GRADIENT ESTIMATES ON R^{d}

FENG-YU WANG

Abstract. This paper uses both the maximum principle and coupling method to study gradient estimates of positive solutions to $L u=0$ on \mathbf{R}^{d}, where

$$
L=\sum_{i, j} a_{i j} \frac{\partial^{2}}{\partial x_{i} \partial x_{j}}+\sum_{i} b_{i} \frac{\partial}{\partial x_{i}}
$$

with ($a_{i j}$) uniformly positive definite and $a_{i j}, b_{i} \in C^{1}\left(\mathbf{R}^{d}\right)$. We obtain some upper bounds of $|\nabla u| / u$ and $\|\nabla u\|_{\infty} /\|u\|_{\infty}$, which imply a Harnack inequality and improve the corresponding results proved in Cranston [4]. Besides, two examples show that our estimates can be sharp.

1. Introduction. Gradient estimates are a fundamental subject in the study of Riemannian manifolds since they can be used to obtain the Harnack inequality, heat kernel estimates, and so on. Estimates of $|\nabla u| / u$ for a harmonic function u on a Riemannian manifold have been studied by Yau ([10]) and Cranston and Zhao ([5]). In the past few years, Cranston ([3], [4]) estimated $\|\nabla u\|_{\infty} /\|u\|_{\infty}$ for bounded positive u solution to $(\Delta+Z) u=0$ with smooth vector field Z, and the estimates presented in [3] are improved by the author ([9]). Instead of functions on general Riemannian manifolds, this paper deals with positive solutions to $L u=0$ on \mathbf{R}^{d} with

$$
L=\sum_{i, j} a_{i j} \frac{\partial^{2}}{\partial x_{i} \partial x_{j}}+\sum_{i} b_{i} \frac{\partial}{\partial x_{i}},
$$

where $\left(a_{i j}\right)$ is uniformly positive definite and $a_{i j}, b_{i} \in C^{1}\left(\mathbf{R}^{d}\right), i, j \leq d$.
It is well known that, L can be rewritten as $\Delta+Z$ referring to some Riemannian metric and C^{1}-vector field Z on \mathbf{R}^{d}. However, it is not possible for us to compute the lower bound of Ricci curvature for general $\left(a_{i j}\right)$. So we may obtain nothing from the known estimates on Riemannian manifolds. For this reason, it is interesting to give some gradient estimates of u depending on $\left(a_{i j}\right)$ and $\left(b_{i}\right)$. Since $L u=0$ is an ordinary differential equation for $d=1$, we consider the case $d>1$ only. Set

$$
\alpha(x)=\inf \left\{\sum_{i, j} a_{i j}(x) \xi_{i} \xi_{j}: \xi \in \mathbf{R}^{d},|\xi|=1\right\},
$$

Research supported in part by the Foundation of Beijing Normal University. Received by the editors June 9, 1993; revised March 3, 1994.
AMS subject classification: 58G32, 58C50.
Key words and phrases: gradient estimate, coupling, diffusion process.
(c) Canadian Mathematical Society 1994.

$$
\begin{gathered}
\beta(x)=\sup \left\{\sum_{i, j} a_{i j}(x) \xi_{i} \xi_{j}: \xi \in \mathbf{R}^{d},|\xi|=1\right\}, \\
\gamma(x)=\frac{\alpha(x)}{\beta(x)}, \quad c_{1}^{2}=\sup _{x} \sum_{i, j, k}\left(\frac{\partial}{\partial x_{k}} a_{i j}(x)\right)^{2} \\
c_{2}^{2}=\sup _{x} \sum_{i, j}\left(\frac{\partial}{\partial x_{i}} b_{j}(x)\right)^{2}, \quad c_{3}^{2}=\sup _{x} \sum_{i} b_{i}(x)^{2} .
\end{gathered}
$$

Throughout this paper, we assume that inf $\alpha>0, \sup \beta<\infty$ and $u \in C^{2}\left(\mathbf{R}^{d}\right), u>0$. For the estimate of $|\nabla u| / u$, assume in addition that $u \in C^{3}\left(\mathbf{R}^{d}\right)$ and $c_{i}<\infty, i \leq 3$. The main results are the following.

THEOREM 1.1. Let $D \subset \mathbf{R}^{d}$ be a connected open domain, $\delta_{x}=\operatorname{dist}(x, \partial D)$ for $x \in D$. If $L u=0$ and $u>0$ in D, then there exists a constant C depending only on $\inf \alpha, \sup \beta$, d and $c_{i}(i \leq 3)$ such that

$$
\frac{|\nabla u(x)|}{u(x)} \leq C\left(1+\frac{1}{\delta_{x}}\right), \quad x \in D .
$$

In particular, if $\left(a_{i j}\right)=I$ and $b=0$, then

$$
\frac{|\nabla u(x)|}{u(x)} \leq \frac{2 d+\sqrt{2 d(3 d-1)}}{\delta_{x}}, \quad x \in D .
$$

The following Harnack inequality is a direct consequence of Theorem 1.1.
Corollary 1.2. Suppose that $L u=0$ and $u>0$ in D. Let $Q_{\delta}=\{x \in D$: $\operatorname{dist}(x, \partial D) \geq \delta\}, \delta>0$. For $B\left(x_{0}, \delta^{\prime}\right) \subset Q_{\delta}$, there exists a constant C depending only on $\inf \alpha, \sup \beta, \delta, \delta^{\prime}$ and $c_{i}(i \leq 3)$ such that

$$
\sup _{B\left(x_{0}, \delta^{\prime}\right)} u \leq C \inf _{B\left(x_{0}, \delta^{\prime}\right)} u .
$$

Theorem 1.3. Suppose that $L u=0$ and $u>0$ on \mathbf{R}^{d}. Let $k=2 c_{3} \alpha+$ $\sqrt{c_{1}(d-1)\left(\gamma \alpha^{2}+(d-1) \alpha \beta\right)}$. We have

$$
\frac{|\nabla u(x)|}{u(x)} \leq \sup _{\mathbf{R}^{d}} \frac{k+\sqrt{k^{2}+4 c_{2}(d-1) \gamma \alpha^{3}-4 c_{3}^{2} \gamma^{2} \alpha^{2}}}{2 \gamma \alpha^{2}}, \quad x \in \mathbf{R}^{d} .
$$

The condition $c_{i}<\infty$ in Theorem 1.3 is necessary since $\frac{|\nabla u|}{u}$ may be unbounded for the case that $c_{i}=\infty$ (see Example 1.7 below). But $\frac{\|\nabla u\|_{\infty}}{\|u\|_{\infty}}$ is always finite for bounded u under some general assumptions; this leads us to study the estimate of $\frac{\|\nabla u\|_{\infty}}{\|u\|_{\infty}}$.

To state the result, we need some notation. Suppose that $a(x)=\left(a_{i j}(x)\right)=\sigma(x) \sigma(x)^{*}$ for a Lipschitz continuous matrix-valued function $\sigma(x)=\left(\sigma_{i j}(x)\right)$, satisfying

$$
\lambda:=\inf _{x, y} \inf _{|\xi|=1} \xi^{*} \sigma(y)^{*} \sigma(x) \xi>0 .
$$

Choose $g \in C\left(\mathbf{R}^{+}\right)$such that $\lim \sup _{r \rightarrow 0} g(r) / r<\infty$ and

$$
g(r) \geq(4 \lambda)^{-1} \sup _{|x-y|=r}\left\{\|\sigma(x)-\sigma(y)\|^{2}-|(\sigma(x)-\sigma(y)) v|^{2}+\langle b(x)-b(y), x-y\rangle\right\}
$$

where $v=(x-y) /|x-y|$ and $\|A\|^{2}=\sum_{i j} A_{i j}^{2}$ for $A=\left(A_{i j}\right)$. Define

$$
C(r)=\exp \left[\int_{0}^{r} \frac{g(s)}{s} d s\right], f(r)=\int_{0}^{r} C(s)^{-1} d s, \quad r \geq 0
$$

THEOREM 1.4. Suppose that $L u=0$ on \mathbf{R}^{d}. If u is bounded and positive, then

$$
\|\nabla u\|_{\infty} \leq \frac{\|u\|_{\infty}}{f(\infty)}
$$

where $f(\infty)=\lim _{r \rightarrow \infty} f(r)$. In particular, if $f(\infty)=\infty$ then u is constant.
COROLLARY 1.5. Suppose that $a=\frac{1}{2} I$ and $b_{i}(x)=\sum_{j} b_{i j} x_{j}, i \leq d$. Let λ_{d} be the biggest eigenvalue of $\left(\frac{1}{2}\left(b_{i j}+b_{j i}\right)\right)$. We have

$$
\|\nabla u\|_{\infty} \leq\|u\|_{\infty} \sqrt{\lambda_{d}^{+}} / \sqrt{\pi}
$$

where $\lambda_{d}^{+}=\max \left\{0, \lambda_{d}\right\}$.
Corollary 1.5 improves the corresponding estimate in [4]: $\|\nabla u\|_{\infty} \leq\|u\|_{\infty} \sqrt{2 \lambda_{d}^{+}}$. Besides, the following two examples show that both estimates in Theorem 1.3 and Theorem 1.4 can be sharp.

EXAMPLE 1.6. Take $a=I, b_{i}=c, c>0, i \leq d$. Then $\alpha=\beta=1, c_{1}=c_{2}=0$ and $k=2 c_{3}=2 \sqrt{d} c$. By Theorem 1.3 we have $|\bar{\nabla} u| \leq \sqrt{d} c u$. On the other hand, take $u(x)=\exp \left[-c \sum_{i} x_{i}\right]$, then $u>0, L u=0$ and $|\nabla u|=\sqrt{d} c u$.

EXAMPLE 1.7. Take $a=\frac{1}{2} I, b_{1}(x)=c x_{1}(c>0)$ and let $b_{i}(i \geq 2)$ be constants. Let

$$
u(x)=\int_{0}^{\infty} e^{-c r^{2}} d r+\int_{0}^{x_{1}} e^{-c r^{2}} d r, \quad x \in \mathbf{R}^{d}
$$

Then $u>0, L u=0$ and

$$
\begin{aligned}
\sup _{x} \frac{|\nabla u(x)|}{u(x)} & =\sup _{x_{1}} e^{-c x_{1}^{2}}\left\{\int_{0}^{\infty} e^{-c r^{2}} d r+\int_{0}^{x_{1}} e^{-c r^{2}} d r\right\}^{-1} \\
& \geq \lim _{x_{1} \rightarrow-\infty} e^{-c x_{1}^{2}}\left\{\int_{-x_{1}}^{\infty} e^{-c r^{2}} d r\right\}^{-1} \\
& =\lim _{x_{1} \rightarrow-\infty} \frac{-2 c x_{1} e^{-c x_{1}^{2}}}{e^{-c x_{1}^{2}}} \\
& =\infty
\end{aligned}
$$

Hence $\frac{|\nabla u|}{u}$ is unbounded, but we can compute

$$
\frac{\|\nabla u\|_{\infty}}{\|u\|_{\infty}}=\left\{2 \int_{0}^{\infty} e^{-c r^{2}} d r\right\}^{-1}=\frac{\sqrt{c}}{\sqrt{\pi}}
$$

This is just the upper bound given by Corollary 1.5.
2. Some lemmas. For convenience, we simply denote $u^{(i)}=\frac{\partial}{\partial x_{i}} u, u^{(j)}=\frac{\partial^{2}}{\partial x_{i} x_{j}} u$ for $u \in C^{2}\left(\mathbf{R}^{d}\right)$. Then

$$
\begin{equation*}
|\nabla u|^{2}=\sum_{i} u^{(i)^{2}}, \quad|\nabla| \nabla u| |^{2}=\frac{1}{|\nabla u|^{2}} \sum_{j}\left(\sum_{i} u^{(i)} u^{(i j)}\right)^{2} . \tag{2.1}
\end{equation*}
$$

Lemma 2.1. Suppose that $L u=0, u>0$ in D. There exists a nonnegative function $h \leq c_{3}$ such that

$$
\begin{aligned}
|\nabla u| L|\nabla u| \geq(& \left.\left(\frac{(1-s) \gamma \alpha}{d-1}-s \beta\right)|\nabla| \nabla u\left|\left.\right|^{2}-\left(\frac{c_{1}}{4 \alpha s}+c_{2}-\frac{h^{2}}{(d-1) \beta}\right)\right| \nabla u\right|^{2} \\
& \quad-\frac{2 h}{d-1}|\nabla| \nabla u| | \cdot|\nabla u|
\end{aligned}
$$

holds for $s \in[0,1]$ and points in D with $|\nabla u|>0$.
Proof. Fix $p \in D$ with $|\nabla u|(p)>0$; the proof consists of two parts.
a) Suppose that $a(p)=\left(a_{i j}(p)\right)=\operatorname{diag}\left\{\lambda_{1}, \ldots, \lambda_{d}\right\}$ with $\alpha(p)=\lambda_{1} \leq \lambda_{2} \leq \cdots \leq$ $\lambda_{d}=\beta(p)$. Then at p,

$$
\frac{1}{2} L|\nabla u|^{2}=\sum_{i, j} \lambda_{i} u^{(i j)^{2}}+\sum_{i} u^{(i)}\left(L u^{(i)}\right)
$$

On the other hand,

$$
\begin{aligned}
\frac{1}{2} L|\nabla u|^{2} & =|\nabla u| L|\nabla u|+\sum_{i} \lambda_{i}\left(|\nabla u|^{(i)}\right)^{2} \\
& =|\nabla u| L|\nabla u|+\frac{1}{|\nabla u|^{2}} \sum_{i} \lambda_{i}\left(\sum_{j} u^{(j)} u^{(i j)}\right)^{2}
\end{aligned}
$$

Hence

$$
\begin{equation*}
|\nabla u| L|\nabla u|=\sum_{i} u^{(i)} L u^{(i)}+\frac{1}{|\nabla u|^{2}}\left(|\nabla u|^{2} \sum_{i, j} \lambda_{i} u^{(i j)^{2}}-\sum_{i} \lambda_{i}\left(\sum_{j} u^{(j)} u^{(i j)}\right)^{2}\right) . \tag{2.2}
\end{equation*}
$$

Since $L u^{(k)}=(L u)^{(k)}-\sum_{i j} a_{i j}^{(k)} u^{(i j)}-\sum_{i} b_{i}^{(k)} u^{(i)}$ and $L u=0$,

$$
\begin{aligned}
\sum_{k} u^{(k)}\left(L u^{(k)}\right) & \geq-\frac{|\nabla u|}{\sqrt{\alpha}} \sqrt{\sum_{i, j, k} a_{i j}^{(k)^{2}}} \sqrt{\sum_{i, j} \lambda_{i} u^{(i j)^{2}}}-c_{2}|\nabla u|^{2} \\
& \geq-\frac{c_{1}|\nabla u|}{\sqrt{\alpha}} \sqrt{\sum_{i, j} \lambda_{i} u^{(i j)^{2}}}-c_{2}|\nabla u|^{2} \\
& \geq-\frac{c_{1}|\nabla u|^{2}}{4 s \alpha}-s \sum_{i, j} \lambda_{i} u^{(i j)^{2}}-c_{2}|\nabla u|^{2}
\end{aligned}
$$

Here in the last step, we have used the fact that $r^{2}+s^{2} \geq 2 r s$. Combining this with (2.2) we have

$$
\begin{align*}
|\nabla u| L|\nabla u| \geq- & \frac{c_{1}|\nabla u|^{2}}{4 s \alpha}-c_{2}|\nabla u|^{2}+(1-s) \sum_{i, j} \lambda_{i} u^{(i j)^{2}} \tag{2.3}\\
& -\frac{1}{|\nabla u|^{2}} \sum_{i} \lambda_{i}\left(\sum_{j} u^{(j)} u^{(i j)}\right)^{2} .
\end{align*}
$$

Next,

$$
\begin{aligned}
|\nabla u|^{2} \sum_{i, j} \lambda_{i} u^{(i j)}{ }^{2}-\sum_{i} \lambda_{i}\left(\sum_{j} u^{(j)} u^{(i j)}\right)^{2} & =\sum_{i, j, k} \lambda_{i}\left(u^{(k)^{2}} u^{(i j)^{2}}-u^{(j)} u^{(i j)} u^{(k)} u^{(i k)}\right) \\
& =\frac{1}{2} \sum_{i} \lambda_{i} \sum_{j, k}\left(u^{(k)} u^{(i j)}-u^{(j)} u^{(i k)}\right)^{2} \\
& \geq \sum_{i} \lambda_{i} \sum_{j}\left(u^{(j)} u^{(i i)}-u^{(i)} u^{(i j)}\right)^{2} \\
& \geq \frac{1}{\beta} \sum_{j} \sum_{i}\left(\lambda_{i} u^{(j)} u^{(i i)}-\lambda_{i} u^{(i)} u^{(i j)}\right)^{2} \\
& \geq \frac{1}{(d-1) \beta} \sum_{j}\left(\sum_{i} \lambda_{i} u^{(j)} u^{(i)}-\sum_{i} \lambda_{i} u^{(i)} u^{(i j)}\right)^{2} .
\end{aligned}
$$

Let $h=\left|\sum_{i} b_{i} u^{(i)}\right| /|\nabla u|$; then $h \in\left[0, c_{3}\right]$. Since $\sum_{i} \lambda_{i} u^{(i i)}=-\sum_{i} b_{i} u^{(i)}$, by (2.1) we have
(2.4)

$$
\begin{aligned}
&|\nabla u|^{2} \sum_{i, j} \lambda_{i} u^{(i j)^{2}}-\sum_{i} \lambda_{i}\left(\sum_{j} u^{(j)} u^{(i j)}\right)^{2} \\
& \geq \frac{1}{(d-1) \beta} \sum_{j}\left(\sum_{i} \lambda_{i} u^{(i)} u^{(i j)}+u^{(j)} \sum_{i} b_{i} u^{(i)}\right)^{2} \\
& \geq\left.\frac{\alpha^{2}|\nabla u|^{2}}{(d-1) \beta}|\nabla| \nabla u\right|^{2}+\frac{|\nabla u|^{2}\left|\sum_{i} b_{i} u^{(i)}\right|^{2}}{(d-1) \beta} \\
& \quad-\frac{2}{d-1} \sum_{j}\left|u^{(j)}\right| \cdot\left|\sum_{i} u^{(i)} u^{(i)}\right| \cdot\left|\sum_{i} b_{i} u^{(i)}\right| \\
& \geq\left.\frac{\alpha^{2}|\nabla u|^{2}}{(d-1) \beta}|\nabla| \nabla u\right|^{2}-\frac{2 h|\nabla u|^{3}}{d-1}|\nabla| \nabla u| |+\frac{h^{2}|\nabla u|^{4}}{(d-1) \beta} .
\end{aligned}
$$

By this and (2.3) we obtain the needed inequality.
b) In general, there exists an orthonormal matrix σ such that $\sigma a(p) \sigma^{*}=$ $\operatorname{diag}\left\{\lambda_{1}, \ldots, \lambda_{d}\right\}$. Take $x=\sigma y$. Under the new coordinate system $\left\{y_{1}, \ldots, y_{d}\right\}$,

$$
L=\sum_{i, j} \bar{a}_{i j} \frac{\partial^{2}}{\partial y_{i} \partial y_{j}}+\sum_{i} \bar{b}_{i} \frac{\partial}{\partial y_{i}}
$$

with

$$
\bar{a}_{i j}(y)=\sum_{s, t} \sigma_{i s} a_{s t}(\sigma y) \sigma_{j t}, \quad \bar{b}_{i}(y)=\sum_{j} b_{j}(\sigma y) \sigma_{j i} .
$$

Then $\bar{a}\left(\sigma^{*} p\right)=\operatorname{diag}\left\{\lambda_{1}, \ldots, \lambda_{d}\right\}$. On the other hand, it is easy to check that

$$
\sum_{i, j, k}\left(\frac{\partial}{\partial y_{k}} \bar{a}_{i j}\right)^{2} \leq c_{1}^{2}, \quad \sum_{i, k}\left(\frac{\partial}{\partial y_{k}} \bar{b}_{i}\right)^{2} \leq c_{2}^{2}, \quad \sum_{i} \bar{b}_{i}^{2} \leq c_{3}^{2}
$$

and

$$
\begin{aligned}
|\nabla u|^{2}(p) & =\sum_{i}\left(\frac{\partial}{\partial y_{i}} \bar{u}\left(\sigma^{*} p\right)\right)^{2}, \quad L \bar{u}=0, \\
\left.|\nabla u|^{2}(p)|\nabla| \nabla u\right|^{2}(p) & =\sum_{j}\left(\sum_{i}\left(\frac{\partial}{\partial y_{i}} \bar{u}\left(\sigma^{*} p\right)\right)\left(\frac{\partial^{2}}{\partial y_{i} \partial y_{j}} \bar{u}\left(\sigma^{*} p\right)\right)\right)^{2},
\end{aligned}
$$

where $\bar{u}(y)=u(\sigma y)$. By a) the proof is completed.
LEmMA 2.2. Suppose that $L u=0, u>0$ in D. Let $\phi=\frac{|\nabla u|}{u}$. If $d_{1}:=\frac{(1-s) \alpha \gamma}{d-1}-s \beta>$ 0 , then

$$
\begin{gathered}
L \phi \geq d_{1}\left(\frac{|\nabla \phi|^{2}}{\phi}+\phi^{3}-2 \phi|\nabla \phi|\right)-\frac{2 h}{d-1}\left(|\nabla \phi|+\phi^{2}\right) \\
-\left(\frac{c_{1}}{4 s \alpha}+c_{2}-\frac{h^{2}}{(d-1) \beta}\right) \phi-2 \beta \phi|\nabla \phi|
\end{gathered}
$$

for points in D with $\phi>0$.
Proof. By Lemma 2.1,

$$
\begin{aligned}
L \phi= & \frac{1}{u} L|\nabla u|+|\nabla u| L \frac{1}{u}-\frac{2}{u^{2}} \sum_{i, j} a_{i j} u^{(j)}|\nabla u|^{(i)} \\
= & \frac{1}{u|\nabla u|}(|\nabla u| L|\nabla u|)+\frac{2 \phi}{u^{2}} \sum_{i, j} a_{i j} u^{(i)} u^{(j)}-\frac{2}{u^{2}} \sum_{i, j} a_{i j} u^{(j)}\left(\phi u^{(i)}+u \phi^{(i)}\right) \\
\geq & \frac{1}{u|\nabla u|}\left[\left.d_{1}|\nabla| \nabla u\right|^{2}-\frac{2 h}{d-1}|\nabla| \nabla u| | \cdot|\nabla u|-\left(\frac{c_{1}}{4 s \alpha}+c_{2}-\frac{h^{2}}{(d-1) \beta}\right)|\nabla u|^{2}\right] \\
& \quad-2 \phi \beta|\nabla \phi| \\
= & \frac{d_{1}|\nabla| \nabla u| |^{2}}{u|\nabla u|}-\frac{2 h|\nabla| \nabla u| |}{(d-1) u}-\left(\frac{c_{1}}{4 s \alpha}+c_{2}-\frac{h^{2}}{(d-1) \beta}\right) \phi-2 \beta \phi|\nabla \phi| .
\end{aligned}
$$

Note that

$$
|\phi| \nabla u|-u| \nabla \phi||\leq|\nabla| \nabla u||=|u \nabla \phi+\phi \nabla u| \leq u|\nabla \phi|+\phi|\nabla u| \text {, }
$$

which proves the lemma.
Lemma 2.3. Suppose that $L u=0$ and $u>0$ on \mathbf{R}^{d}. Let

$$
k_{1}=\frac{\sqrt{c_{1}(d-1)}}{2 \sqrt{\gamma \alpha^{2}+(d-1) \alpha \beta}}
$$

If $|\nabla u| \cdot|\nabla| \nabla u\left|\mid>0\right.$ and $\left.k_{1}\right| \nabla u|/|\nabla| \nabla u| \mid \leq 1$, then

$$
\begin{aligned}
& L \phi \geq \frac{\gamma \alpha}{d-1}\left(\frac{|\nabla \phi|^{2}}{\phi}+\phi^{3}-2 \phi|\nabla \phi|\right)-\left(\frac{\sqrt{c_{1}(\gamma \alpha+(d-1) \beta)}}{\sqrt{(d-1) \alpha}}+\frac{2 h}{d-1}\right)\left(|\nabla \phi|+\phi^{2}\right) \\
& \quad-\left(c_{2}-\frac{h^{2}}{(d-1) \beta}\right) \phi-2 \beta \phi|\nabla \phi|
\end{aligned}
$$

Proof. Take $s=k_{1}|\nabla u| /|\nabla| \nabla u| |$. By Lemma 2.1 we have

$$
\begin{aligned}
|\nabla u| L|\nabla u| \geq & \left.\frac{\gamma \alpha}{d-1}|\nabla| \nabla u\left|\left.\right|^{2}-\left(c_{2}-\frac{h^{2}}{(d-1) \beta}\right)\right| \nabla u\right|^{2} \\
& \quad-\left(\frac{\sqrt{c_{1}(\gamma \alpha+(d-1) \beta)}}{\sqrt{(d-1) \alpha}}+\frac{2 h}{d-1}\right)|\nabla| \nabla u| | \cdot|\nabla u| .
\end{aligned}
$$

Then the remainder of the proof is the same as above.
3. Proof of Theorem 1.1. Let s small enough such that $d_{1}>0$ for all $x \in \mathbf{R}^{d}$. Let $d_{2}=\frac{c_{3}}{d-1}, d_{3}=\frac{c_{1}}{4 s \alpha}+c_{2}$. Then Lemma 2.2 gives us

$$
\begin{equation*}
L \phi \geq d_{1}\left(\frac{|\nabla \phi|^{2}}{\phi}+\phi^{3}\right)-2 d_{2}\left(|\nabla \phi|+\phi^{2}\right)-d_{3} \phi-2\left(\beta+d_{1}\right) \phi|\nabla \phi| \tag{3.1}
\end{equation*}
$$

for $\phi>0$. Fix $p \in D$ with $\phi(p)>0$. Take $F(x)=\phi(x)\left(\delta_{p}^{2}-\rho(x)^{2}\right)$, where $\rho(x)=|x-p|$. Then there exists $x_{1} \in D$ such that $F\left(x_{1}\right)=\sup \left\{F(x):|x-p| \leq \delta_{p}\right\}$. Hence

$$
\begin{equation*}
L F\left(x_{1}\right) \leq 0 \quad \text { and } \quad \nabla \phi\left(x_{1}\right)=\frac{2 \phi\left(x_{1}\right)\left|x_{1}-p\right| \nabla \rho\left(x_{1}\right)}{\delta_{p}^{2}-\left|x_{1}-p\right|^{2}} \tag{3.2}
\end{equation*}
$$

Combining this with (3.1) we have: at x_{1},

$$
L \phi \geq d_{1} \phi^{3}-2\left(d_{2}+\frac{2\left(\beta+d_{1}\right) \rho}{\delta_{p}^{2}-\rho^{2}}\right) \phi^{2}-\left(\frac{4 d_{1} \rho^{2}}{\left(\delta_{p}^{2}-\rho^{2}\right)^{2}}+\frac{4 d_{2} \rho}{\delta_{p}^{2}-\rho^{2}}+d_{3}\right) \phi
$$

Thus

$$
\begin{aligned}
L F= & \left(\delta_{p}^{2}-\rho^{2}\right) L \phi-2 d \phi-2\langle\nabla \phi, 2 \rho \nabla \rho\rangle \\
\geq & d_{1}\left(\delta_{p}^{2}-\rho^{2}\right) \phi^{3}-2\left[d_{2}\left(\delta_{p}^{2}-\rho^{2}\right)+2\left(\beta+d_{1}\right) \rho\right] \phi^{2} \\
& \quad-\left(\frac{4\left(d_{1}+2\right) \rho^{2}}{\delta_{p}^{2}-\rho^{2}}+4 d_{2} \rho+2 d+d_{3}\left(\delta_{p}^{2}-\rho^{2}\right)\right) \phi
\end{aligned}
$$

By (3.2) we get

$$
\begin{aligned}
0 & \geq d_{1} F^{2}\left(x_{1}\right)-2\left[d_{2} \delta_{p}^{2}+2 \delta_{p}\left(\beta+d_{1}\right)\right] F\left(x_{1}\right)-4\left[\delta_{p}^{2}\left(d_{1}+2\right)+d_{2} \delta_{p}^{3}+d \delta_{p}^{2}+d_{3} \delta_{p}^{4}\right] \\
& \geq d_{1} F^{2}\left(x_{1}\right)-4\left[d_{2} \delta_{p}^{2}+\delta_{p}\left(\beta+d_{1}\right)\right] F\left(x_{1}\right)-4 \delta_{p}^{2}\left[d_{1}+d_{2}+d+2+\left(d_{3}+d_{2}\right) \delta_{p}^{2}\right] .
\end{aligned}
$$

This implies

$$
F\left(x_{1}\right) \leq C \delta_{p}\left(1+\delta_{p}\right)
$$

for some $C=C\left(\inf \alpha, \sup \beta, c_{1}, c_{2}, c_{3}, d\right)>0$. Since $\phi(p)=F(p) / \delta_{p}^{2} \leq F\left(x_{1}\right) / \delta_{p}^{2}$, we have

$$
\phi(p) \leq C\left(1+\frac{1}{\delta_{p}}\right)
$$

Next, if $\left(a_{i j}\right)=I$ and $b=0$, then $d_{2}=d_{3}=0$ and $\alpha=\beta=1$. By (3.1) and letting $s \rightarrow 0$ we get

$$
\begin{equation*}
L \phi \geq \frac{1}{d-1}\left(\phi^{3}+\frac{|\nabla \phi|^{2}}{\phi}\right)-2\left(1+\frac{1}{d-1}\right) \phi|\nabla \phi| . \tag{3.3}
\end{equation*}
$$

Combining this with (3.2), we prove

$$
F^{2}-4 d \delta_{p} F-2 d(d-1) \delta_{p}^{2}+2 \rho^{2}[(d-4)(d-1)+2] \leq 0 .
$$

Since $(d-4)(d-1)+2 \geq 0$ for all $d \in \mathbf{N}$, we have

$$
F^{2}-4 d \delta_{p} F-2 d(d-1) \delta_{p}^{2} \leq 0
$$

This gives us that $F \leq 2 d \delta_{p}+\sqrt{4 d^{2} \delta_{p}^{2}+2 d(d-1) \delta_{p}^{2}}$ and so

$$
\delta_{p}^{2} \phi(p) \leq \delta_{p}[2 d+\sqrt{2 d(3 d-1)}] .
$$

Then the proof is completed.
4. Proof of Theorem 1.3. Note that $k_{1} \leq k / 2 \gamma \alpha^{2}$, and so we need only prove the case $\psi:=\sup _{x} \phi(x)>\sup _{x} k_{1}(x)$. For small $\varepsilon>0$, choose $x_{\varepsilon} \in \mathbf{R}^{d}$ such that $\phi\left(x_{\varepsilon}\right) \geq \psi-\varepsilon>\sqrt{2 \varepsilon}$ and $(\psi-\varepsilon)^{2}-2 \varepsilon>\psi$ sup k_{1}. Take $F(x)=\phi(x)-\varepsilon \rho^{2}(x)$, where $\rho(x)=\left|x-x_{\varepsilon}\right|$. Since ϕ is bounded, there exists $y_{\varepsilon} \in \mathbf{R}^{d}$ such that $F\left(y_{\varepsilon}\right)=\sup F$. Then $\psi-\varepsilon \rho^{2}\left(y_{\varepsilon}\right) \geq F\left(y_{\varepsilon}\right)=\phi\left(y_{\varepsilon}\right)-\varepsilon \rho^{2}\left(y_{\varepsilon}\right) \geq F\left(x_{\varepsilon}\right) \geq \psi-\varepsilon$, so $\phi\left(y_{\varepsilon}\right) \geq \psi-\varepsilon$ and $\rho\left(y_{\varepsilon}\right) \leq 1$. Hence at point y_{ε},

$$
\begin{equation*}
L F \leq 0 \quad \text { and } \quad|\nabla \phi|=2 \varepsilon \rho \leq 2 \varepsilon \tag{4.1}
\end{equation*}
$$

Thus at y_{ε},

$$
2 \varepsilon \geq|\nabla \phi|=\left|\frac{\nabla|\nabla u|}{u}-\frac{\phi}{u} \nabla u\right| \geq(\psi-\varepsilon)^{2}-\frac{|\nabla| \nabla u| |}{u},
$$

hence

$$
\frac{|\nabla| \nabla u|\mid}{u} \geq(\psi-\varepsilon)^{2}-2 \varepsilon>0
$$

Therefore $k_{1}|\nabla u| /|\nabla| \nabla u| |<1$. By Lemma 2.3 and (4.1) we have

$$
\begin{aligned}
& 0 \geq L F\left(y_{\varepsilon}\right) \geq L \phi\left(y_{\varepsilon}\right)-2 \varepsilon\left(c_{3}+d \beta\right) \\
& \geq \frac{\gamma \alpha}{d-1}\left(\frac{4 \varepsilon^{2}}{\psi}+(\psi-\varepsilon)^{3}-4 \psi \varepsilon\right)-\left(\frac{\sqrt{c_{1}(\gamma \alpha+(d-1) \beta)}}{\sqrt{(d-1) \alpha}}+\frac{2 h}{d-1}\right)\left(2 \varepsilon+\psi^{2}\right) \\
& \quad-\left(c_{2}-\frac{h^{2}}{(d-1) \beta}\right) \psi-4 \beta \psi \varepsilon-2 \varepsilon\left(d \beta+c_{3}\right) .
\end{aligned}
$$

Choose $\varepsilon_{n} \rightarrow 0$ such that $h_{\left(y_{\varepsilon_{n}}\right)} \rightarrow h_{0}, \alpha_{\left(y_{\varepsilon_{n}}\right)} \rightarrow \alpha_{0}$ and $\beta_{\left(\varepsilon_{\varepsilon_{n}}\right)} \rightarrow \beta_{0}$. Then we have

$$
0 \geq \frac{\gamma_{0} \alpha_{0}}{d-1} \psi^{3}-\left(\frac{\sqrt{c_{1}\left(\gamma_{0} \alpha_{0}+(d-1) \beta_{0}\right)}}{\sqrt{(d-1) \alpha_{0}}}+\frac{2 h_{0}}{d-1}\right) \psi^{2}-\left(c_{2}-\frac{h_{0}^{2}}{(d-1) \beta_{0}}\right) \psi
$$

where $\gamma_{0}=\alpha_{0} / \beta_{0}$. Let $k_{0}=2 c_{3} \alpha_{0}+\sqrt{c_{1}(d-1)\left(\gamma_{0} \alpha_{0}^{2}+(d-1) \alpha_{0} \beta_{0}\right)}$. Then

$$
0 \geq \gamma_{0} \alpha_{0}^{2} \psi^{2}-\left[k_{0}+2 \alpha_{0}\left(h_{0}-c_{3}\right)\right] \psi-\left[c_{2}(d-1) \alpha_{0}-h_{0}^{2} \gamma_{0}\right] .
$$

Note that $0 \leq h_{0} \leq c_{3} \leq k_{0} / 2 \alpha_{0}$ and $0<\gamma_{0} \leq 1$. We have

$$
\begin{aligned}
\psi & \leq \frac{k_{0}+2 \alpha_{0}\left(h_{0}-c_{3}\right)+\sqrt{\left(k_{0}+2 \alpha_{0}\left(h_{0}-c_{3}\right)\right)^{2}-4 \gamma_{0}^{2} \alpha_{0}^{2} h_{0}^{2}+4 c_{2}(d-1) \gamma_{0} \alpha_{0}^{3}}}{2 \gamma_{0} \alpha_{0}^{2}} \\
& \leq \frac{k_{0}+\sqrt{k_{0}^{2}+4 \gamma_{0} \alpha_{0}^{2}\left(c_{2}(d-1) \alpha_{0}-c_{3}^{2} \gamma_{0}\right)}}{2 \gamma_{0} \alpha_{0}^{2}}
\end{aligned}
$$

5. Proofs of Theorem 1.4 and Corollary 1.5. The main tool we used to prove Theorem 1.4 is coupling. For the background of coupling and martingale methods, readers are urged to refer to Chen and Li ([2]). Take a second-order differential operator \bar{L} on $\mathbf{R}^{d} \times \mathbf{R}^{d}$:

$$
\bar{L}(x, y)=L(x)+L(y)+\sum_{i, j}\left(C_{i j}(x, y)+C_{j i}(x, y)\right) \frac{\partial^{2}}{\partial x_{i} \partial y_{j}},
$$

where

$$
C(x, y)=\sigma(x)\left(\sigma(y)^{*}-2 \frac{\sigma(y)^{-1} v v^{*}}{\left|\sigma(y)^{-1} v\right|^{2}}\right), \quad v=\frac{x-y}{|x-y|} .
$$

Let $\left(x_{t}, y_{t}\right)$ be the \bar{L}-diffusion process on $\mathbf{R}^{d} \times \mathbf{R}^{d}$ and $T=\inf \left\{t \geq 0: x_{t}=y_{t}\right\}$. We call $\left(x_{t}, y_{t}\right)$ the coupling by reflection of the L-diffusion process and T the coupling time (see [2] and [8]).

Since $L u=0$, by the martingale property of the L-diffusion process, marginality of coupling and boundedness of u, we have

$$
|u(x)-u(y)|=\left|E^{x} u\left(x_{t}\right)-E^{y} u\left(y_{t}\right)\right| \leq E^{x, y}\left|u\left(x_{t \wedge T}\right)-u\left(y_{t \wedge T}\right)\right|
$$

for all $x, y \in \mathbf{R}^{d}$ and $t>0$. If u is positive and bounded, then

$$
|u(x)-u(y)| \leq\|u\|_{\infty} P^{x, y}(T>t), \quad t>0
$$

and so

$$
\begin{equation*}
|u(x)-u(y)| \leq\|u\|_{\infty} P^{x, y} \quad(T=\infty) \tag{5.1}
\end{equation*}
$$

Hence, to obtain an upper bound of $\|u\|_{\infty} /\|u\|_{\infty}$, we need only to estimate $P^{x, y}(T=\infty)$. For this purpose, define

$$
\begin{gathered}
A(x, y)=a(x)+a(y)-C(x, y)-C(x, y)^{*}, \\
B(x, y)=b(x)-b(y), \\
\bar{A}(x, y)=(x-y)^{*} A(x, y)(x-y) /|x-y|^{2}, \quad x \neq y, \\
\bar{B}(x, y)=(x-y)^{*} B(x, y) .
\end{gathered}
$$

Then we have (see [2])

$$
\begin{equation*}
L h(|x-y|)=\bar{A}(x, y) h^{\prime \prime}(|x-y|)+\frac{\operatorname{tr} A(x, y)-\bar{A}(x, y)+\bar{B}(x, y)}{|x-y|} h^{\prime}(|x-y|) \tag{5.2}
\end{equation*}
$$

for all $h \in C^{2}(\mathbf{R})$. On the other hand,

$$
\begin{aligned}
\bar{A}(x, y) & =v^{*} A(x, y) v=\left|\sigma(x)^{*} v-\sigma(y)^{*} v\right|^{2}+\frac{4 v^{*} \sigma(x) \sigma(y)^{-1} v}{\left|\sigma(y)^{-1} v\right|^{2}} \\
& \geq \frac{4\left(\sigma(y)^{-1} v\right)^{*}\left(\sigma(y)^{*} \sigma(x)\right)\left(\sigma(y)^{-1} v\right)}{\left|\sigma(y)^{-1} v\right|^{2}} \geq 4 \lambda
\end{aligned}
$$

and

$$
\begin{aligned}
\operatorname{tr} A(x, y)-\bar{A}(x, y)=\operatorname{tr} & {\left[(\sigma(x)-\sigma(y))(\sigma(x)-\sigma(y))^{*}\right]-\left|\sigma(x)^{*} v-\sigma(y)^{*} v\right|^{2} } \\
& +\frac{4}{\left|\sigma(y)^{-1} v\right|}\left[v^{*} \sigma(x) \sigma(y)^{-1} v-\operatorname{tr}\left(\sigma(x) \sigma(y)^{-1} v v^{*}\right)\right]
\end{aligned}
$$

Note that $\operatorname{tr}\left(\sigma(x) \sigma(y)^{-1} v v^{*}\right)=\operatorname{tr}\left(v^{*} \sigma(x) \sigma(y)^{-1} v\right)=v^{*} \sigma(x) \sigma(y)^{-1} v$. Then

$$
\begin{equation*}
g(|x-y|) \geq(\operatorname{tr} A(x, y)-\bar{A}(x, y)+\bar{B}(x, y)) / \bar{A}(x, y), \quad x \neq y \tag{5.3}
\end{equation*}
$$

To estimate $P^{x, y}(T=\infty)$, take

$$
F(r)=\frac{1}{\lambda} \int_{r}^{1} C(s)^{-1} d s \int_{s}^{1} C(t) d t, \quad r \geq 0
$$

Note that $\lim \sup _{r \rightarrow 0} g(r) / r<\infty$, then $F(0)<\infty$. Let

$$
S_{N}=\inf \left\{t \geq 0:\left|x_{t}-y_{t}\right| \geq N\right\}, \quad N>|x-y|
$$

The proof of [2, Theorem 4.2] gives us that $E^{x, y}\left(T \wedge S_{N}\right)<\infty$ and

$$
P^{x, y}(T=\infty) \leq P^{x, y}\left(T>S_{N}\right) \leq \frac{f(|x-y|)}{f(N)}
$$

Hence $P^{x, y}(T=\infty) \leq f(|x-y|) / f(\infty)$. By (5.1) we get

$$
\frac{|u(x)-u(y)|}{|x-y|} \leq \frac{\|u\|_{\infty} f(|x-y|)}{f(\infty)|x-y|}, \quad x, y \in \mathbf{R}^{d} .
$$

By letting $y \rightarrow x$ we prove Theorem 1.4.
Finally, let $a=\frac{1}{2} I$ and $b_{i}(x)=\sum_{j} b_{i j} x_{j}(i \leq d)$, it is easy to check that $\lambda=\frac{1}{2}$ and

$$
\begin{aligned}
\langle b(x)-b(y), x-y\rangle & =\sum_{i}\left(b_{i}(x)-b_{i}(y)\right)\left(x_{i}-y_{i}\right)=\sum_{i, j} b_{i j}\left(x_{j}-y_{j}\right)\left(x_{i}-y_{i}\right) \\
& =\frac{1}{2} \sum_{i, j}\left(b_{i j}+b_{j i}\right)\left(x_{i}-y_{i}\right)\left(x_{j}-y_{j}\right) \leq \lambda_{d}|x-y|^{2} .
\end{aligned}
$$

Hence we can choose $g(r)=\frac{1}{2} \lambda_{d}^{+} r^{2}$ and so

$$
C(r)=\exp \left(\lambda_{d}^{+} r^{2} / 4\right), \quad f(\infty)=\sqrt{\pi} / \sqrt{\lambda_{d}^{+}} .
$$

By Theorem 1.4 we prove Corollary 1.5.
Acknowledgement. The author would like to thank the referee for helpful comments on the first version of the paper. Thanks are also given to Professor M. F. Chen for useful suggestions.

REFERENCES

1. A. Brandt, Interior estimates for second-order differential equations via the maximum principle, Israel J. Math. 7(1969), 95-121.
2. M. F. Chen and S. F. Li, Coupling methods for multidimensional diffussion processes, Ann. Probab. 17 (1989), 151-177.
3. M. Cranston, Gradient estimates on manifolds using coupling, J. Funct. Anal. 99(1991), 110-124.
4. \qquad , A probabilistic approach to gradient estimates, Canad. Math. Bull. (1) 35(1992), 46-55.
5. M. Cranston and Z. X. Zhao, Some regularity results and eigenfunction estimates for the heat equation, Diffusions and Related Problems in Analysis, Vol. I, (ed. Mark Pinsky), Birkhauser, 1990.
6. N. Ikeda and S. Watanabe, Stochastic Differential Equations and Diffusion Processes (Second Edition), North-Holland, 1989.
7. P. Li and S. T. Yau, On the parabolic kernel of the Schrödinger operator, Acta Math. 156(1986), 153-201.
8. T. Lindvall and L. C. G. Rogers, Coupling of multidimensional diffusions by reflection, Ann. Probab. 14(1986), 860-827.
9. F. Y. Wang, Gradient estimates for generalized harmonic functions on manifolds, Chinese Sci. Bull. (6) 39(1994), 492-495.
10. S. T. Yau, Harmonic functions on complete Riemannian manifolds, Comm. Pure Appl. Math. 28(1975), 201-228.

Department of Mathematics
Beijing Normal University
Beijing, 100875
People's Republic of China

