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GRADIENT ESTIMATES ON Rd 

FENG-YU WANG 

ABSTRACT. This paper uses both the maximum principle and coupling method to 
study gradient estimates of positive solutions to Lu = 0 on R^, where 

r ) 2 r) 

Q >J dxfixj i l dx( 

with (ay) uniformly positive definite and a^bj € Cl(Rd). We obtain some upper 
bounds of \Vu\/u and ||Vw||oo/||w||oo> which imply a Harnack inequality and improve 
the corresponding results proved in Cranston [4]. Besides, two examples show that our 
estimates can be sharp. 

1. Introduction. Gradient estimates are a fundamental subject in the study of Rie-
mannian manifolds since they can be used to obtain the Harnack inequality, heat kernel 
estimates, and so on. Estimates of \Vu\/u for a harmonic function u on a Riemannian 
manifold have been studied by Yau ([10]) and Cranston and Zhao ([5]). In the past few 
years, Cranston ([3], [4]) estimated ||VM||OO/||W||OO for bounded positive u solution to 
(A + Z)u = 0 with smooth vector field Z, and the estimates presented in [3] are improved 
by the author ([9]). Instead of functions on general Riemannian manifolds, this paper 
deals with positive solutions to Lu = 0 on Rd with 

L = ya..JL+yb.± 
ij lJdxidxj i ldxi' 

where (ay) is uniformly positive definite and a^ b[ E Cl(Rd), ij < d. 
It is well known that, L can be rewritten as A + Z referring to some Riemannian met

ric and C1-vector field Z on Rd. However, it is not possible for us to compute the lower 
bound of Ricci curvature for general (a^). So we may obtain nothing from the known 
estimates on Riemannian manifolds. For this reason, it is interesting to give some gradi
ent estimates of u depending on (aij) and (&,). Since Lu = 0 is an ordinary differential 
equation for d = 1, we consider the case d > 1 only. Set 

a(x) = inf {£*(,-(*)&$/ : £ € RJ, |£| = l), 
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GRADIENT ESTIMATES ON ff* 561 

P(x) = s u p f c a ^ * ) ^ : £ € R^, |£| = l } , 

c\ = SUpW —fy(x)) , c\ = Slip][>/(*)2. 
x Q \OXi J x ( 

Throughout this paper, we assume that inf a > 0, sup/3 < oo and u E C2(Rd), u > 0. 
For the estimate of |Vw|/w, assume in addition that u E C3(Rd) and c, < oo, / < 3. The 
main results are the following. 

THEOREM 1.1. Let D CRd bea connected open domain, 8X = dist(x, dD)forx E D. 
IfLu = 0 and u > 0 in D, then there exists a constant C depending only on inf a, sup/?, 
d and c;(/ < 3) such that 

u(x) V à* / 

In particular, if(aij) = I andb = 0, then 

\Vu(x)\ < 2J + V 2 J ( 3 J - 1 ) 

The following Harnack inequality is a direct consequence of Theorem 1.1. 

COROLLARY 1.2. Suppose that Lu = 0 and u > 0 in D. Let Q6 = {x E D : 
dist(x, 3£>) > <$}, 5 > 0. For B(xo, Sf) C Q§, there exists a constant C depending only on 
inf a, sup /?, <5, <$' and Q(/ < 3) SMC/Î that 

sup u < C inf w. 

THEOREM 1.3. Suppose that Lu — 0 and u > 0 on Rd. Let k = 2c3a + 

Jci(d- l)(7a2 + (d- 1)<*/?). We Aave 

|VK(JC)| ^ k + Jk2 + 4c2(d - l)7a3 - 4c2
72a2 , 

J ^ _ L < s u p Y 1 E R . 

The condition c; < 00 in Theorem 1.3 is necessary since ^ may be unbounded for 

the case that c, = 00 (see Example 1.7 below). But nop2, is always finite for bounded u 

under some general assumptions; this leads us to study the estimate of nor22. 

To state the result, we need some notation. Suppose that a{x) = (#//(•*)) = o(x)o(x)* 

for a Lipschitz continuous matrix-valued function a(x) = (atj(x)\ satisfying 

A := inf inf £V0>)V(JC)£ > 0. 
x,y |£|=l 
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Choose g € C(R+) such that lim supr_K) g(r)/r < oo and 

g(r)>(4\rl sup {\\a(x)-a(y)\\2-\(a(x)-a(y))v\\(b(x)-b(ylx-y)Y 
\x-y\=r 

where v = {x — y)j \x — y\ and ||A||2 = £/j A?- for A = (Ay). Define 

C(r) = exp j f ^ <fc], /(r) = /Q
r C(5)-' <fe, r > 0. 

THEOREM 1.4. Suppose that Lu = Oon Rd. Ifu is bounded and positive, then 

||VM||OO < 
w 

/ (oo) ' 

where f(oo) = \imr-^oo f(r). In particular, ///(oo) = oo then u is constant. 

COROLLARY 1.5. Suppose that a = \l and b[(x) = £/ byXj, i < d. Let \d be the 
biggest eigenvalue of (I;(by + bji)). We have 

||V«||oo < hUy^/yfH, 

where Aj = max{0, Aj}. 

Corollary 1.5 improves the corresponding estimate in [4]: ||Vw||oo < llMlloo\/2AJ. 
Besides, the following two examples show that both estimates in Theorem 1.3 and The
orem 1.4 can be sharp. 

EXAMPLE 1.6. Take a = l,b[ = c, c > 0, / < d. Then a = /3 = 1, c\ = c2 = 0 
and k = 2c3 = 2y/dc. By Theorem 1.3 we have | Vw| < \fdcu. On the other hand, take 
u(x) = exp[—c^2ixi\, then u > 0, Lu = 0 and |Vw| = yfdcu. 

EXAMPLE 1.7. Take a — \l, b\(x) = cxx (c > 0) and let bt (i > 2) be constants. Let 

u(x) = f° e~cr2 dr + p e~cr2 dr, xeRd. 

Then u > 0, Lu = 0 and 

\Vu(x)\ _CXL ( foo 9 rxx ? pi 
sup = supe ^ / e c dr+ / e c dr) 
x U(X) Xx U 0 A) J 

7 r roo 9 > | - 1 
> 

lim e~cxlA r e~Cïl dr\ 
X\—•—OO I -/—JCi J 

—2cx\e cxi 
= lim =— 

X\—+— OO 

= OO. 

Hence 1—̂  is unbounded, but we can compute 

||Vll||oo i,r„-cri,J-{ V̂  l2f e dr 
Moo I ^ J v^r' 

This is just the upper bound given by Corollary 1.5. 
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2. Some lemmas. For convenience, we simply denote ww = ^u, u^ = ^^u for 

u E C2(Rd). Then 

(2. i) \vu\2 = Zu(l)\ |v|v,|p = - L j E ( E « ( , V ^ ) 2 . 

LEMMA 2.1. Suppose that Lu — 0, M > 0 /« £>. 7%£re emte a nonnegative function 
h < C3 SMC/* r t o 

,v„ | i | v , l >(<i^-^ |v |v« l f - (£ ; + c 2 -^ ) |v„p 

-53iMv«||-|v«| 
holds for s €E [0,1] and points in D with |Vw| > 0. 

PROOF. Fix p ED with | Vw|(p) > 0; the proof consists of two parts, 
a) Suppose that a(p) = (aijip)) = diag{Ai,..., Aj} with a(p) = Ai < A2 < • • • < 

^d = /%?)• Then at p, 

-L\ VM|2 = E A«w(iy) + E K ( IW°). 

On the other hand, 

L\Vu\2 = |VK|L|VK| + E A / ( | V K | ( 0 ) 2 

= |Vu|L|v«| + |^pEA((E»( ')"®)2. 

Hence 

(2.2) 1 V«|L I v«| = E «w£ «(0 + J-j2 f I v«|2 E A,«(,y)2 - E A,- (E «W«(W)21 • 

Since Lu(k) = (Lu)(k) - E«y afu^ - E, fc,W"w and Lu = 0, 

E« ( i )(L« ( t ))>-^l 

. ci|V«| 

EA,«®2-c2|V«|2 

> -

— = - \Z^(lJ)2-C2\Vu\2 

ci\Vu\ ;A2 

4 5 a 
- s ^ A / i ^ -c2\Vu\ 

Here in the last step, we have used the fact that r2 + s2 > 1rs. Combining this with (2.2) 
we have 

(2.3) \Vu\L IVwl > _£iIZflL _ C2 |Vw |2 + (1 - s) V A,w(i 

Asa X-
1 

,/</)z 

iwÇMç""'»"») • 
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Next, 

|Vw|2 £ \iUM2 - £ \i(E u^u^y = £ Xi(u{k)2u{if)2 - u^u^u(kVlk)) 
i j ij,k 

= iEA/E("w»(")-»0)"W))2 
2 i j,k 

' j 

P j i 

> jj±jrB E ( E V W 0 - E A,««V»)2. (d - l)/3 ^ V ^ 

Let ft = | E « & « " { 0 | / | V K | ; then h € [0,c3]. Since E, A,«(,,) = -E/fe/«( / ), by (2.1) we 
have 
(2.4) 

IVMPEA^-EA^E" 0 ' ^ ) 2 

> ^ E ( E A ^ ^ + ^ E ^ ' ) 2 
' J 

- ( j - D / î i ' 'I (d-i)0 

-T^TE^I - IE^^ ' I - IE^ 

^ C ^ I V M I 2 , — - .,2 2/i|Vw|3,__, ,. /z2|Vw|4 

(0 

W - l ) j 8 

By this and (2.3) we obtain the needed inequality. 

b) In general, there exists an orthonormal matrix a such that cra(p)cr* 

diag{Ai,..., Aj}. Take x = ay. Under the new coordinate system {^1,... , j j } , 

32 a 

ij àyWj i dyt 

with 
aij(y) = Zl Visast(py)Gju bt(y) = ]T bj(ay)<Tji. 

s,t j 

Then â(cr*p) = diag{Ài,..., Àj}. On the other hand, it is easy to check that 
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and 

|V«|2(p) = E ( g - " ( ^ » ) . La = o, 

where U(y) = u(oy). By a) the proof is completed. • 

LEMMA 2.2. Suppose that Lu = 0,u>0in D. Let(j> = ^ . lfd\ := ^f--sj3 > 
0, then 

for points in D with </> > 0. 

PROOF. By Lemma 2.1, 

l . , „ , ,_ ,_1 2 
L<£ = -L|Vw| + \Vu\L- - -2 E ^ I V M P 

u\\u\ uz if ul 

2 

Note that 

|^|V«| - «|V^|| < |V|V«|| = |«V<£ + <AV«| < K|V<£| + ^|V«|, 

which proves the lemma. 

LEMMA 2.3. Suppose that Lu = 0 and u> Oon Rd. Let 

y/ci(d-\) 
k\ = 2^a2+(d-l)ap' 

If\Vu\ • |V |VM| | >0am/Jfci|V«|/|V|V«|| < 1, then 
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PROOF. Take s = &i|Vw|/|V|Vw||. By Lemma 2.1 we have 

|V„|L |V«| > ^ Y | V | V M | | 2 - [c2 - - g ^ \ IVMI 2 

y/(d-l)a d-\J\ ' " M i 

Then the remainder of the proof is the same as above. • 

3. Proof of Theorem 1.1. Let s small enough such that d\ > 0 for all x e Rd. Let 
d2 = J^Ï > ^3 = f^ + Q. Then Lemma 2.2 gives us 

(3.1) L<\> > dx f J ^ L + <£31 - 2J2(|V< |̂ + <£2) - d3<l> - 2(0 + d^\V(j>\ 

for </> > 0. Fix/7 E D with </>(p) > 0. Take F(JC) = (j>(x)(82
p - p(x)2), where p(jc) = \x-p\. 

Then there exists jq 6 Z) such that F(JCI) = sup{F(x) : |x — p\ < Sp}. Hence 

(3.2) £F(*i) < 0 and V<Kx\) = pr~-. —p: . 
p̂ — l̂ i -PY 

Combining this with (3.1) we have: at.*i, 

Thus 
LF = (Sj - p2)L<j> - 2d<j> - 2{V(j>, 2pVp) 

> dx(S
2

p - p2)<j>3 - 2[d2(8
2
p - p2) + 2(/3 + d,)p]<j>2 

-(m+2)p2+4d2p + 2d + d3(5l-p2)V V Î>2
P-P2 

By (3.2) we get 

0 > d\F2(xx) - 2[d2S
2

p + 2Sp{p + di )]F(x, ) - 4[62
p(di + 2) + d2b\ + db2

p + d36
4
p] 

>dlF
2(xl)-4[d2ë

2
p+5p(j3 + dx)]F(xl)-4ê2

p[di+d2 + d + 2 + (d3+d2)6
2
p]. 

This implies 
F(&) < C5P(1 +8P) 

for some C = C(inf a, sup/3,c\,c2,c^,d) > 0. Since <j>(p) = F(p)/S2 < F(x\)/82, we 
have 

*W<c(i + i). 

Next, if (aij) = I and b = 0, then d2 = d3 = 0 and a = /3 = 1. By (3.1) and letting 
5 - > 0 w e get 
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Combining this with (3.2), we prove 

F2 - 4d8pF - 2d(d -l)S2
p + 2p2[(d - 4)(d - 1) + 2] < 0. 

Since (d - 4)(d - 1) + 2 > 0 for all d E N, we have 

F2 - 4dSpF - 2d(d - l)82 < 0. 

This gives us that F < 2d8p + y/4d28j + 2d(d - 1)8j and so 

S2
p<l>(p) < 8p[2d + y/2d(3d-l)]. 

Then the proof is completed. 

4. Proof of Theorem 1.3. Note that k\ < k/2'ya2, and so we need only prove 
the case I/J := supx(j)(x) > supxk\(x). For small e > 0, chooser E Rd such that 
<K*e) >il) — £> y/2e and (i/> — e)2 — 2e > if) sup&i. Take F(x) = </>(x) — ep2{x), where 
p(x) = \x — x£\. Since <j> is bounded, there exists ye E Rd such that F(ye) = supF. Then 
ijj-ep2(ye) >F(ye) = (j>(ye)-ep2(ye) > F(xe) > t/>-£, so^(y5) > V>-eandp(yc) < 1. 
Hence at point ye, 

(4.1) LF < 0 and \V(j>\ = 2ep < 2e. 

Thus at _ye, 

2e > \V<t>\ = ?¥A-±vu 
u 

2 |V|V«| 

hence 
|V|V«|| 
— >(il>- e) - 2e > 0. 

Therefore k\ | V K | / | V | V « | | < 1. By Lemma 2.3 and (4.1) we have 

0 > LF(ye) > L<j>(ye) - 2e(c3 + d(3) 

^ ^ T ( T + (^£) - 4 ^)-[ ^-Da +^lJ(2£ + V;) 

- (c2 - ( J ^ 1 ) / 3 ] V - 4/?Ve - 2e(d)8 + c3). 

Choose e„ —» 0 such that h(yen) —* ho, a^cn) —• ao and /?(y£n) —+ /?o- Then we have 

-d-\v \ y/(d-i)ao d-\y V {d-mr 

where 7o = «o//3o- Let ko = 2c3a0 + Jc\(d - l)(7o<*o + (d~ l)ao/?o)- Then 

0 > 1oa2
04>2 - [ko + 2a0(h0 - c3)]ip - [c2(d - l)a0 - A§7o]. 
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Note that 0 < h0 < c3 < k0/2a0 and 0 < 7o < 1- We have 

k0 + 2a0(h0 - c3) + J(k0 + 2a0(h0 - c3))
2 - 4 7 ^ / ^ + 4c2(d - l )7o^ 

^~ 27o<*g 

ko + y^+47o«o( c2(^ - l)«o - ^7o) 

~ 27o«o ' 

5. Proofs of Theorem 1.4 and Corollary 1.5. The main tool we used to prove The
orem 1.4 is coupling. For the background of coupling and martingale methods, readers 
are urged to refer to Chen and Li ([2]). Take a second-order differential operator L on 
Rd x Rd: 

32 
L(*, y) = L(x) + LOO + D(C(,-(*, y) + C,7(*, ?)) ^ - p , 

ij oxioyj 

where 

C(„, = . < 4 W - 2 ^ ^ 1 , ,-'-> 
\a(y) lv\2J \x-y\ 

Let (xt,yt) be the L—diffusion process on Rd x RJ and T = inf{t > 0 : xt = yt}. We 
call (JQ, yf) the coupling by reflection of the L—diffusion process and 7 the coupling time 
(see [2] and [8]). 

Since Lu = 0, by the martingale property of the L-diffusion process, marginality of 
coupling and boundedness of w, we have 

\u(x) - wO0| = \Exu(xt) - Eyu(yt)\ < Ex>y\u(xtAT) - u(ytAT)\ 

for all x,y ERd and t > 0. If u is positive and bounded, then 

\u(x) - u(y)\ < Moo^iT > 0, f > 0 

and so 

(5.1) \u(x) - u(y)\ < IHoo^y (T = 00). 

Hence, to obtain an upper bound of ||M||OO/IM|OO» we need only to estimate F^^ÇT = 00). 
For this purpose, define 

A(x, y) = a(x) + a(y) - C(x, y) - C(x, y)\ 

B(x,y) = b(x)-b(y), 

Â(x,y) = (x- y)*A(x9y)(x - y)/\x - y\2, x ̂  y, 

B(x,y) = (x-y)*B(x,y). 

Then we have (see [2]) 

(5.2) Lh(\X - y\) = A(X, y)h»(\X -y\) + ««^-M*.****»^ _ y]) 
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for ail h € C2(R). On the other hand, 

A(X,y) = v«A(x,y)v = \a(Xfv - aiyfV\2
 + ^TTTTÇ1 

\a(y)-lv\2 

^ 4(a(j)-1v)*(a(y)V(x))((7(jr1v) 
1 , v.! |2 >4A 
\a(y) lv\2 

and 

trA(x,y) -À(x,y) = tr[((7(x) - cr(y))(a(*) - oft))*] - |<r(*)*v - a(}0*v|2 

Note that t r ^ M y ^ v v * ) = tr(v*a(x)a(y)~l v) = v*a(x)a(y)~lv. Then 

(5.3) g(\x-y\) > (tiA(x,y)-Â(x,y)+B(x,yj)/Â(x,y), x^y. 

To estimate P*'y(T = oo), take 

F(r) = | fl C(syl ds t C(t)dU r > 0. 
\ Jr Js 

Note that lim sup,..^ g(r)/r < oo, then F(0) < oo. Let 

Sw = inf{f > 0 : |x,-;y,| > TV}, N > | j c - y | . 

The proof of [2, Theorem 4.2] gives us that E"y(T ASN)<oo and 

p^(r = oo) < p*y(T > sN) < / ( l ^~ )
y | ) . 

Hence P^(T = oo) </ ( | JC - y\)/f (oo). By (5.1) we get 

\u(x) - u(y)\ \\u\\<xf(\x - y\) ^ „<! 
_̂  —~~z—rj j—> x, y t K . l * - : y | f(oo)\x-y\ 

By letting y —> x we prove Theorem 1.4. 
Finally, let « = ^/ and /?/(*) = E7 byXj (i < d), it is easy to check that À = \ and 

(Hx) - b(yu- y) = J2(bi(x) - */(y))te - y<) = EbiMj - yj)(n - yd 

= 9 Yfl>ij+ bute ~ yùbj ~ yj) ^ xd\* - y\2-

Hence we can choose g(r) — ^AJr2 and so 

C(r) = exp(\y/4\ /(oo) = xA/^/ÂJ. 

By Theorem 1.4 we prove Corollary 1.5. 
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