2007),

CD(Eo) = 4Eo
Eo + 9.5

. (4.5)
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Dijkhuizen et al. (2010) (clean)

Case 1

Case 2

Case 3

Case 4

Case 5

Case 6

Case 7

Chen et al. (2019) (solid)
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Figure 2. Parity curves: (a) comparison between the obtained drag coefficient and (4.3) from Dijkhuizen et al.
(2010) for a deformed clean bubble; (b) comparison between our numerical results and (4.9) from Chen et al.
(2019) for a deformed and fully contaminated bubble (−− correspond to ±10 %).

Another correlation was proposed by Chen et al. (2019), based on the experimental data
of Aoyama et al. (2016, 2018):

CD
clean
2 (Re, χ) = 16

Re
[1 + 0.25Re0.32χ1.9]. (4.6)

Numerical results of the present study are compared with (4.3) in figure 2(a). The obtained
drag coefficients are in good agreement with the correlation of Dijkhuizen et al. (2010)
with ±10 % of disparity, whereas the average discrepancy is of 15 % with (4.6).

Concerning the case of bubbles for which the entire interface is immobilised, the
hydrodynamics is similar to the one of a spheroid (oblate) particle, but the latter has been
less investigated than for spheres. Kishore & Gu (2011) studied the drag force on oblate
particles at moderate Reynolds numbers and proposed a correction based on χ to the law
of Schiller & Naumann (1935) for spherical particles,

CD
solid
1 (Re, χ) = 24

Re
χ0.49[1.05 + 0.152Re0.687χ0.671]. (4.7)

The comparison of (4.7) with our numerical results obtained at θcap = 0 gives an average
disparity of 10 %, with a maximum of 24 % for Case 4. Another correlation was proposed
by Chen et al. (2019) on the basis of experimental results from Aoyama et al. (2018) with
ellipsoidal bubbles for which the drag is found to be independent on the concentration of
surfactants,

CD
solid(Re, χ) = 24

Re
[1 + 0.15Re0.687χ0.65], (4.8)

valid for −8.0 ≤ log(Mo) ≤ −3.2, 0.53 ≤ Re ≤ 166 and 0.12 ≤ Eo ≤ 8.2. An average
error of 11 % is found between (4.8) and our results and, since the range of Eo of the
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χ for different meshes References

Clean 128 × 256 256 × 512 512 × 1024 1024 × 2048 χclean
1 χclean

2
Case 3 2.05 2.07 2.08 2.08 2.22 2.18
Case 6 2.05 2.05 2.05 2.04 2.06 2.03

Table 3. Spatial convergence of the aspect ratio of clean bubbles, with different meshes. Results are
compared with (4.11) from Legendre et al. (2012) and (4.12) from Aoyama et al. (2016).

present simulations is out of the limits of validation of this correlation as reported by the
authors, a slight correction is introduced here,

CD
solid
2 (Re, χ) = 24

Re
[1 + 0.17Re0.687χ0.48]. (4.9)

Figure 2(b) compares the prediction from (4.9) with the numerical results of this study,
and a very good matching is obtained, within 5 % of discrepancy.

Therefore, for the drag coefficient of a clean ellipsoidal bubble, (4.3) is retained, whereas
for a fully contaminated ellipsoidal bubble, (4.9) is preferred.

4.1.2. Aspect ratio
Spatial convergence of the aspect ratio issued from our simulations is proved in table 3 in
the case of clean bubbles, where the results are found to be grid-independent.

Regarding the distortion of clean bubbles, Moore (1965) wrote the balance between the
dynamic pressure and capillary pressure at the stagnation point and at the bubble equator,
and introduced an analytical relation between the Weber number and the aspect ratio,

We = 4
χ4/3

(χ3 + χ − 2)

(χ2 − 1)3 [χ2 sec−1 χ − (χ2 − 1)1/2]2. (4.10)

However, Duineveld (1995) and Dijkhuizen et al. (2010) observed that (4.10) overestimates
the bubble deformation. Then, Legendre et al. (2012) gathered a large number of
experimental results on χ by using a function of the Weber number corrected by the
Morton number Mo in order to take into account the liquid properties, in the form

χclean
1 (We, Mo) = 1

1 − 9
64 We(1 + 0.2Mo0.1We)−1

, (4.11)

this expression being valid for −8 ≤ log(Mo) ≤ 0. Another correlation was proposed by
Aoyama et al. (2016) in terms of Re and Eo, with a wider validation range of Mo (−11 ≤
log(Mo) ≤ 0.63, 3.2.10−3 ≤ Re ≤ 1.3.102 and 4.2.10−2 ≤ Eo ≤ 29),

χclean
2 (Re, Eo) = [1 + 0.016Eo1.12Re]0.388. (4.12)

In figure 3(a), our numerical results are compared with (4.11) and (4.12). A very
good agreement is obtained with (4.11), within 10 % of discrepancy, and an excellent
agreement is found with (4.12) with less than 6 % of disparity. Both correlations give
similar predictions, close to the numerical results.
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Figure 3. Parity curves: (a) aspect ratio values from our simulations against the values predicted either by
(4.11) with blue symbols, or by (4.12) with red symbols, for clean ellipsoidal bubbles; (b) aspect ratio values
from our simulations against the values given by (4.13), for ellipsoidal and fully contaminated bubbles (−−
correspond to ±10 %).

Regarding fully contaminated bubbles, Aoyama et al. (2018) also proposed a correlation
of the aspect ratio depending on Re and Eo,

χ solid(Re, Eo) = [1 + 0.024Eo(σ̄ )1.17Re0.44]0.57, (4.13)

based on the average value of the surface tension σ̄ , which gathers experimental data with
different types of surfactants (ionic, anionic and surfactants with two different lengths of
carbon chain). Numerical results of fully contaminated bubbles of this study are compared
with (4.13) in figure 3(b). An excellent agreement is found between the obtained aspect
ratios and the correlation prediction, within 5 % of discrepancy. It is worth noting that
this comparison confirms the generalisation of (4.13) since there is no dependency on the
nature of the surfactant, on which there is no assumption in the simulations performed
here.

Thus, regarding the aspect ratio of oblate bubbles, (4.11) or (4.12) are retained for clean
ellipsoidal bubbles, and (4.13) for fully contaminated bubbles.

4.2. Hydrodynamics of a partially contaminated bubble
For a partially contaminated bubble, the evolution of the drag coefficient and the aspect
ratio is analysed, compared with the extreme cases previously presented, and depending
on the Marangoni stress intensity at the bubble surface.

4.2.1. Coupling between velocity, interface contamination and shape
Velocity fields and surfactant distribution along the interface are plotted in figures 4(a)
and 4(b), which correspond, respectively, to Case 7 at Ma = 0.7 and Case 3 at Ma = 2.
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Figure 4. Velocity field: (a) Case 7 (Re = 23.4, Ma = 0.7, θcap = 1.68, χ = 1.61); (b) Case 3 (Re = 53.0,
Ma = 2, θcap = 1.36, χ = 1.45).

The insoluble surfactants are convected to the rear of the bubble, creating a surface tension
gradient which induces Marangoni stresses along the interface: at equilibrium, in the final
state of the simulations, the presence of the angle of contamination θcap is evidenced,
which sharply separates areas with slip and no-slip condition at the interface. This state
is referred to a partial interface immobilisation, for which the volume and intensity of the
circulation inside the bubble is reduced.

The bubble shapes reported in these two figures are typical of what is observed in the
present simulations. One can notice that the rear of the bubble is flatter in figure 4(a),
presenting a larger asymmetry between the two halves than in figure 4(b). This is generally
different from what is observed with clean oblate bubbles at comparable Weber number,
which are always more flattened in the front part, as shown in Aoyama et al. (2016). Here,
the presence of surfactants, which accumulate at the rear, makes the surface tension locally
decline, which results in an increase of deformability of this part of the interface.

In the wake, the onset of a recirculation is barely noticeable in figure 4(b), since Re
is higher. Let us comment on the conditions where such a flow separation occurs. In the
case of a fully immobile interface, a translating sphere presents a circulation in its wake
when Re ≥ 20 (Johnson & Patel 1999). In the opposition condition of a mobile interface, a
standing eddy is present only provided that the bubble distortion is sufficient, for instance
for an aspect ratio larger than 2.2 at Re = 20 and larger than 1.7 at Re = 60 (Blanco &
Magnaudet 1995; Magnaudet & Mougin 2007). In intermediate interface mobility cases,
the ability of surfactants to control the wake at the trailing edge has been shown by Wang,
Papageorgiou & Maldarelli (2002) for spherical bubbles, and depends on the θcap value in
the stagnant-cap regime (Dani et al. 2022). In the present simulation cases with distorted
bubbles, we observe the same: surfactants are able to make appear a standing eddy in the
bubble wake in cases where the latter should not be present in condition of a fully mobile
interface, which is for instance the case in figure 4(b). It is interesting to note that a very
small surface concentration (i.e. a small portion of the interface with no-slip condition) can
be sufficient to allow a circulation to develop. The only condition for which recirculation
is not observed in the present study corresponds to the case where both the bubble remains
very close to a sphere (χ ≤1.2) and its Reynolds number is smaller than 20 (as in Case 5).

Profiles of the tangential velocity us and the surfactant concentration Γ along the bubble
surface are plotted in figure 5 for Case 3, at Ma = 0.7. The velocity is zero at the stagnation
point θ = 0, then increases and finally drops to zero at the contamination angle (θ = θcap).
A strong gradient of Γ is observed at this point, where the Marangoni stresses are therefore
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Figure 5. Profiles of normalised fluid velocity us/U∞ at the interface, and surfactant concentration Γ

normalised by the average concentration Γ̄ , along the polar angle θ , for Case 3 at Ma = 0.7. Here θ = 0
and θ = π correspond, respectively, to the apex and the rear of the bubble.

the highest. At the rear of the bubble, the surfactant distribution does, however, not
evolve monotonically since a weak decrease is observed towards the south pole: this is
the signature of the recirculation zone in the bubble wake, which convects surfactants
in the opposite direction of the downward liquid flow due to the rise motion, making
them to accumulate around θ ≈ 5π/8 (where Γ is maximal). However, for cases where no
recirculation zone is present in the bubble wake, the maximal surface concentration value
is still found at θ = π.

In figure 6(a,b), for the different cases, the evolution of the Reynolds number and
the aspect ratio are shown when increasing the Marangoni number, i.e. decreasing the
contamination angle θcap, from the clean case (θcap = 0) to the fully contaminated
condition (θcap = π). The Reynolds number is divided by the clean reference Reclean

obtained, when Ma = 0 at same Ar and nearly constant Eo (note that the bubble aspect
ratio is not conserved in these different conditions, as in an experimental configuration).

It is observed that the ratio Re/Reclean declines while the coverage rate of the interface
increases, for each case. It can be emphasised that, once θcap is lower than π/2, the bubble
velocity changes very slowly, being close to its minimal value (the same as for a spheroidal
particle of same aspect ratio). However, surprisingly one can notice that the larger the
bubble distortion, the smaller the decrease of Re/Reclean: the curves of the different cases
are ordered according to the value of the aspect ratio, by comparing figure 6(a,b). For Case
4, the rise velocity seems even unaffected by contamination, by a change of only ±5 %
between the different θcap conditions, at the same (Ar, Eo); surprisingly, for this case, Re
is even slightly larger than Reclean for some θcap values. To understand this observation, let
us remember that a crucial parameter is not conserved here, when comparing the bubble
velocity with or without surfactants: the distortion of the bubble changes, as there is a
strong interplay between the rise velocity, contamination and the aspect ratio. For each
case, figure 6(b) reveals that when the bubble is progressively contaminated, χ declines.
Actually, the evolution of Re for a bubble in the presence of surfactants is the result of
competing effects: (i) as a contaminated bubble has a partially immobile interface, it rises
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Figure 6. Evolution of the Reynolds number and the aspect ratio from a clean to a fully contaminated interface
at different Ar, depending either (a,b) on the contamination angle θcap or (c,d) on the portion of the surface
S∗(θcap) which is surfactant-free (or mobile).

slower than a clean bubble of same size (the drag force is increased), leading to a smaller
Weber number – the decrease of dynamic pressure responsible for the bubble distortion is
much larger than the reduction of the average surface tension due to the surfactants –
so, consequently a smaller bubble distortion is obtained; (ii) this smaller deformation
reduces the drag between the liquid and the bubble, which tends in turn to mitigate the
velocity decline compared with the clean case. Such competing effects explain the unusual
observation on Case 4, of a close or slightly larger velocity for the contaminated bubble
compared with the clean one. This result will be further discussed in § 4.2.2.

Regarding the bubble deformation evolution, when increasing the contamination, χ first
slightly decreases, then strongly drops while θcap approaches the equator. However, once
the latter is crossed for θcap, the aspect ratio becomes surprisingly constant, whatever the
location of the contamination angle and for all the cases in terms of (Ar, Eo). One can
therefore observe that the hydrodynamic behaviour of the bubble evolves significantly
when the cap angle is in the southern hemisphere, whereas the main quantities are fixed
once it is in the northern one.

To properly analyse such a strong coupling between the rising velocity, interface
contamination and bubble deformation, it is required to work with dimensionless quantities
such as the drag coefficient, which is the object of the next section.
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Figure 7. Reduced drag coefficient C∗
D depending on the contaminated surface S∗(θcap). The results are

compared with the expression given by Sadhal & Johnson (1983) evaluated on a sphere. Note that the points at
θcap = π are set to 0 to avoid data scattering for the C∗

D of clean bubbles.

An alternative plot is introduced in order to better compare the behaviour of oblate
bubbles of different aspect ratios: evolutions of the rise velocity and the aspect ratio are
presented as a function of the portion of the interface which is surfactant-free (i.e. mobile),
rather than θcap. In this way, the percentage of mobile surface S∗(θcap) is introduced,
hence S∗ = 1 when the interface is clean whereas S∗ = 0 when the bubble is fully covered
by surfactants. At a given θcap, the S∗ function directly depends on the bubble shape.
Figure 6(c,d) show Re/Reclean and χ depending on the surface ratio S∗. For instance, for
cases at high χ , such as Cases 3 and 7, it can be seen that Re/Reclean drops in a narrow
range of θcap (figure 6a) whereas, when plotting this curve along S∗(θcap), the evolution
is not so abruptly centred around θcap = π/2. In the same way, the evolution of the aspect
ratio is smoother when plotted as a function of S∗. The sudden decrease of Re/Reclean
or χ is therefore a bias induced by a different distribution of the surface of the interface,
depending on the bubble flatness. The parameter S∗ will be further used to quantify the
drag coefficient variation when the interface is partially immobilised.

4.2.2. Drag coefficient
In the same way as it was proposed for a spherical bubble by Sadhal & Johnson (1983),
we define the reduced drag coefficient for an oblate bubble as

C∗
D(Re, χ) = CD − Cclean

D (Re, χ)

Csolid
D (Re, χ) − Cclean

D (Re, χ)
, (4.14)

where Cclean
D and Csolid

D are given by the correlations selected in the validation section,
(4.6) and (4.9), respectively. For all the cases, figure 7 reveals that the C∗

D(Re, χ) values
lead to a master curve when plotted as a function of surfactant-free surface ratio S∗.
Note that the collapse is much better when using S∗ instead of θcap in the abscissa,
whereas both representations are equivalent for spherical bubbles. Thus, it is found that
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the evolution of the reduced drag coefficient is startlingly similar whatever Re, χ and
Ma. It is confirmed on this plot that the bubble velocity is close to its minimal value
(1 ≥ C∗

D ≥ 0.75) provided that half of the interface is immobile S∗ ≤ 0.5. The analytical
expression given by Sadhal & Johnson (1983) for spherical bubbles in the Stokes regime
is shown for comparison, being plotted by associating the θcap value in the original
expression with the corresponding S∗(θcap) computed on a sphere. This analysis points
out that the evolution of the reduced drag coefficient of an oblate bubble can be estimated
with good accuracy by using the same expression as for spherical bubbles, provided that
the S∗ function is introduced. From a practical point of view, it enables a direct estimation
of the stagnant-cap angle (with interest for mass transfer rate prediction for instance, as
shown in the section dedicated to that point) when both the bubble velocity and its aspect
ratio are measured: C∗

D can be calculated, allowing to deduce S∗ thanks to the expression of
Sadhal & Johnson (1983) (figure 7), then to predict θcap by using a geometrical relationship
on an oblate shape of known χ .

The coupling between velocity, partial interface immobilisation, and shape is now
analysed. It has been emphasised in figure 6 that, by considering Ar constant,
and progressively increasing Ma, Re decreases compared with the case at Ma = 0,
the decrease being less important for a highly distorted bubble. For a better
understanding, the force balance on the bubble at equilibrium is considered: the drag
force 1

2ρliqU2∞π(d2
eq/4)CD(Re, χ) balances the buoyancy force (ρliq − ρgas)gπ(d3

eq/6).
Therefore, the following relationship is established:

Re =
√

4
3

1
CD(Re, χ)

√
Ar. (4.15)

Note that, in (4.15), the effect of surfactants on the bubble dynamics is accounted for
by the expression used for CD, which depends on the interface mobility. At constant Ar,
when considering the presence of surfactants at an interface which induces Marangoni
stresses, two competing phenomena occur with opposite effects on CD, based on figure 6:
(i) the interface becomes (partially) immobilised, making CD increase; (ii) the bubble
deformation decreases, thus making CD, which also depends on χ , decline. Finally, the
dimensionless force balance, (4.15), shows that the consequence on Re is directly related to
the dominant effect in the variation of CD. For most of the cases presented here, CD finally
increases with Ma, as the result of these two competing effects. However, an outstanding
case is that of Case 4: its rise velocity is unaffected by the presence of adsorbed surfactants.
Indeed, the Reynolds number of the contaminated bubble remains close to that of the clean
bubble of the same size whatever θcap (figure 6a). The decrease in bubble distortion before
and after contamination is therefore so significant that it is able to compensate the increase
of CD due to the interface immobilisation. For this case, the drag coefficients CD for the
different θcap values are plotted only as a function of χ in figure 8 (since Re is nearly
constant), and are computed from both the simulations and the predictions of (4.6) and
(4.8) for the extreme cases of fully mobile and immobile interface, respectively.

It can be concluded from this plot that CD remains similar whatever θcap, because
both χ and the interface immobilisation are changing simultaneously. Equation (4.15)
justifies that this compensation is consistent with the result of a nearly constant Re for
all the flow conditions of Case 4. The evolution of Re with contamination, shown in
figures 6(a) or 6(c), is correlated to that of CD given in figure 8: for Case 4, the slight
non-monotonic evolution of Re when increasing the coverage rate of the interface is similar
on both representations. Therefore, the dimensionless force balance, given by (4.15),
constitutes a solid basis to interpret the evolution of the bubble velocity for contaminated
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Figure 8. Drag coefficient CD depending on the aspect ratio χ from (4.6) (red solid line) and (4.8) (blue solid
line), evaluated at Re = 60. Red and blue symbols correspond, respectively, to θcap = π and θcap = 0, and
white symbols correspond to intermediate θcap, for Case 4.

bubbles by including the interplay between the different effects induced by the presence
of surfactants.

4.2.3. Marangoni stresses
To analyse the intensity of the Marangoni effect along the interface, a local Marangoni
number is introduced, as in Piedfert et al. (2018), as a function of the polar angle θ :

Maloc(θ) = ‖∇sσ‖
μliq

U∞
R

. (4.16)

Here Maloc compares the magnitude of the local surface tension gradient with the viscous
stress at the interface, and Maloc is maximum around the contamination angle θcap where
the viscous dissipation is the highest, as pointed out by Piedfert et al. (2018), except for
fully immobile interfaces where the maximum is reached around π/4. For all the cases,
figure 9 reports the maximal value of max(Maloc) at the surface of each oblate bubble,
as a function of the contamination angle. When increasing contamination, i.e. increasing
Ma and decreasing θcap, the Marangoni stress intensity does not monotonically increase.
Indeed, as θcap decreases from π, (by reading figure 9 from right to left), max(Maloc)
first increases until reaching its highest value when θcap is at the equator, then drops at
a non-zero value while 0 ≤ θcap ≤ π/2. It is remarkable to note that this evolution is the
same whatever the case and the bubble deformation, and that the maximal gradient is
always reached for the case at which θcap = π/2. Indeed, the balance of the tangential
stress at the interface yields

μliq
∂us

∂n

∣∣∣∣
liq

≈ ‖∇sσ‖, (4.17)

since the viscosity ratio is large for a gas bubble leading us to neglect the tangential
stress on the gas side. By using the potential flow prediction around an oblate spheroid,
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Figure 9. Maximal intensity of the Marangoni stress along the interface, max(Maloc), depending on the
contamination angle θcap.

(∂us/∂n) ∼ (Upot(θcap)/δ), where Upot is the potential flow velocity, taken at r = R and
θ = θcap, corresponding to the velocity outside the boundary layer and δ its thickness.
Therefore,

max(Maloc) ∼ Upot(θcap)

U∞
R
δ
. (4.18)

In the case of an oblate spheroid of aspect ratio χ , the theoretical calculation of Favelukis
& Hung Ly (2005) shows that the maximal value of Upot is located at θ = π/2 whatever
the aspect ratio. Therefore, the scaling given by (4.18) permits us to justify that the
Marangoni stresses at the surface of a contaminated bubble are maximal in the case where
θcap is at the equator. In the stagnant-cap regime, it can be concluded that the intensity
of the surface tension gradient does not always increase with the adsorbed surfactant
concentration, but its magnitude is strongly sensitive on the θcap value.

4.2.4. Aspect ratio
The bubble shape results from the balance between dynamic and capillary pressures. The
analysis from figure 6 has already revealed that a contaminated bubble is less distorted than
a clean bubble, for cases at a given Ar and same Eo (same bubble size and liquid properties,
but not the same rise velocity). Besides, it has been emphasised from the simulations of the
present study that χ declines when θcap is located in the southern hemisphere (θcap ≤ π/2)
but, surprisingly, no longer evolves when θcap lies in the northern hemisphere. From these
results, it has been observed that predictions of χ from experimental correlations valid
for clean bubbles (such as that of Legendre et al. (2012) as a function of both We and
Mo), overestimate the aspect ratio of a contaminated bubble: the decrease of We, due to
interface contamination, is not enough to account for the lower deformation compared with
a clean bubble at same (We, Mo). Indeed, different experimental correlations exist in the
literature to predict the shape of clean or fully contaminated bubbles. Among them, those
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Figure 10. (a) Aspect ratio χ depending on the Eötvös number Eo for Case 4 where Re is almost constant.
Brown symbols correspond π/2 ≤ θcap ≤ π. Note that for sake of readability, white colour is used here to
illustrate points where 0 ≤ θcap ≤ π/2. Red and blue solid lines are calculated from, respectively, (4.12) and
(4.13). (b) Aspect ratio χ depending on the Reynolds number Re for Case 2 where Eo is almost constant. Black
and green symbols corresponds, respectively, to 0 ≤ θcap ≤ π/2 and π/2 ≤ θcap ≤ π. Red and blue solid lines
are calculated from, respectively, (4.12) and (4.13).

of Aoyama et al. (2016) ((4.12) for mobile interfaces) and Aoyama et al. (2018) ((4.13) for
immobile interfaces) constitute a convenient basis of analysis since both are formulated
with the couple (Re, Eo).

In order to separate the contribution of these two parameters, the evolution of (i) χ as a
function of Eo when Re is almost constant (Case 4) is plotted in figure 10(a), and (ii) χ as
a function of Re when Eo barely evolves (Case 2) is plotted in figure 10(b). The theoretical
predictions for the extreme cases in terms of interface mobility are also given. From these
two figures, one can observe that when π/2 ≤ θcap ≤ π, the aspect ratio drops from that
of clean bubbles to that of a fully contaminated interface, the latter being already reached
as soon as θcap ≈ π/2. Hence, the aspect ratio of a bubble of which the contamination
angle is lower than π/2 can be accurately predicted by the correlation for fully immobile
interfaces (4.13). The slope of χ as a function of Eo is 0.3 while it is of 4.3 as a function
of Re, which means that the variations of the aspect ratio are mostly correlated to those of
the Reynolds number. This is consistent with the observation that the bubble velocity is
nearly constant once θcap lies in the northern hemisphere.

With the objective to explain the evolution of χ depending on the location of θcap, the
pressure distribution around the bubbles is now analysed: the pressure difference 
P =
PA − PE, between the apex (A, of pressure PA in the liquid side) and the equator (E, of
pressure PE in the liquid side), is the main deforming stress due the outer flow (with PA >

PE). The viscous normal stress contribution is not taken into account in the present analysis
since it has been verified that its difference between θ = 0 and θ = π/2 is negligible
compared with 
P.

For Case 2, the dimensionless pressures P∗
A and P∗

E, normalised by 1/2ρliqU2∞, are
plotted for different θcap in figure 11(a). In the region where π/2 ≤ θcap ≤ π, both P∗

A
and P∗

E vary. In particular, even P∗
A drops whereas A is located far from θcap, i.e. the

region where the fluid velocity vanishes: the abrupt deceleration that occurs at θ = θcap in
the southern zone also impacts the velocity and pressure fields at the apex. The normalised
pressure difference between A and E, 
P∗, is shown in figure 11(b). Note that the resisting
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Figure 11. Case 2: (a) dimensionless pressure P∗ at point A at the front of the bubble, and at point E at the
equator, according to the contamination angle; (b) dimensionless velocity UE at the equator at point E, and
pressure difference 
P∗ = P∗

A − P∗
E depending on the contamination angle.

stress to deformation related to surface tension, σ̄/deq, is nearly identical when varying
contamination in this case. When θcap decreases, provided that it is located in the southern
hemisphere, it is found that 
P∗ also declines. This evolution therefore enables us to
understand that the bubble is less distorted, while its interface is partially mobile. The
Bernoulli principle between A and E, applied here by neglecting the pressure loss along
the interface streamline, justifies this decline. Indeed, it leads to


P∗ =
(

UE

U∞

)2

+ ρliqg
z
1
2ρliqU2∞

, (4.19)

where 
z is the height difference between A and E. Equation (4.19) predicts that the
evolution of 
P∗ when θcap varies is related to that of (UE/U∞)2 (the last term due to
the variation of hydrostatic pressure between A and E is small and barely evolves). As
illustrated in figure 11(b), when θcap decreases, (UE/U∞)2 significantly drops, consistently
with the evolution of 
P∗. Thus, provided that θcap lies in the southern hemisphere, the
dynamic pressure difference inducing the bubble distortion is smaller for a partially mobile
interface than for a clean bubble, which is mainly due to the partial decrease of kinetic
energy of the fluid at the equator.

When θcap is in the northern hemisphere, as shown with the reduced drag coefficient,
the rise velocity is close to that of a particle with full no-slip condition. For illustration,
dimensionless pressure fields P∗ are presented in figure 12 for Case 3 at Ma = 2, 4 and
20 (the latter value being the case of a fully immobile interface), for which Re and χ

are similar. The cap angle is known to be a location where the hydrodynamic conditions
abruptly vary (Cuenot et al. 1997). For instance, at Ma = 2 or 4, one can observe an
overpressure at θ = θcap, as it is a new stagnation point at the interface. Behind θcap,
the interface is immobile and the pressure suddenly decreases: the figure shows that
the pressure field around the equator at Ma = 2 or 4 is similar to the one of a fully
immobile interface like for the case Ma = 20. This region of low pressure corresponds
to the location where the velocity is maximal outside the boundary layer. Figure 11(a)
confirms that P∗

E is notably independent of θcap when the latter lies in the north pole,
and reveals that P∗

A also barely evolves with θcap. Therefore, a constant 
P∗ is reached
(figure 11b), which is smaller than for cases where θcap lies in the south pole. Finally,
for cases where θcap ≤ π/2, the dimensionless pressure stress, due to the outer flow and

970 A5-22

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

59
2 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2023.592


Impact of surfactants on the dynamics of deformable bubbles

Pressure drop 

P∗

us
∗

A

E

Ma = 2 Ma = 4 Ma = 20

1.0
–7.0

–5.0

0.0
0.2
0.4
0.6
0.8

–5.5

–6.0

–6.5
θcap

θcap

(a) (b) (c)

Figure 12. Case 3: dimensionless pressure P∗ field and dimensionless interface velocity u∗
s (normalised by the

maximal tangential velocity of each case), at different Marangoni numbers where the stagnant-cap angle lies
in the northern hemisphere.

causing the bubble distortion, is shown to be independent of θcap because some of the flow
features, P∗

A and P∗
E, are sufficiently close to those around an oblate solid sphere despite

the remaining interface mobility between A and E, allowing us to understand that χ is
matching the prediction for fully immobile interfaces in that case.

To rationalise these different evolutions, a general correlation is proposed for the aspect
ratio χcont of contaminated bubbles, whatever the θcap location, in the form

χcont = (1 − α)χ solid + αχclean, (4.20)

where α is given by

α = (1 − CD
∗2.5

)5. (4.21)

This correlation describes the transition of the aspect ratio from that around a bubble with
mobile interface, provided by (4.12), to that around a bubble with fully immobile interface,
provided by (4.13), considering C∗

D. The large exponent used in (4.21) is employed to figure
out that α becomes negligible when θcap ≤ π/2, i.e. C∗

D ≥ 0.75, leading to aspect ratios
close to the limit of fully immobile interfaces. A parity curve is displayed in figure 13 for
all the numerical data provided in this study, and a good matching is observed between the
numerical simulations and the proposed correlation, with a discrepancy below 10 % for
these oblate contaminated bubbles with aspect ratios until 3. In this way, the correlation
(4.20), is able to explain the variations of the bubble aspect ratio χ (figure 6b,d) when the
contamination rate increases (this also stands for the slight non-monotonic evolution of χ

visible in Case 4 while θcap decreases, for which Re, Eo and C∗
D slightly vary between the

different θcap values).

5. Results on the mass transfer rate

For each case, by considering different interface contamination levels, the external mass
transfer of a solute from the gas to the liquid is computed, from Sc = 1 to 40 for Cases 1
to 3, and Sc = 1 to 100 for Cases 5 to 7. The range of variation of Sc is defined in order to
maintain enough mesh points in the thin mass boundary layer which develops around the
bubble, to enable an accurate resolution.

In this section, the dimensionless mass flux rate is computed in the form of a global
Sherwood number, defined with deq as the characteristic length scale,

Sh = deq

D(Cint − C∞)

1
S

∫∫
S
−D∇C · n dS. (5.1)
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Figure 13. Parity curve to compare the obtained aspect ratios of contaminated bubbles of all cases
with (4.20).

The local Sherwood number,

Shloc = −deq∇C · n
(Cint − C∞)

, (5.2)

is also introduced for an analysis of the local values of the mass flux along the interface.
First, Sh is analysed for clean oblate bubbles, and compared with existing works. Then,

results for a contaminated interface are presented.

5.1. Validation: mass transfer around a clean bubble
The results of Sh for oblate clean bubbles are shown in figure 14. The spatial convergence
has first been verified in table 4 where cases at the highest Péclet number Pe = U∞deq/D
of the present study are listed. The numerical results are properly converged for the mesh
1024 × 2048, for Pe ≈ 2500.

As mentioned in the introduction, Figueroa-Espinoza & Legendre (2010) found that
the global Sherwood number around a clean ellipsoidal bubble can be reasonably well
estimated by the same prediction as for a clean spherical bubble (Sh is affected by χ by
less than 10 % at large Re). In their work, they compared their results with the calculation
from Boussinesq (1905), valid at large Re and Pe. In the present study, the correlation given
by Colombet et al. (2013), later proposed to predict Sh for spherical bubbles whatever Re
and Sc, is chosen as the reference for the case of a clean interface,

Shclean = 1 +
[

1 +
(

4
3π

)2/3

(2Pemax)
2/3

]3/4

, (5.3)

where Pemax is the Péclet number based on the maximum tangential velocity us max of
the fluid along the interface. The comparison between this correlation and the obtained
Sherwood number is plotted in figure 14(a) for clean bubbles. The numerical results

970 A5-24

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

59
2 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2023.592


Impact of surfactants on the dynamics of deformable bubbles

0 500 1000 1500 2000 2500

Pemax

3000 3500

10

20

30

40

50

60

0 π/4 π/2

θ
3π/4 π

10

20

30

40

50

ShlocSh

60

70

80(b)(a)

Case 3 – Sc = 30
Case 7 – Sc = 60

Case 1 – Sc = (1 – 40)
Case 2 – Sc = (1 – 40)

Case 5 – Sc = (1 – 100)
Case 6 – Sc = (1 – 100)
Case 7 – Sc = (1 – 100)
Colombet et al. (2013)

Case 3 – Sc = (1 – 40)

Figure 14. Global and local Sherwood number for clean deformed bubbles. (a) Global Sherwood number Sh
depending the maximum Péclet number Pemax. The obtained results are compared with the correlation (5.3)
given by Colombet et al. (2013). Dashed lines - - correspond to limits ±10 %. (b) Profiles of the local Sherwood
number Shloc along the bubble surface, for Case 3 at Sc = 30 and Case 7 at Sc = 60.

Sh for different meshes Reference

Clean 256 × 512 512 × 1024 1024 × 2048 Shclean

Case 3 27.8 48.3 48.8 50.1
Case 7 27.8 44.4 43.5 44.5

Table 4. Spatial convergence of the global Sherwood number for a clean deformed bubble (χ ≈ 2), on three
different meshes: Case 3 at Pe ≈ 2500 and Case 7 at Pe ≈ 2400. Results are compared with (5.3) from
Colombet et al. (2013).

of the present study, with oblate bubbles of aspect ratio 1 ≤ χ ≤ 2.1, 20 ≤ Re ≤ 60,
1 ≤ Sc ≤ 100 for these cases, are in good agreement with the prediction for spherical
bubbles, within 10 % of discrepancy. This conclusion is consistent with the findings from
Figueroa-Espinoza & Legendre (2010), and permits us to validate the numerical resolution
of mass transfer.

Profiles of local Sherwood number Shloc are plotted in figure 14(b) for Case 3 at Sc = 30
(Pe ≈ 1800) and Case 7 at Sc = 60 (Pe ≈ 1200), with bubbles of aspect ratio close to 2.
The local Sherwood number is much higher at the front of the bubble (θ ≤ π/2) than at the
rear of the bubble. On the contrary to the case of a spherical bubble where the highest value
of the mass flux is always located at θ = 0 (see profiles in Kentheswaran et al. (2022)), for
Case 3, the maximal flux position lies just before θ = π/2 due to the deformation, and,
for the Case 7, a plateau is noticed in the whole upper part of the bubble. Besides, both
configurations present a recirculation zone at the rear of the bubble when θ ≥ 3π/4: the
vortex in the wake favours slightly the mass flux at the rear of the bubble. However, it is
clear from figure 14(a) that the positive effect of the recirculation on the mass transfer rate
does not significantly affect the global Sh, which still reasonably follows the same law as
for a spherical bubble that does not present any circulation vortex when the interface is
fully mobile. This is due to the fact that the major part of the transfer occurs at the front of
the bubble, in any case.
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Figure 15. Surface concentration fields of surfactants and of the dissolved solute in the liquid phase at Sc =
10: (a) Case 7 (Re = 23.4, Ma = 0.7, θcap = 1.68, χ = 1.61), (b) Case 3 (Re = 53.0, Ma = 2, θcap = 1.36,
χ = 1.45).

Note that the obtained profiles of Shloc have similar features to the ones presented by
Figueroa-Espinoza & Legendre (2010) for oblate bubbles at χ = 2, regarding the location
of the maximal flux or the presence of a plateau in Shloc at the front of the bubble, even if
they have been obtained at larger Pe than in the present study.

In the next section, results on the mass transfer rate around partially contaminated
bubbles are presented.

5.2. Sherwood number around a partially contaminated bubble
The dimensionless solute concentration in the liquid phase and the dimensionless
surfactant concentration on the bubble surface are both plotted in figure 15 for Case 7
at Ma = 0.7 and Case 3 at Ma = 2, both at Sc = 10. The mass boundary layer is again the
thinnest in the upper part of the interface, which is free of surfactants. Besides, a sudden
increase of the mass boundary layer is noticeable around θcap, when switching from a
mobile to an immobile interface: in the region covered by surfactants where the tangential
velocity at the interface is zero, the local mass flux is similar to the one around a solid
particle, as shown by Dani et al. (2021) and Kentheswaran et al. (2022) in the case of a
spherical bubble. At the rear of the bubble, the recirculation vortex contributes to improve
mixing of the solute in the bubble wake, making it slightly decrease the thickness of the
mass boundary layer around the south pole.

A local analysis is proposed based on the profiles of local Sherwood number, plotted
in figure 16 for Case 7, at Sc = 10, at different Marangoni numbers, i.e. different θcap.
Previous observations on the concentration fields are confirmed: similarly to a clean oblate
bubble, the mass flux is much higher at the upper part of the bubble, and the positive
impact of the circulation vortex at the rear is small. Besides, the discontinuity of the mass
flux around θcap is also clear in these profiles.

An important observation is obtained from comparing the cases at Ma = 2 and Ma =
20: the profiles of Shloc are noticeably different while Re and χ are the same (the two
Re differ only by 4 %). Moreover, the global Sherwood number between these two cases
presents a discrepancy of 33 %. This underlines that the three parameters Re, Sc and χ are
not sufficient to describe the transfer rate around a contaminated bubble, even though they
can themselves be affected by the contamination (which is not the case on the example
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Figure 16. Profiles of local Sherwood number Shloc for Case 7 at three different Marangoni numbers, at Sc =
10. Positions of θcap are indicated for both partially contaminated bubbles. Note that bubbles at Ma = 2 and
Ma = 20 are almost at same Re and χ .

taken here). Therefore, the same conclusion as for spherical bubbles (Kentheswaran et al.
2022) is established: at same Re, Sc and χ , a parameter describing the change in interface
mobility must be introduced to quantify Sh, based for example on the θcap value which is
not the same in the cases of figure 16. In this previous study for spherical bubbles, it was
proposed to quantify such a modification in the hydrodynamics induced by surfactants by
considering the maximum tangential velocity at the interface umax, normalised by the value
for a clean interface at same Re (given by Legendre (2007)), leading to the dimensionless
ratio u∗

max which has been shown to be a unique function of θcap in Kentheswaran et al.
(2022).

Finally, as the impact of surfactants on the mass transfer flux around a contaminated
ellipsoidal bubble presents the same features as for the spherical case, and following the
result that, for clean bubbles, Sh depends very weakly on χ , the global Sherwood number
is now compared with the correlation proposed by Kentheswaran et al. (2022) for spherical
contaminated bubbles,

Shcont = 2 + Re1/2Scf (θcap)

[
u∗

max
1.5 2√

π
gclean + (

1 − u∗
max

)1.2 gsolid
]

− (
1 − u∗

max
)1.2

,

(5.4)
with

gclean =
(

1 − 2
3

1
(1 + 0.09Re2/3)1.1

)0.45

, (5.5)

gsolid = Re−0.09
(

1 + 1
Re Sc

)1/3

, (5.6)
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Figure 17. Parity curve to compare the obtained global Sherwood number Sh with the correlation (5.4) (solid
line), for Cases 1, 3, 4, 5 and 7. Dashed lines - - correspond to limits ±10 %.

f (θcap) = 1
3

− 0.014θ2
cap + 1

π

(
1
6

+ 0.014π2
)

θcap. (5.7)

The dimensionless maximal velocity u∗
max at the interface which quantifies the magnitude

of the tangential flow along the interface compared with the case of a clean and spherical
bubble at same Re, and which therefore lies between 0 and 1 as an indicator of the decrease
in internal circulation inside the bubble, is given by the following fitting function from
Kentheswaran et al. (2022):

u∗
max = 0.5216 tanh

(
1.8θ0.85

cap − π

2

)
+ 0.4784. (5.8)

Note that (5.8) has been established in the case of spherical bubbles, and is not modified
here to be introduced into (5.4) for sake of simplicity (even though the maximal
tangential velocity of the fluid at the interface actually also depends on χ for oblate
bubbles).

The correlation for Sh, given by (5.4), predicts the transition between the Sherwood
number of a clean bubble (Takemura & Yabe 1998) and that of a solid particle (Clift
et al. 1978), by having an exponent of the Schmidt number that varies between 1/2 and
1/3 (which are the respective values for these two extreme cases), and by using u∗

max as
a weighting parameter of the prefactors from the respective scaling laws of each extreme
case.

For the oblate bubbles of this study, the comparison of the prediction from (5.7)
with the values from the numerical simulations is shown in figure 17 for our different
cases in the range 20 ≤ Pe ≤ 2400, 1 ≤ χ ≤ 3, 0 ≤ θcap ≤ π. A good agreement is
noted, and a maximal discrepancy of 16 % is present. This result confirms that the
correlation proposed in the case of spherical contaminated bubbles (Kentheswaran et al.
2022) is also still surprisingly valid for oblate bubbles in a large range of bubble
distortion.

In this way, surfactants impact Sh for a rising bubble, either spherical or oblate,
by affecting both the Reynolds number of the bubble, and the velocity profile in the

970 A5-28

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

59
2 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2023.592


Impact of surfactants on the dynamics of deformable bubbles

clean part of the interface (u∗
max is decreased) where the mass transfer rate is the

highest.

6. Conclusions

In this paper, axisymmetric numerical simulations have been performed to investigate the
impact of surfactants on both the interface immobilisation, the bubble deformation and
the gas–liquid mass transfer. Such a study has been carried out under the assumption
of a stagnant-cap regime, i.e. with insoluble surfactants at a constant mass at the
interface, which corresponds to the most common case of a surfactant with slow
adsorption/desorption compared with their rate of surface convection. Simulations have
been carried out at given Ar, nearly constant Eo, and variable Ma leading to different θcap.
Regarding the external mass transfer of a solute from the gas to the liquid, the associated
Sherwood number is also analysed, at variable Sc.

For the extreme cases of fully mobile and immobile interfaces, the drag coefficient
and aspect ratio have been compared with existing works, with excellent agreement. In
particular, for highly contaminated and deformed bubbles (fully immobile interfaces), for
which only a few results exist, the present study proves that the experimental correlation
of the aspect ratio from Aoyama et al. (2018) is general since it requires no assumption
about the type of surfactant, as suggested by Chen et al. (2019).

Regarding partially contaminated bubbles, the reduced drag coefficient C∗
D can still

be predicted by the analytical function of Sadhal & Johnson (1983), even in inertial
conditions and for oblate bubbles, provided that it is defined as a function of S∗(θcap),
the percentage of surfactant-free surface area, instead of θcap. The Marangoni stresses do
not monotonically increase with the surfactant concentration, but reach a maximal value
when θcap lies at the equator. It has also been observed that the bubble velocity is very
close to that of a solid particle, of same size and aspect ratio, as soon as θcap belongs to the
northern hemisphere. It has been emphasised that the distortion of a contaminated rising
bubble is smaller than that of a clean bubble at same parameters (same couple (We, Mo)

or (Re, Eo)). The aspect ratio changes significantly with contamination, depending on the
stagnant-cap angle position. When θcap lies in the southern hemisphere, the dimensionless
dynamic pressure causing the bubble deformation is decreasing, as is the kinetic energy
of the fluid at the equator (because of the retarded interfacial velocity profile). However,
when θcap belongs to the northern hemisphere, the pressure difference between the apex
and the equator, causing the bubble distortion, becomes constant and is similar to that
around a spheroidal particle, which explains that the bubble aspect ratio matches the case
of a fully immobile interface. A general correlation, (4.20), is proposed to predict χ for a
contaminated bubble.

Concerning mass transfer, the Sherwood number characterising the external transfer
around an oblate bubble can still be predicted with a good accuracy by the same correlation
as for a contaminated spherical bubble, (5.4) from Kentheswaran et al. (2022), for
1 ≤ χ ≤ 3. The bubble distortion does not significantly impact the mass transfer rate, like
for oblate clean bubbles at large Reynolds number.

Note that the average surfactant concentration at the interface, involved in the Marangoni
number in the present investigation, is generally unknown in practical conditions. However,
it can be related to the bulk transport properties of the surfactant. For this purpose, at
first glance, Γ̄ can be estimated by balancing the adsorption and desorption fluxes of
surfactant between the bulk and the interface, assuming equilibrium (Palaparthi et al.
2006; Dukhin et al. 2015). For instance, the adsorption term can be written in the limit of
a uniform bulk concentration of surfactant C0 and by using a linear kinetics (consistently
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with (2.7)), i.e. assuming an adsorption flux in the form βC0Γ∞ with β the adsorption
constant and Γ∞ the maximum packing concentration, while the desorption rate is
expressed as αΓ̄ with α the desorption constant; it results that Γ̄ /Γ∞ = βC0/α under
these assumptions. Such an expression provides an estimate for Γ̄ in steady state, allowing
us to compare with the numerical results from this study. Note also that the present
simulations could be extended by considering the mass exchange processes of soluble
surfactants between the bulk and the interface, as a perspective, with the aim of analysing
the dynamics of bubble distortion during its progressive contamination (transient evolution
for Γ̄ ).

Conversely, the results provided here offer a way to evaluate the level of contamination
of the surface of a distorted bubble, through the measurement of several parameters related
to the bubble dynamics (rise velocity, aspect ratio, rate of bubble dissolution) since they
are differently impacted by the presence of adsorbed surfactants.

For instance, one can wonder about the presence of residual contaminants adsorbed
at the surface, which weakly affect the surface tension but are sufficient to partially or
fully immobilise the interface (Lalanne et al. 2020). In that case, the present work shows
that the rise velocity is generally reduced compared with the case of a clean interface,
but not systematically, contrary to the case of spherical bubbles: it is possible that a
contaminated bubble rises at same velocity as a clean one of same size, because the
presence of adsorbed surfactants induces a smaller distortion. As the drag coefficient is
both increased by a partial immobilisation, and reduced when the bubble is less deformed,
these two competing phenomena can compensate in some cases. Therefore, in the case of
an ellipsoidal rising bubble, a measurement of the sole rise velocity is not sufficient to
conclude on a possible interface contamination, but it is also required to analyse the aspect
ratio. Besides, the rate of mass transfer during gas dissolution is smaller for a contaminated
bubble than around a clean bubble. However, as a matter of consequence of the previous
remark that the bubble Reynolds number may not be affected by contamination, the impact
of surfactants on mass transfer around an oblate bubble will be smaller than around a
sphere, based on (5.4) which rationalises the evolution of the Sherwood number whatever
the contamination degree.

Finally, the simultaneous measurement of different parameters and comparisons to the
correlations provided in this study offers a way to conclude on the possible contamination
of a bubble interface, in the case of an oblate bubble rising with axisymmetric
path.
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Appendix. Numerical data

The following tables 5–11 present the parameters of all simulations that consider the
presence of insoluble surfactants adsorbed at the bubble surface, for each case described
in table 1 in their reference state with a clean interface.

Ar Eo Re χ Ma θcap

Case 1 2.05 × 103 0.71 63.3 1.17 0 π

Case 1 2.05 × 103 0.71 61.3 1.15 0.10 2.33
Case 1 2.05 × 103 0.71 54.9 1.10 0.34 2.07
Case 1 2.05 × 103 0.71 49.2 1.07 0.64 1.89
Case 1 2.05 × 103 0.71 44.9 1.05 0.98 1.71
Case 1 2.05 × 103 0.71 40.9 1.05 1.54 1.49
Case 1 2.05 × 103 0.71 36.6 1.05 3.45 0.97
Case 1 2.05 × 103 0.71 36.9 1.05 5.12 0.49
Case 1 2.05 × 103 0.71 39.9 1.05 34.3 0

Table 5. Case 1.

Ar Eo Re χ Ma θcap

Case 2 3.03 × 103 2.28 66.1 1.55 0 π

Case 2 3.03 × 103 2.28 65.7 1.50 0.10 2.13
Case 2 3.03 × 103 2.28 63.8 1.39 0.30 1.94
Case 2 3.03 × 103 2.28 61.1 1.31 0.53 1.84
Case 2 3.03 × 103 2.28 58.3 1.27 0.79 1.76
Case 2 3.03 × 103 2.28 54.1 1.19 1.22 1.61
Case 2 3.03 × 103 2.28 47.4 1.18 2.77 1.21
Case 2 3.03 × 103 2.28 46.5 1.19 4.25 0.88
Case 2 3.03 × 103 2.28 46.9 1.19 5.61 0.49
Case 2 3.03 × 103 2.27 46.9 1.19 28.1 0

Table 6. Case 2.

Ar Eo Re χ Ma θcap

Case 3 3.93 × 103 5.41 61.5 2.08 0 π

Case 3 3.93 × 103 5.41 61.7 2.02 0.09 1.89
Case 3 3.93 × 103 5.40 61.5 1.88 0.28 1.78
Case 3 3.93 × 103 5.40 60.9 1.76 0.48 1.72
Case 3 3.93 × 103 5.40 60.2 1.66 0.68 1.69
Case 3 3.93 × 103 5.40 58.7 1.54 1.01 1.61
Case 3 3.93 × 103 5.40 53.0 1.45 2.26 1.36
Case 3 3.93 × 103 5.39 51.4 1.48 3.49 1.13
Case 3 3.93 × 103 5.37 51.7 1.49 4.61 0.9
Case 3 3.93 × 103 5.18 52.2 1.47 22.9 0

Table 7. Case 3.

970 A5-31

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

59
2 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2023.592


K. Kentheswaran, W. Antier, N. Dietrich and B. Lalanne

Ar Eo Re χ Ma θcap

Case 4 5.63 × 103 11.4 60.8 2.97 0 π

Case 4 5.63 × 103 11.4 61.1 2.87 0.08 1.7
Case 4 5.63 × 103 11.3 61.5 2.69 0.25 1.66
Case 4 5.63 × 103 11.3 61.9 2.53 0.42 1.63
Case 4 5.63 × 103 11.3 62.1 2.39 0.59 1.61
Case 4 5.63 × 103 11.3 62.3 2.21 0.87 1.58
Case 4 5.63 × 103 11.2 59.7 1.97 1.86 1.46
Case 4 5.63 × 103 11.0 57.5 2.03 2.88 1.31
Case 4 5.63 × 103 10.9 57.4 2.09 3.62 1.17
Case 4 5.63 × 103 9.6 59.5 1.95 18.8 0

Table 8. Case 4.

Ar Eo Re χ Ma θcap

Case 5 5.06 × 102 1.63 20.4 1.16 0 π

Case 5 5.06 × 102 1.63 19.6 1.13 0.10 2.28
Case 5 5.06 × 102 1.63 17.7 1.08 0.35 1.98
Case 5 5.06 × 102 1.63 16.2 1.06 0.63 1.78
Case 5 5.06 × 102 1.63 15.1 1.06 0.94 1.60
Case 5 5.06 × 102 1.63 14.1 1.07 1.44 1.36
Case 5 5.06 × 102 1.63 13.3 1.08 3.06 0.66
Case 5 5.06 × 102 1.63 13.3 1.07 4.59 0

Table 9. Case 5.

Ar Eo Re χ Ma θcap

Case 6 8.28 × 102 6.23 23.3 1.66 0 π

Case 6 8.28 × 102 6.22 23.2 1.58 0.10 2.07
Case 6 8.28 × 102 6.22 22.6 1.47 0.30 1.87
Case 6 8.28 × 102 6.21 21.8 1.38 0.52 1.78
Case 6 8.28 × 102 6.22 20.9 1.33 0.77 1.68
Case 6 8.28 × 102 6.21 19.7 1.31 1.17 1.52
Case 6 8.28 × 102 6.19 18.1 1.35 2.53 1.06
Case 6 8.28 × 102 6.17 18.2 1.35 3.78 0.39

Table 10. Case 6.
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Ar Eo Re χ Ma θcap

Case 7 1.05 × 103 10.2 24.3 2.04 0 π

Case 7 1.05 × 103 10.2 24.4 1.97 0.091 1.93
Case 7 1.05 × 103 10.2 24.3 1.82 0.28 1.81
Case 7 1.05 × 103 10.2 23.9 1.69 0.49 1.74
Case 7 1.05 × 103 10.2 23.4 1.61 0.70 1.68
Case 7 1.05 × 103 10.2 22.4 1.56 1.04 1.58
Case 7 1.05 × 103 10.0 20.5 1.62 2.27 1.21
Case 7 1.05 × 103 9.93 20.6 1.64 3.39 0.78
Case 7 1.05 × 103 9.84 20.6 1.62 4.51 0

Table 11. Case 7.
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