
VI

Neutrinos

When the Standard Model first emerged, there was no evidence of neutrino mass.
Since only left-chiral neutrino fields are coupled to the gauge bosons, the simplest
way to accommodate the lack of a neutrino mass was to omit any right-handed
counterparts to the neutrino field, in which case masslessness is automatic. Because
of the degeneracy of the three massless neutrinos, the charged weak leptonic cur-
rent can be made diagonal and there exists no lepton analog to the CKM matrix.

In light of evidence for neutrino mass, the most conservative response is to pos-
tulate the existence of right-handed neutrinos, similar to the right-handed partners
of the other fields. Because the right-handed neutrino carries no gauge charge, its
mass may be Dirac or Majorana (or both), and it may be heavy or light. Whether
one considers this modification to be an extension beyond the Standard Model
or not is largely a matter of semantics. In this chapter, we will describe the rich
physics induced by the inclusion of a right-handed neutrino. We note in passing
that all fermion fields appearing here will be described as four-component spinors.

VI–1 Neutrino mass

A right-handed neutrino νR has no couplings to any of the gauge fields because its
Standard Model charges are zero.1 Nonetheless, it can enter the lagrangian in two
ways: there can be a Yukawa coupling to lepton doublet 
L plus a Higgs and there
can be a Majorana mass term involving νR. Considering only one generation for
the moment, these possibilities are2

LνR = −gν
L�̃νR −
mM

2
(νR)c νR + h.c. (1.1)

1 νR is electrically neutral (Q = 0) and like all RH particles in the Standard Model is a weak isosinglet
(Tw3 = 0), so by Eq. (II–3.8) it has zero weak hypercharge, Yw = 0.

2 In neutrino physics, a sterile neutrino is defined as one which has no interactions whatsoever with Standard
Model particles. The right-handed neutrino discussed here is not sterile if gν �= 0 because it can then couple
to the Higgs field as in Eq. (1.1).
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174 Neutrinos

Recall that the left-handed neutrino field is part of an SU(2)L doublet and so
can have no Majorana mass term because the combination (νL)c νL is not gauge-
invariant. The right-handed Majorana mass could be set equal to zero by the
imposition of a discrete symmetry (e.g. lepton number) but this is an additional
assumption beyond the Standard Model gauge symmetries.

When the Higgs field picks up a vacuum expectation value, this leads to a mass
matrix of the form

−2 LD+M =
(
νL (νR)c

)( 0 mD

mD mM

)(
νcL

νR

)
+ h.c., (1.2)

where the Dirac mass is mD = gνv/
√

2 and where we have used the fact that
(ψi)cψ

c
j = (ψj )ψi . The above matrix can be diagonalized by defining fields

νa = cos θ νR + sin θ νcL , νb = cos θ νL − sin θ νcR, (1.3)

with tan 2θ = 2mD/mM . The mass terms then become

−LD+M = ma

2

[
(νa)cνa + (νa)νca

]
+ mb

2

[
(νb)cνb + (νb)νcb

]
, (1.4)

with

ma = mM cos2 θ +mD sin 2θ , mb = mM sin2 θ −mD sin 2θ. (1.5)

The mass matrix of Eq. (1.2) has one negative eigenvalue, and given the mixing
angle this can be seen to be mb. As discussed earlier in Sect. I–3, this is kine-
matically equivalent to a positive mass, and the eigenvalue can be made positive
by the phase change νb → iνb. However, we shall leave the phase unchanged as
it would induce an unusual phase in the weak mixing matrix. Finally, inverting
Eq. (1.3) yields the following relation between the neutrino field νL and the mass
eigenstates νca and νb,

νL = cos θ νb + sin θ νca. (1.6)

It is this combination of the mass eigenstates which constitutes the neutrino com-
ponent of charged and neutral weak currents first encountered in Sect. II–3.

There are two obvious limiting cases for the mass matrix of Eq. (1.2). In one
limit, the Majorana mass term vanishes, mM = 0, with the result that the neutrino
is a Dirac fermion with mass mD. Here, both particle and antiparticle can have
positive helicity (right-handed) or negative helicity (left-handed), so there are four
degrees of freedom. As noted in Sect. I–3, despite appearances, Eq. (1.4) reduces to
the standard Dirac lagrangian in this limit (with θ = π/4 and ma = −mb = mD).
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VI–1 Neutrino mass 175

The other case is that of a very large Majorana mass mM . Here, one eigenvalue
becomes large and the other small,

ma = mM , mb = −m
2
D

mM

. (1.7)

The mixing angle in this case becomes tiny, θ = mD/mM � 1, so that eigenfunc-
tions are just νa = νR, νb = νL up to corrections of order mD/mM. Both of these
eigenstates are Majorana fields.3 There are still four degrees of freedom present,
viz. left-handed and right-handed helicity states for each of the two self-conjugate
neutrinos. This is the famous seesaw mechanism [GeRS 79], which has the poten-
tial to explain the fact that the neutrinos are much lighter than the quarks and other
leptons. As an example, given the mass constraints cited in Chap. I, at least one
neutrino must have rest-energy in excess of 0.05 eV, and if we use mτ for the cor-
responding Dirac mass, this would be compatible withmM ∼ 6×1010 GeV. We see
that the light field in this case is a Majorana field of the left-handed neutrino. Even
though the direct left-handed Majorana mass term was forbidden by gauge symme-
try, after symmetry breaking the left-handed field assumes a Majorana nature. We
can understand this feature more directly using effective lagrangian techniques, to
which we now turn.

Equivalence of heavy Majorana mass to a dimension-five operator

We have explained in Chap. IV how a heavy field may be integrated out from a
theory. Here, we consider a process that involves two applications of the first term
in Eq. (1.1), gν
L�̃νR, in which the right-handed neutrino is a (self-conjugate!)
Majorana fermion. If the Majorana mass is large, νR becomes heavy and can
accordingly be removed. We then find the following residual interaction [We 79a]
involving just the light fields,

L5 = − 1

M


L�̃�̃

c
L + h.c., (1.8)

where 1/M ≡ g2
ν/(2mM). This interaction is invariant under SU(2)L gauge

interactions because the lepton doublet and the Higgs doublet both transform in
the same way. The fields in L5 carry a total mass dimension of five. Hence, this
operator must have a coupling constant with the dimensions of an inverse mass,
and so the operator cannot be part of a renormalizable lagrangian. However, in
effective field theory, this operator is an allowed addition to the lagrangian of the
light Standard Model fields, and it is suppressed by a single power of the heavy
scale mM .
3 In the general case, where the mass parameters ma,mb are allowed to have arbitrary values, both neutrinos

are Majorana. In fact, a Dirac neutrino can itself be interpreted as a pair of degenerate Majorana neutrinos.
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176 Neutrinos

Once the Higgs field picks up its vacuum expectation value, this lagrangian turns
into a Majorana lagrangian for the left-handed neutrino,

L5 →− v2

2M

νLν
c
L + h.c., (1.9)

reproducing the mass eigenvalue and eigenfunction calculated above via diago-
nalization. So we see that a left-handed Majorana mass term is allowed after the
electroweak symmetry breaking if we include operators of dimension five. Indeed,
although we have just found the above operator by integrating out a particular
heavy field, its existence can be more general than this particular calculation. There
could be other theories beyond the Standard Model which might generate this
operator.

The properties of neutrino mass are suggestive of physics beyond the Standard
Model, although they are not conclusive proof of that. We have seen that there is
no conflict between the idea of neutrino mass and the symmetries of the Standard
Model. Once one allows the possibility of right-handed neutrino fields, both Dirac
and Majorana mass terms will occur unless one makes an additional symmetry
assumption of lepton-number conservation, which would set the Majorana mass
equal to zero. Even if this extra discrete symmetry were imposed, Dirac masses
could still account for observations. However, the small magnitude of the observed
neutrino masses is puzzling in one way or another. If the Majorana masses are
small or zero such that Dirac masses are dominant, one would require the Yukawa
couplings to be remarkably small – roughly a billion times smaller than the
Yukawas for the charged leptons. On the other hand, if the Majorana mass is large,
the neutrino masses are naturally small via the seesaw mechanism, but then one has
to understand the large value of the Majorana scale. A Majorana mass in the range
106 → 1014 GeV would not match any of the scales of the Standard Model (nor
does it match estimates of Grand Unification scales). While the present structure
is consistent with the interactions of the Standard Model, we hope that future New
Physics will explain the puzzles of the quark and lepton mass scales, which are
most dramatic in the case of neutrino masses.

VI–2 Lepton mixing

In the previous section we considered mass diagonalization for a single species
of neutrino. In the Standard Model, there are, however, three generations of lep-
tons. This means that both the Dirac and Majorana mass terms will involve 3 × 3
matrices, mD and mM . The Dirac mass matrix is, in general, complex but not Her-
mitian, while the Majorana mass matrix will be complex symmetric. The overall
mass matrix must be diagonalized, and there will be a resultant weak mixing matrix
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VI–2 Lepton mixing 177

for the charged weak current. We shall consider lepton mixing in the two limiting
cases discussed above, first for a pure Dirac neutrino mass and then in the seesaw
limit.

Dirac mass: The biunitary diagonalization of the lepton mass matrices has
already been carried out in Eqs. (II–4.1)–(II–4.7b) for the case of a pure Dirac
mass. The results for leptons proceed analogously to those for quarks. Mixing
between generations occurs in the leptonic charged weak current (recall that the
lepton mass eigenstates are �νL = {ν1, ν2, ν3}L and �eL = {e, μ, τ }L),

J
μ

ch(lept) = 2�ν ′Lγ μ�e ′L = 2�νLSν†
L SeLγ

μ�eL ≡ 2�νLV(ν)γ μ�eL, (2.1)

where

V(ν) ≡ Sν†
L SeL (2.2)

is the Dirac lepton mixing matrix. As an example, the electron’s contribution to the
charged weak current is given by

J
μ

ch(e) = 2[ν̄L,1V(ν)
1e + ν̄L,2V(ν)

2e + ν̄L,3V(ν)
3e ]γ μeL ≡ 2νL,eγ

μeL, (2.3)

which shows the neutrino νL,e created in this process to be a linear combination
of the three neutrino mass eigenstates. The lepton mixing matrix V(ν) of Eq. (2.2)
will have the same structure as the quark mixing matrix of Eq. (II–4.17) with three
mixing angles {θij } and one CP-violating phase δ.

Majorana mass: If the right-handed Majorana mass is very large, or if we invoke
the dimension-five operator of the previous section, we see that the light eigenstate
is a left-handed Majorana particle with mass

mL = −mD

1

mM

mT
D. (2.4)

Here, the factors are themselves 3× 3 matrices and we have been careful with the
ordering of the elements.

The matrix mL is nondiagonal, as are the individual elements mD and mM . The
Dirac part is diagonalized as

m(diag)
D = Sν†

L mDSνR. (2.5)

Inserting the diagonalized Dirac part into the full mass matrix yields

mL = SνL C SνTL , (2.6)

where the central matrix C is defined as

C ≡ m(diag)
D Sν†

R

1

mM

Sν∗R m(diag)
D . (2.7)
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The symmetric (but generally complex-valued) central matrix C can be diagonal-
ized with a unitary matrix F ,

C = F mν FT = F

⎛⎝m1 0 0
0 m2 0
0 0 m3

⎞⎠FT . (2.8)

The masses in the diagonal matrix mν are the physical neutrino masses.
The PMNS matrix involves the rotations that diagonalize the mass matrices of

the charged leptons and the neutrinos [Po 68, MaNS 62]. This also includes the
rotation that diagonalizes the central matrix. Therefore, in terms of the quantities
defined above, the PMNS matrix becomes

U = F†Sν†
L SeL. (2.9)

Like the n×n Dirac mixing matrix for quarks and leptons, the Majorana mixing
matrix has n2 real-valued parameters, of which n(n−1)/2 are angles and n(n+1)/2
are phases. However, whereas field redefinitions remove 2n−1 phases for the Dirac
case, only n such phases can be removed (via redefinitions of the charged lepton
fields) for the Majorana mixing matrix. The reason is that Majorana fields are self-
conjugate (cf. Sect. I–3) and thus not subject to phase redefinitions.4 Thus, the
number of remaining phases in the Majorana mixing matrix is n(n − 1)/2. For
n = 3 there are three phases, of which one is identified as the phase δ in the Dirac
mixing matrix and two others, α1, α2, are commonly called Majorana phases. It
can be shown that

U = V(ν)Pν with Pν =
⎛⎝1 0 0

0 eiα1/2 0
0 0 eiα2/2

⎞⎠ , (2.10)

where the {αi} are the Majorana phases. For convenience, we give the neutrino
mixing matrix V(ν),

V(ν) =
⎛⎝ c12c13 s12c13 s13e

−iδ

−s12c23 − c12s23s13e
iδ c12c23 − s12s23s13e

iδ s23c13

s12s23 − c12c23s13e
iδ −s23c12 − s12c23s13e

iδ c23c13

⎞⎠ , (2.11)

where sαβ ≡ sin θαβ, cαβ ≡ cos θαβ (α, β = 1, 2, 3).

4 If ψ → eiθψ , then (ψ)c → e−iθ (ψ)c . Maintaining the Majorana condition ψ = ψc occurs only for
θn = nπ , so θ cannot be arbitrary.
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VI–3 Theory of neutrino oscillations 179

VI–3 Theory of neutrino oscillations

Our current information on neutrino mass and mixing comes via the phenomenon
of neutrino oscillations. We review the foundation of this subject in the present
section.

Oscillations in vacuum

Suppose that at time t = 0 an electron neutrino is produced by a weak process
induced by the charged current Jμch(e) of Eq. (2.3) and thereafter propagates as an
eigenstate of momentum p,

|νe(0)〉 → |νe(t)〉 = U ∗e1|ν1〉e−iE1t + U ∗e2|ν2〉e−iE2t + U ∗e3|ν3〉e−iE3t , (3.1)

where Ei = (p2 +m2
i )

1/2. In this relation, the mixing matrix elements {Uek} (k =
1, 2, 3) appear as complex conjugates because the neutrino field in the charged
current is in the form of a Hermitian conjugate νe. Actually, as written Eq. (3.1)
is theoretically tainted because the superposition cannot be a simultaneous eigen-
state of both momentum and energy since m1 �= m2 �= m3. However, since this
simplified description leads to the correct oscillation phase under rather general
conditions, we continue to use it here.5

To proceed, we take p 
 mi , implying that Ei � p+m2
i /(2p) � p+m2

i /(2E).
Upon replacing the time by the distance traveled, t � L, we obtain from Eq. (3.1),

|νe(L)〉 � e−iE1L

(
U ∗e1|ν1〉 + U ∗e2|ν2〉 exp

[
−i m

2
2 −m2

1

2E
L

]
+U ∗e3|ν3〉 exp

[
−i m

2
3 −m2

1

2E
L

])
. (3.2)

Let us now truncate the description to just two neutrino flavors by working in the
small θ13 limit, evidently a reasonable approximation given that |Ue3/Ue1| � 0.16.

Then, the amplitude Aνeνe (L) and probability Pνeνe (L) for remaining in the orig-
inal weak eigenstate νe(0) at distance L become

Aνeνe (L) = 〈νe(0)|νe(L)〉 = e−iE1L

(
|Ue1|2 + |Ue2|2 exp

[
−i m

2
2 −m2

1

2E
L

])
Pνeνe (L) = |Aνeνe (L)|2 = c4

12 + s4
12 + 2c2

12s
2
12 cos

[
�m2

21

2E
L

]
. (3.3)

5 Two recent discussions of this point appear in [KaKRV 10] and [CoGL 09], but many others have contributed
to the topic. See references cited in [GiK 07] and [RPP 12].
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With a bit of algebra, we then obtain for the survival and transition probabilities
Pνeνe (L) and Pνeνμ(L),

Pνeνe (L) = 1− sin2 2θ12 sin2

[
�m2

21L

4E

]
,

Pνeνμ(L) = sin2 2θ12 sin2

[
�m2

21L

4E

]
. (3.4a)

Let us comment on aspects of these important relations. The amplitude of the
oscillation factor is sin2 2θ12. The oscillation phase �21 ≡ �m2

21L/(4E) informs
about the squared mass-difference �m2

21, given that the energy (E) and distance
(L) are dictated by constraints of Nature and/or by experimental design.6 An expres-
sion useful for numerical work is

�21 � 1.267
�m2

21[eV2] L[m]
E[MeV] . (3.4b)

Another involves defining an oscillation length L(21)
osc ,

sin2 �21 = 1

2

(
1− cos

[
2πL/L(21)

osc

])
,

L(21)
osc ≡

4πE

�m2
21

, L(21)
osc [m] � 2.48

E[MeV]
�m2

21[eV2] , (3.4c)

which is the length for obtaining a half-cycle of oscillation. If conditions are such
that 2πL � L(21)

osc , oscillations will not have had a chance to occur because the
oscillation phase is too small. Finally, we stress that Eq. (3.4a) is a result of the two-
flavor restriction. Although ‘three-flavor’ phenomenology was already advocated
shortly after the discovery of the τ lepton [DeLMPP 80] and is currently used
in precise analyses of neutrino data, e.g., [FoTV 12], it can happen that the two-
flavor approach is a valid approximation in certain circumstances (see Prob. 2 at
the end of this chapter). For example, it is often used to describe both solar mixing
(θ12 → θ�,�m2

21 → �m2�) and atmospheric mixing (θ23 → θA, |�m2
32| →

|�m2
A|).

We have been considering the vacuum propagation of neutrinos. The vacuum
evolution equation for the relativistic energy eigenstates ν1 and ν2 as expressed in
the energy basis is idνE/dx = HEνE , where

νE ≡
(
ν1

ν2

)
and HE =

(
E1 0
0 E2

)
→

(
m2

1
2E 0

0
m2

2
2E

)
. (3.5)

6 As will be discussed in Sect. VI–4, the predicted oscillation pattern of Eq. (3.4a) was first observed in 2002
(for electron antineutrinos) by the KamLAND collaboration.
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The right-most matrix form in Eq. (3.5) has been obtained by expanding the energy
in powers of the momentum, followed by the phase transformation νE →
exp(−ipx)νE . Proceeding to the weak basis νW ,

νW ≡
(
νe

νμ

)
= UνE and U =

(
cos θ12 sin θ12

− sin θ12 cos θ12

)
, (3.6a)

the evolution equation can be written idνW/dx = HWνW , where

HW = UHEU−1 =
⎛⎝−�m2

21
4E cos 2θ12

�m2
21

4E sin 2θ12

�m2
21

4E sin 2θ12
�m2

21
4E cos 2θ12

⎞⎠ . (3.6b)

As shown earlier in this section, the evolution in Eq. (3.6b) describes νe ↔ νμ

vacuum oscillations. Using the current PDG value for θ12 (see Eq. (II–4.24)), we
have from Eq. (3.6a) the numerical expressions

|ν1〉 = 0.83|νe〉 − 0.56|νμ〉, |ν2〉 = 0.56|νe〉 + 0.83|νμ〉. (3.6c)

The dominant component of |ν2〉 resides in |νμ〉, a fact we will refer to in the next
section.

Oscillations in matter: MSW effect

Neutrino propagation in matter is a problem of intrinsic theoretical interest. It is
also of practical importance because many past and present experiments involve,
in part, neutrinos traveling in the interiors of the Sun and of the Earth. In the fol-
lowing, we consider a neutrino moving radially with position coordinate r and
continue to employ the two-flavor description.

For neutrino propagation in matter, a key difference with the vacuum descrip-
tion is that the neutrinos will undergo W± and Z0 exchange scattering from atomic
electrons and quarks confined within protons and neutrons. Only elastic scattering
in the forward direction maintains the coherence of the initial mixed νe–νμ state. In
particular, the quark contributions cancel and it is W± exchange in the νe–e inter-
action which produces a potential difference between electron and muon neutrinos,

�V ≡ V (νe)− V (νμ) =
√

2GFNe(r), (3.7)

where Ne(r) is the electron number density at distance r from the origin. That
neutrinos in matter experience this potential energy was first pointed out by
Wolfenstein [Wo 78], who cited a well-known analogous effect in K0–K̄0 mixing
as neutral kaons move through nuclear matter. To properly account for the
Wolfenstein effect, we must alter the diagonal matrix elements in Eq. (3.6b) to
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H(M)(r) ≡
⎛⎜⎝
√

1
2GFNe(r)− �m2

21

4E
cos 2θ12

�m2
12

4E
sin 2θ12

�m2
12

4E
sin 2θ12

−
√

1
2GFNe(r)+ �m2

21

4E
cos 2θ12

⎞⎟⎠ ,
(3.8)

where the superscript in H(M) refers to ‘matter’. Since the electron number
density is generally spatially dependent, the above matrix H(M) will have spatially
dependent eigenvalues E±(r),

E±(r) = ±1

4

[(
4H(M)

11 (r)
)2 +

(
�m2

21

E
sin 2θ12

)2
]1/2

. (3.9)

In the discussion to follow, we shall consider neutrino propagation in the Sun.
At the solar core r = 0, the potential energy of Eq. (3.7) becomes �V (core) �
7.6 × 10−12 eV upon taking

√
2GF � 7.63 × 10−14eV-cm3/NA and N(core)

e �
100NA cm−3 � 6.0× 1025 cm−3. Let us next make two working hypotheses:

(1) We assume that the electron number density N(core)
e is sufficiently large to

ensure that H(M)

11 (0) > 0 at the core. Using the value of N(core)
e just given

above and adopting the current PDG values for �m2
21 and θ12, this will be

valid for neutrinos with energy above E ∼ 2 MeV. This energy is, however,
not precisely fixed since the core is a region and not just a point.

If indeed H(M)

11 is positive at the solar core, it becomes negative before reach-
ing the surface (since Ne vanishes at the surface) and vice versa for H(M)

22 . The
matrix elements H(M)

11 and H(M)

22 thus cross at the point where each vanishes.
In the limit of neglecting the off-diagonals of H(M), the diagonals become
the eigenvalues and we have the phenomenon of level crossing, familiar from
atomic and nuclear physics. In reality, the off-diagonals do not vanish and so
the level crossing is avoided.

(2) We assume that propagation of an electron neutrino in the solar matter is
adiabatic, i.e. the fractional change in the electron density of the matter is
small per neutrino oscillation cycle. If so, a neutrino that starts in one of the
energy eigenstates will not experience a transition as it passes through the solar
medium. This is akin to a particle in an eigenstate of the one-dimensional infi-
nite well maintaining its quantum state as the wall separation changes suffi-
ciently slowly.

Let us now follow the behavior of E±(r) from the solar core at r = 0 to the solar
surface at r = R�. As we move outward from the core, Ne(r) will decrease7 until
a point r = rres is reached at which H(M)

11 (rres) = H(M)

22 (rres) = 0, with

7 A popular model for the number density profile is Ne(r) = Ne(0)e−r/r0 with r0 � R�/10.
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Table VI–1. Evolution of |νM
2 (r)〉.

r θ(r) |νM
2 (r)〉

0 π/2 |νe〉
rres π/4

(|νe〉 + |νμ〉) /√2
R� θ12 sin θ12|νe〉 + cos θ12|νμ〉

N(res)
e ≡ �m2

12 cos 2θ12

2
√

2GFE
, (3.10)

after which E+(r) grows until the surface is reached. Similarly, E− will increase
from r = 0 to r = rres and decrease thereafter. The label res used here stands for
‘resonance’, as will be explained shortly.

The eigenstates |νM(r)〉 of the matrix H(M) are likewise spatially dependent,

|νM
1 (r)〉 = cos θ(r)|νe〉 + sin θ(r)|νμ〉,
|νM

2 (r)〉 = − sin θ(r)|νe〉 + cos θ(r)|νμ〉, (3.11)

as is also the associated mixing angle θ(r)which, after some algebra, can be written
as

sin 2θ(r) = sin 2θ12[(
Ne(r)/N

(res)
e − 1

)2
cos2 2θ12 + sin2 2θ12

]1/2 . (3.12)

The square of this relation has the profile of a Lorentzian distribution, indicating
the presence of a resonance [MiS 85].

Suppose an electron neutrino νe is created at the solar core r = 0 under the
assumption Ne(0) 
 N(res)

e . Its evolution to the solar surface r = R� is briefly
summarized in Table VI–1 and explained as follows. The conditionNe(0)
 N(res)

e

implies from Eq. (3.12) that θ(0) � π/2, and so from Eq. (3.11) that |νM
2 〉 � |νe〉

at the core. Thus, a newly created electron neutrino will reside in the energy eigen-
state |νM

2 〉 as it begins its journey to the solar surface. If the matter eigenstates
undergo adiabatic flow through the resonance, then |νM

2 〉 suffers no transitions.
As the surface is eventually approached, the electron number density decreases to
zero, Ne(R�) = 0 and so, from Eq. (3.12), θ(r)→ θ(R�) � θ12, the vacuum mix-
ing angle. What is new and exciting is that electron neutrinos of sufficiently high
energies, which are created by nuclear reactions at the solar core, have an appre-
ciable probability for conversion to muon neutrinos by the time the solar surface is
reached. This is, in essence, the phenomenon known as the Mikheyev–Smirnov–
Wolfenstein (MSW) effect [Wo 78, MiS 85]. The mixing between electron and
muon type neutrinos has occurred within the Sun and since |ν2〉 is an energy
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eigenstate, no further mixing occurs en route to Earth. Measurement at a detec-
tor on Earth will yield either νe or νμ according to the quantum state |ν2〉 of
Eq. (3.6c).

Not all neutrinos created in the solar core will experience MSW mixing. As
shown earlier, it may be that the neutrino energy is too small (roughly Eνe <

2 MeV) for level crossing to take place. Or the neutrino flow to the solar surface
may not be adiabatic. The quantitative condition for adiabaticity is most stringent
at the resonant point r = rres,

sin2 2θ12

cos 2θ12

�m2
21

2E

∣∣∣∣ N(res)
e

N ′e(rres)

∣∣∣∣
 1, (3.13)

where N ′e(rres) is the density gradient, N ′e ≡ dNe/dr , evaluated at the resonant
point. Thus, adiabaticity will occur provided the solar electron number density
does not change too rapidly with position. The relation in Eq. (3.13) amounts to
demanding that the splitting between the energy eigenvalues E±(r) of H(M) (cf.
Eq. (3.9)), which is minimal at the resonant point, nonetheless be much larger
than the off-diagonal matrix elements of H(M) (which would produce transitions
between the energy eigenstates). We return to this subject in Sect. VI–4, where we
further discuss solar neutrinos.

CP violation

The CP-violating phase in the PMNS matrix has physical implications in neutrino
oscillations, relating the oscillations of neutrinos to those of antineutrinos. It is
reasonably straightforward to use the general form of the oscillation formula to
calculate the difference of the oscillation probabilities,

Aij ≡ Pνi→νj − Pν̄i→ν̄j = 4
∑
k>


Im(UikU
∗
jkUjlU

∗
il) sin

(
�m2

klL

2E

)
. (3.14)

It is less straightforward to measure this. We note that Aij vanishes unless all three
flavors of neutrinos are involved. This can be found from direct calculation but is
easy to understand on general principles, as the CP-violating phase can be removed
from any 2× 2 submatrix by redefining the fields. Moreover, the numerator in this
asymmetry is the same for any i �= j ,

Aij = sin δ cos θ13 sin 2θ13 sin 2θ23 sin 2θ12

×
[

sin

(
�m2

21L

2E

)
+ sin

(
�m2

13L

2E

)
+ sin

(
�m2

32L

2E

)]
, (3.15)

where we have used �m2
13 = −�m2

31. We see that two independent mass dif-
ferences, e.g., �m2

21 and �m2
13, contribute. In addition, the asymmetry will pro-

duce small corrections to the oscillations with the largest amplitudes and will
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be most visible for oscillations where the CP-even transitions are the smallest,
such as νe ↔ νμ. Although uncovering CP violation in oscillations will be an
experimental challenge, the rewards of such a measurement will be considerable.
For example, lepton CP violation is a necessary ingredient for leptogenesis (cf.
Sect. VI–6).

VI–4 Neutrino phenomenology

Determination of the set of mixing parameters {θij } and {�m2
ij } has taken years of

careful experimentation. This has involved a variety of neutrino sources, including
our Sun, the Earth’s atmosphere, nuclear reactors and particle accelerators. Many
references and detailed accounts exist in the literature.8

Solar and reactor neutrinos: θ12 and 
m2
21

Solar neutrinos: The current evaluations [RPP 12] of the parameters sin2 2θ12 and
�m2

21 from a three-neutrino fit give

sin2 2θ12 = 0.857± 0.024 �m2
21 = (7.50± 0.20)× 10−5 eV2. (4.1)

This represents an uncertainty of under 3%, which is one indication of how suc-
cessful the search for these basic parameters has turned out. The earliest progress
in this area involved the detection of solar neutrinos. It was Davis [Da 64] who used
a chlorine detector to probe solar neutrinos and Bahcall [Ba 64] who provided the
theoretical basis for such an ambitious undertaking. An important conceptual con-
tribution came from Pontecorvo, who suggested testing whether leptonic charge
was conserved, and who wrote ‘From the point of view of detection possibilities,
an ideal object is the Sun’ [Po 68].

The initial intent of the chlorine experiment was actually to test physics at the
core of the Sun. A significant achievement of solar neutrino studies has been to
demonstrate that stars are, indeed, powered by nuclear fusion reactions. Energy
produced by the Sun arises from thermonuclear reactions in the solar core and the
underlying theoretical description is called the Standard Solar Model (SSM). Solar
burning utilizes all three types of Standard Model reactions – strong, weak, and
electromagnetic – as well as using gravity to provide the required high density.
The primary ingredients of the SSM are:

(1) The Sun evolves in hydrostatic equilibrium, balancing the gravitational force
and the pressure gradient. The equation of state is specified as a function of
temperature, density, and solar composition.

8 Some recent examples include [AnMPS 12], [Ba 90], [BaH 13], [FoTV 12], [FoLMMPR 12], [GiK 07],
[GoMSS 12], [HaRS 12], [KiL 13], [MoA et al. 07], and Chap. XIII in [RPP 12] by Nakamura and Petkov.
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(2) Energy proceeds through the solar medium by radiation and convection. While
the solar envelope is convective, radiative transport dominates the core region
where the thermonuclear reactions take place.

(3) The primary thermonuclear chain involves the conversion 4p → 4He+2e++
2νe. This pp chain produces 26.7 MeV per cycle, and the associated neutrino
production rate is firmly tied to the amount of energy production. The core
temperature and electron number density of the Sun are respectively Tc ∼
1.5× 107 K and Ne ∼ 6× 1025 cm−3.

(4) The model is constrained to produce the observed solar radius, mass and lumi-
nosity. The initial 4He/H ratio is adjusted to reproduce the luminosity at the
Sun’s current 4.57 Giga-year age.

The dominant process is the ‘pp chain’, occurring in stages I→ IV:⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

Stage Nuclear reaction Br (%)
I p + p → 2H+ e+ + νe 99.75

p + e + p → 2H+ νe 0.25
II 2H+ p → 3He+ γ 100.00
III 3He+ 3He → 4He+ 2p 86.00

or 3He+4 He → 7Be+ γ 14.00
IV 7Be+ e− → 7Li+ νe 99.89

7Li+ p → 4He+4 He
or 7Be+ p → 8B+ γ 0.11

8B → 8Be∗ + e+ + νe

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
Let us isolate those processes which produce neutrinos and order them according
to increasing maximum neutrino energy:

Label Reaction Eν
max(MeV)

pp p + p → 2H+ e+ + νe 0.42
7Be 7Be+ e− → 7Li+ νe 0.86
pep p + e + p → 2H+ νe 1.44
8B 8B → 8Be∗ + e+ + νe 14.06
hep 3He+ p → 4H+ e+ + νe 18.47

The energy spectra of the pp, 8B and hep neutrinos are continuous whereas the
pep and 7Be neutrinos are monoenergetic. Within this general framework, there
is, however, still a degree of theoretical uncertainty and work continues to this
day on solar modeling. Table VI–2 (taken from [HaRS 12] and [AnMPS 12]) lists
SSN flux predictions according to two sets, labelled GS98 and AGSS09, and taken
respectively from [GrS 98] and [AsBFS 09]. Note the marked decrease in flux with
increasing neutrino energy.
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Table VI–2. Neutrino fluxa in the pp chain.

Label GS98 AGSS09 Solar data

pp 5.98(1± 0.006)× 10−1 6.03(1± 0.006)× 10−1 6.05(1+0.003
−0.011)

7Be 5.00(1± 0.07)× 10−1 4.561(1± 0.07)× 10−1 4.82(1+0.05
−0.04)× 10−1

pep 1.44(1± 0.012)× 10−1 1.47(1± 0.012)× 10−1 1.46(1+0.010
−0.014)× 10−2

8B 5.58(1± 0.13)× 10−1 4.59(1± 0.13)× 10−1 5.25(1± 0.038)× 10−4

hep 8.04(1± 0.30)× 10−1 8.31(1± 0.30)× 10−1 —

aExpressed in units of 1010cm−2s−1.

On the basis of such flux predictions, results from various solar neutrino exper-
iments could be compared with the SSM. The following compilation, taken from
[AnMPS 12], summarizes early results for the ratio of observed-to-predicted elec-
tron neutrino flux,

Homestake 0.34± 0.03, Super-K 0.46± 0.02,
SAGE 0.59± 0.06, Gallex,GNO 0.58± 0.05.

We now know that this spread of values arises from the interplay between the range
of neutrino energies and the influence of the MSW effect. At the time, however, it
was unclear whether the SSM itself was at fault. The issue was resolved by a series
of experiments which probed flavor mixing of solar neutrinos while simultaneously
testing the SSN prediction for the total solar flux. This was carried out by the SNO
collaboration; for a summary see [Ah et al. (SNO collab.) 11]. Since the SNO
detector employed heavy water, there was sensitivity to the three reactions:

charged current (CC): νe + d → p + p + e−
neutral current (NC): νx + d → p + n+ νx (x = e, μ, τ)

elastic scattering (ES): νx + e− → νx + e− (x = e, μ, τ). (4.2)

In the Standard Model, only νe contributes to the CC reaction, but all neutrino
flavors contribute, with equal rates, to the the NC reactions (and also to the ES,
but with νe having about six times the rate of νμ and ντ ). Early CC measurements
found f (CC)

νe
= (1.76± 0.11)× 106 cm−2 s−1, much less than the (then) predicted

total flux f tot
νe
= (5.05± 0.91)× 106 cm−2 s−1. Then, NC measurements obtained

f (NC)
νe

= (5.09± 0.62)× 106 cm−2 s−1, consistent with the f tot
νe

prediction. Within
errors, the only reasonable explanation is that the conversion of νe → νμ, ντ must
be occurring. A more recent determination of the total flux from the 8B reaction
reduces the uncertainty,

�
(tot)
8B = (5.25± 0.16 (stat) +0.11

−0.13 (syst)
)× 106 cm−2 s−1, (4.3)
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consistent with but having smaller uncertainty than the SSN predictions of
Table VI–2.

In summary, the versatility of solar neutrino experiments is that they are sensitive
to various nuclear reactions in the Sun through the measurement of different energy
neutrinos. The survival probability for electron neutrinos to reach the Earth will
depend on the neutrino energy E and will in part be affected by the solar MSW
effect. The survival probability in the two-flavor description can be expressed as
[Pa 86]

Pνe→νe =
1

2
+
(

1

2
− Pnon-adbtc

)
cos 2θ(0) cos 2θ12. (4.4a)

In the above, θ(0) represents the matter mixing angle at the point of neutrino pro-
duction (taken here at r = 0), averaging of oscillatory behavior has been carried
out, and Pnon-adbtc describes the nonadiabatic mixing (which is sensitive to the elec-
tron number density Ne(r)) as in Eq. (3.13).

Let us explore Eq. (4.4a) in the limits of low-energy and high-energy neutrino
energy, while assuming just adiabatic transitions (Pnon-adbtc = 0). For very low-
energy neutrinos, as explained previously, there is no MSW resonance and the the
situation reduces to simple vacuum mixing,

Pνe→νe = 1− 1

2
sin2 2θ12 � 0.57, (4.4b)

whereas for very energetic neutrinos, we have θ(0) � π/2 and so

Pνe→νe = sin2 2θ12 � 0.31. (4.4c)

For intermediate neutrino energy, the average survival probability interpolates
smoothly between these two limits. The overall pattern is as depicted in Fig. VI–1.
The recent experiment [Be et al. (Borexino collab.) 12a] on pep neutrinos, whose
energyE = 1.44 MeV is at the low end of the spectrum, finds a survival probability
Pνe→νe = 0.62± 0.17, which is in accord with the above analysis.

The relations in Eqs. (4.4a–c) pertain to neutrino propagation directly from the
Sun to the Earth. This is referred to as ‘daytime’ detection, sometimes denoted by

P (D)
νe→νe

. The ‘nighttime’ probability P (N)
νe→νe

would be sensitive to matter effects
from passage through the Earth. Letting RD and RN represent the day and night
counting rates, the ‘day–night’ asymmetry,

AD−N ≡ 2
RN − RD

RN + RD
, (4.5)
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Fig. VI–1 Average survival probability of solar neutrinos vs. neutrino energy.
Data points represent (from left to right) pp, 7Be, pep, and 8B neutrinos.

is an observable which isolates the effect of Earth matter on neutrino propagation.
This is in distinction to the MSW effect in the Sun, which cannot be turned off.
Several experiments, the SNO and Super-K experiments (with 8B) and Borexino
(with 7Be) have studied the day–night effect. For example, the results [Be et al.
(Borexino collab.) 12b],

AD−N = − (0.1± 1.2± 0.7)% [Borexino]

= − (4.0± 1.3± 0.8)% [Super-K], (4.6)

are consistent with the theory predictions |AD−N| ≤ 0.1% (Borexino) and AD−N �
−3% (Super-K), although the latter is also 2.6σ from zero.

Reactor antineutrinos: The KamLAND experiment was able to observe oscilla-
tions of ν̄e antineutrinos under laboratory conditions. The ν̄e beam originates from
nuclear beta decays from several nuclear reactors and detection is obtained via the
inverse beta-decay process

ν̄e + p→ e+ + n. (4.7)

In the KamLAND experiment, the average baseline between sources and detec-
tor is L0 ∼ 180 km and the antineutrino energy spectrum covers the approximate
range 1 ≤ Eν̄e ≤ 7 MeV. The ν̄e survival formula, as in Eq. (3.4), suggests plotting
the data as a function of L0/Eν̄e . The result, shown in Fig. VI–2, clearly exhibits
the oscillation pattern. This important observation yielded the most accurate deter-
mination of �m2

21 at the time and continues to be a significant contributor to the
current database.9

9 Since properties of electron antineutrinos are being studied, it is necessary to assume the validity of CPT
invariance to compare the KamLAND results with those from solar neutrino studies (and any other
experiment using neutrinos and not antineutrinos).

https://doi.org/10.1017/9781009291033.007 Published online by Cambridge University Press

https://doi.org/10.1017/9781009291033.007


190 Neutrinos

20 30 40 50 60 70 80 90
0.0

0.2

0.4

0.6

0.8

1.0

L0/E (km/MeV)

O
bs

er
ve

d/
E

xp
ec

te
d

Fig. VI–2 Authors’ representation of the KamLAND observation of neutrino
oscillations. The curve represents a fit to the oscillation hypothesis.

Atmospheric and accelerator neutrinos: θ23 and |
m2
32|

Since 1996, the Super-Kamiokande experiment has utilized a 50-kiloton Cherenkov
detector to study oscillations of so-called ‘atmospheric’ muon neutrinos. When
high-energy cosmic rays strike the Earth’s atmosphere a multitude of secondary
particles are produced, most of which travel at nearly the speed of light in the same
direction as the incident cosmic ray. Many of the secondaries are pions and kaons,
which decay into electrons, muons, and their neutrinos. Using known cross sec-
tions and decay rates, one expects about twice as many muon neutrinos as electron
neutrinos from the cosmic-ray events. For example, a π+ decays predominantly as

π+ → μ+ + νμ → e+ + νe + ν̄μ + νμ,
i.e., two muon-type neutrinos are produced but only one that is electron-type.
Detection of these atmospheric neutrinos yielded evidence for oscillations, to wit,
a deficit of muon-type neutrinos, but no such deficit for the electron neutrinos.
This has since been augmented with data containing dependence on the azimuthal
angle (and hence distance from the source) and on the neutrino energy. Because the
deficit is of just muon neutrinos, the hypothesis is that these oscillations involve the
conversion νμ → ντ . Any ντ thus generated is not energetic enough to react via
the charged current to produce a τ .

Accelerator-based efforts to probe the same oscillation parameters include the
K2K and MINOS experiments. In particular, since 2005 MINOS has studied muon
neutrinos originating from Fermilab and traveling 735 km through the Earth to
a detector at the Soudan mine in the state of Minnesota. At Fermilab, an injector
beam of protons strikes a target, producing copious numbers of pions, whose decay
is the source of muon neutrinos.
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Data from both the Super-Kamiokande and MINOS experiments support the
νμ → ντ scenario with mixing angle and mass difference given by [RPP 12]:

sin2 2θ23 > 0.95 |�m2
32| = 0.00232+0.0012

−00008 eV2. (4.8)

Moreover, each experiment has also studied muon antineutrino oscillations,
finding mixing parameters consistent with these values, although less precisely
determined.

Finally, the T2K collaboration announcement in 2012 of the first evidence for
νe appearance in a νμ beam has been confirmed in a recent update [Ab et al. (T2K
collab.) 13]. The νe appearance probability at oscillation maximum is

Pνμ→νe � 4c2
13s

2
13s

2
23

[
1+ 2a

�m2
31

]
− 8c2

13c12c23s12s13s23�21 sin δ, (4.9)

where �21 ≡ �m2
21L/(4E) and a ≡ 2

√
2GFneE. In particular, the value of

sin2(2θ13) inferred from the data depends on whether a normal or inverted neu-
trino mass hierarchy is assumed. This can, in turn, be compared to reactor values
for sin2(2θ13). Thus, the importance of this type of experiment lies in its sensitiv-
ity both to the hierarchy issue and to detection of a CP-violating signal (δ �= 0).
Future data from the T2K and NOνA experiments have the potential for significant
progress in our understanding of neutrino physics.

Short-baseline studies: θ13

The last of the neutrino oscillation angles to be determined with precision is θ13.
Initial fits to mixing data indicated their smallness. This led to the concern that
signals of neutrino CP violation, i.e., determination of the CP-violating phase δ,
might be experimentally inaccessible. For example, recall from Eq. (3.15) that the
CP-violating asymmetry Aij is linear in both sin δ and sin θ13. Hence, the attempt
to measure θ13 took on a certain urgency.

Following a growing number of indications that indeed θ13 �= 0, it was sev-
eral reactor short-baseline experiments which provided the needed precision. A
key point is that in ν̄e disappearance experiments, with a relatively short baseline
of roughly 1 km, the influence of sin2(2θ12) and �m2

21 on the survival probabil-
ity P (surv)

ν̄e
for electron antineutrinos can safely be neglected. We then have (see

Prob. VI–2),

P (surv)
ν̄e

� 1− 2|U13|2
(
1− |U13|2

) (
1− cos

[
�m2

31

2E
L

])
= 1− sin2(2θ13) sin2

(
1.267�m2

31L/E
)
. (4.10)
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Based on data from the collaborations Daya Bay [An et al. 12], RENO [Ahn et al.
12] and Double Chooz [Abe et al. 12], the current RPP listing gives [RPP 12]

sin2 2θ13 = 0.098± 0.013. (4.11)

Finally, the future of short-baseline experiments has the potential for additional
interesting findings. In particular, the inverse relation between L and �m2 in the
neutrino oscillation relations implies that a very short-baseline study (say, withL ∼
5 → 50 m) would be sensitive to much larger values of squared mass difference
(say, having order of magnitude �m2 ∼ 1 eV2) than those observed for �m2

21

and �m2
32. Such a large neutrino mass difference evidently occurred in the LSND

experiment [Ag et al. 01 (LSND collab.)], which found evidence at 3.5σ for ν̄μ →
ν̄e oscillations with �m2 > 0.2 eV2. We shall not discuss this experiment further,
except to note that, if validated, it would represent effects (e.g., one or more sterile
neutrinos) beyond the Standard Model.

VI–5 Testing for the Majorana nature of neutrinos

In order to determine if the neutrino mass has a Majorana component, one can
use the fact that Majorana masses violate lepton-number conservation. A sensitive
measure occurs in the process of neutrinoless double beta decay. There are many
situations in Nature where one has a nucleus which is kinematically forbidden to
decay via ordinary beta decay,

ZA /→ Z−1A+ e− + ν̄e, (5.1)

but which is allowed to decay via emission of two lepton pairs (2νββ),

ZA → Z−2A+ e− + e− + ν̄e + ν̄e. (5.2)

This 2νββ process is attributable to the pairing force in nuclei and occurs only
for even–even nuclei. It is produced at order G2

F through the exchange of two W
bosons. When 2νββ can occur, it is also kinematically possible to have a neutrino-
less double beta decay (0νββ),

ZA → Z−2A+ e− + e−. (5.3)

However, this latter process violates lepton-number conservation by two units and
would be forbidden if the neutrino possessed a standard Dirac mass. We will see
that this becomes a sensitive test of the Majorana nature of neutrino mass.

First, consider 2νββ decay. Because this involves five-body phase space as well
as two factors of the weak coupling constant GF this process is very rare, with
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Table VI–3. Half-lives of some two-neutrino
double beta emitters.

Nucleus T 2ν
1/2(yr)

96Zr (2.0± 0.3± 0.2)× 1019

76Ge (1.7± 0.2)× 1021

136Xe (2.23± 0.017± 0.22)× 1021

76Ge (1.7± 0.2)× 1021

lifetimes of order 1020 years. Even so, it has been observed in many nuclei, and
some examples are cited in Table VI–3. The rate for such processes is

�2ν ∼ m11
e F2 (Q/me)

∣∣g2
aMGT − g2

vMF

∣∣2 · F(Z)
Ei − 〈En〉 − 1

2E0
, (5.4)

where F(Z) is a Fermi function, F2 (Q/me) is a kinematic factor,

F2(x) = x7

(
1+ x

2
+ x2

9
+ x3

90
+ x4

1980

)
, (5.5)

and MF , MGT are, respectively, the Fermi and Gamow–Teller matrix elements,

MF = 〈f |1
2

∑
ij

τ+i τ
−
j |i〉, MGT = 〈f |1

2

∑
ij

τ+i τ
−
j σ i · σ j |i〉. (5.6)

In Eq. (5.4), the closure approximation has been made to represent a sum over inter-
mediate states via an average excitation energy 〈En〉. The experimental 2νββ decay
rates then determine these matrix elements, which unfortunately are extremely dif-
ficult to determine theoretically.

If the neutrino has a Majorana mass component, then neutrinoless double beta
decay is possible. The basic weak process underlying 0νββ decay involves the tran-
sitionW−W− → e−e− through the Feynman diagram of Fig. VI–3. Let us initially
treat this process by considering only one generation and invoking the mass diagon-
alization framework of Sect. VI–2. Because the charged weak current couples to

d
u

u

W

W

e−

e−

d

n

Fig. VI–3 The basic weak process underlying 0νββ decay.
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the combination (cf. Eqs. (1.3), (1.6)) νL = cos θ νb + sin θ νca , the exchange of
the two neutrino eigenstates leads to a matrix element which is proportional to

sin2 θ ma

Q2 −m2
a

+ cos2 θ mb

Q2 −m2
b

, (5.7)

noting that the /q portion of the propagator numerator vanishes due to the chiral
relation �L/q�L = 0. If the Majorana mass term is vanishingly small compared
to the Dirac mass, this reaction also vanishes since in this case θ = π/4 (so that
sin θ = cos θ) and ma = −mb = mD. Despite the apparent existence of two
Majorana fields, the fermion-number violating transition vanishes because the two
contributions are equal and opposite.10

However, if the Majorana mass term does not vanish, the transition can occur.
Let us consider the case of the seesaw mechanism, in which ma � mM 
 MW and
θ � mD/mM � 1. Then the contribution of the first propagator becomes tiny, and
a nonvanishing transition occurs due to the second propagator. The process is now
directly proportional to the light Majorana massmb. The momentum flowing in this
propagator is of order the electron mass, so we can neglect the mass dependence
m2
b in the denominator. This leaves the transition proportional to mb/Q

2. In this
scenario the light neutrino acts like a pure Majorana fermion.

When all three generations of neutrinos can contribute the result depends also on
the lepton mixing matrix. If one is dealing with Majorana neutrinos, and neglects
the neutrino mass in the denominator of the neutrino propagator, then the figure of
merit is the averaged Majorana mass 〈mν〉 obtained by summing over all neutrino
species,

〈mν〉 ≡
3∑
i=1

U 2
iemi . (5.8)

Note that it is the squareUU of the PMNS matrix, not the usual combinationU †U ,
that enters the reaction. This is because both weak currents lead to e− emission in
the final state. It is this feature which allows the Majorana phases α1,2 to contribute
to 〈mν〉. The decay rate for such a neutrinoless decay has a form analogous to that
in Eq. (5.4),

�0ν ∼ m7
eF0(Q/me)|gaM̃GT − g2

vM̃F |2 〈mν〉2
m2
e

, (5.9)

10 If one had chosen to redefine mb to be positive via a phase redefinition, as described in Sect. VI–1, there
would be an extra phase in the weak current of νb such that the cancelation would still occur due to a factor
of i2 = −1 in the double beta decay matrix element.
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except now with the phase space factor F0(x),

F0(x) = x

(
1+ 2x + 4x2

3
+ x3

3
+ x4

30

)
, (5.10)

and nuclear matrix elements

M̃F = 〈f |1
2

∑
ij

τ+i τ
−
j

1

rij
|i〉, M̃GT = 〈f |1

2

∑
ij

τ+i τ
−
j σi · σj

1

rij
|i〉. (5.11)

The factor of 1/rij in Eq. (5.11) comes from spatial dependence associated with the
neutrino propagator in the limit that one neglects the neutrino mass in the denomi-
nator of Eq. (5.7).

Neutrinoless double beta decay, 0νββ, is a topic of considerable theoretical
importance and is currently under investigation experimentally. As of yet no such
mode has been observed. Present limits are 〈mν〉 < 140 → 380 meV [Ac et al.
(EXO-200 collab.) 11] and 〈mν〉 < 260 → 540 meV [Ga et al. (KamLAND–ZEN
collab.) 12]. There are a number of planned experiments which aim to lower these
bounds.

VI–6 Leptogenesis

The material Universe is mostly comprised of matter – protons, neutrons and
electrons – rather than their antiparticles. The net baryon asymmetry is described
by the ratio

ηB = NB −NB̄

Nγ

∼ 6× 10−10. (6.1)

Because baryon number and other symmetries are violated in the Standard Model
and in most of its extensions, it is plausible that this asymmetry was generated
dynamically in the early Universe. Such a dynamical mechanism requires a process
which is out of thermal equilibrium and which violates both baryon number and
CP conservation [Sa 67].

If heavy right-handed Majorana neutrinos exist, as allowed by the general mass
analysis of the Standard Model, they can generate the net baryon asymmetry. The
basic point is that the heavy Majorana particles can decay differently to leptons
and antileptons as they fall out of equilibrium in the early Universe through the CP
violation that is present in the PMNS matrix, and this lepton number asymmetry
can be reprocessed into a baryon-number asymmetry through the B + L anomaly
of the Standard Model.

The decay of Majorana particles need not conserve lepton number, as the Majo-
rana mass itself violates this quantity. However, to violate CP symmetry requires a
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Ni fj

H
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Ni

fk Nm

H fj

H
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Fig. VI–4 Violating CP symmetry in the lepton sector.

specific dynamical mechanism. There can be an interference between the phases of
the PMNS matrix and phases generated by unitarity effects for a given final state.
To see this, consider the decay diagrams depicted in Fig. VI–4. The tree-level dia-
grams are proportional to the Yukawa couplings, which are in general complex.
However, this is not enough, as an overall phase leads to an unobservable effect
when calculating decay rates. But loop diagrams with on-shell intermediate states,
like those in Fig. VI–4, pick up extra imaginary parts from on-shell rescattering.
Computationally, this comes from the iε in Feynman propagators. In addition, loop
amplitudes have different PMNS phases because they sum over all the particles in
the loop. Schematically, this is manifest in decay amplitudes as

ANi→Hfj = gij +
∑
k,m

|Lkm|eiδkmgikg∗kmgmj ,

ANi→H̄ f̄j
= g∗ij +

∑
k,m

|Lkm|eiδkmg∗ikgkmg∗mj , (6.2)

where the loop diagram is represented by |Lkm|eiδkm with a rescattering phase due
to on-shell intermediate states δkm. The weak phases in the Yukawa couplings gij
change sign under the change from particle to antiparticle, but the rescattering
phase does not. We see that a differential rate develops |AN→Hjfi |2 − |AN→H̄ f̄i

|2
�= 0 through the interference of tree and loop processes and between the different
components of the loop diagram.

Producing a net lepton asymmetry would not be sufficient to explain the observed
matter asymmetry unless some of the leptons could be transformed to baryons. This
can be accomplished through the baryon anomaly described earlier in Chap. III.
In the early Universe, with temperatures above the weak scale, processes which
change baryon number, but conserve B−L, can occur rapidly. This transfers some
of the initial lepton excess into a net number of baryons.

The detailed prediction of the amount of baryon production depends on the size
of the CP-violating phases, as well as the masses of the heavy Majorana particles.
While a unique set of parameters is not available, in general one needs heavy par-
ticles of at least 109 GeV in order to reproduce the observed asymmetry. This fits
well with the observed size of the light neutrino masses, as described earlier in
Sect. VI–1.
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VI–7 Number of light neutrino species

It might seem that the subject of this section, the number of light neutrino species,
is a non-issue. After all, the very structure of the Standard Model has each charged
fermion paired with its own neutrino in a weak isospin doublet. Since three charged
fermions are known to exist, so there must be three neutrinos. Let us, however, view
this purely as an issue of experimental physics. In particular, data from Z0-decay
[Sc et al. 06] and the cosmic microwave background (CMB) [Hi et al. (WMAP
collab.) 13] have been used to obtain independent determinations of the number of
‘light’ neutrino species Nν . We discuss these two approaches in turn.

Studies at the Z0 peak

Since final-state neutrinos are the only Standard Model particles not detected in Z0

decay, they contribute to the so-called invisible width �inv. In the Standard Model,
this is predicted to be

�inv = �Z −
(
�had + �ee + �μμ + �ττ

) = (497.4± 2.5) MeV, (7.1)

where �Z is the totalZ0 width and�had, �ee, �μμ, �ττ are the hadronic and leptonic
widths. But is this what is actually found experimentally?

Several approaches have been explored using the invisible width to determine
Nν , but the one cited here has the advantage of minimizing experimental uncer-
tainties. The trick is to work with the ratio of measured quantities �inv/�

̄,

�inv

�

̄
= Nν

(
�νν̄

�

̄

)
SM

. (7.2)

The interpretation of this relation is clear, that the measured invisible width is the
product of the number of light neutrino species Nν and the decay width into a
single neutrino–antineutrino pair. Using data collected from the collection of LEP
and SLD experiments,11 one finds [Sc et al. 06]

Nν = 2.984± 0.008, (7.3)

which is consistent with the Standard Model value of Nν = 3.

Astrophysical data

Astrophysics supplies an independent determination of Nν which, although cur-
rently much less precise, is nonetheless of value. The issue of interest to us is

11 Certain assumptions are made, among them that lepton universality is valid, and that the top-quark and Higgs
masses are respectively mt = 178.0 GeV and MH = 150 GeV. See [Sc et al. 06] for additional discussion.
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that the CMB has sensitivity, in part, to the neutrino number. Some insight can be
gained by considering the thermal content of an expanding Universe. We take the
radiation energy density ρr as

ρr = ργ + ρν, (7.4)

referring respectively to photons (ργ ) and relativistic neutrinos (ρν). The photon
and neutrino components obey the well-known thermal relations,

ργ = π2

15
T 4
γ , ρν = π2

15
T 4
ν ·

7

8
Nν. (7.5)

For a temperature somewhat in excess of 10 MeV, the Universe is pervaded by
an e±, ν, γ plasma in thermal equilibrium via the electroweak interactions (so that
Tν = Tγ ). As the temperature drops to about 10 MeV, the expansion rate of the Uni-
verse starts to exceed the rate of weak interactions, causing the neutrinos to begin
decoupling from the plasma. Still later, the process of e± annihilation releases
entropy to the photons, increasing their temperature relative to the neutrinos. In
fact, Tν = Tγ · (4/11)1/3 provided the neutrino decoupling is complete by the anni-
hilation era. Since this is not quite true and to account for any hypothetical ‘extra
radiation species’ (er), one introduces the effective number of relativistic species
Neff and writes instead

ρν + ρer ≡ π2

15
T 4
ν ·

7

8
Neff. (7.6)

Altogether, the radiation density can be written as

ρr = ργ

[
1+ 7

8

(
4

11

)4/3

Neff

]
. (7.7)

Finally, modern experiments have probed with increasing precision the CMB radi-
ation density, which reveals conditions at the epoch of photon decoupling (redshift
z � 1090). Because of its contribution to ρr , Neff affects various properties of
the CMB [Hi et al. (WMAP collab.) 13], among them the peak locations of the
baryon acoustic oscillations (BAO). The current fit with minimum uncertainty is
found from combining data from BAO and CMB measurements [Ad et al. (Planck
collab.) 13],

Neff = 3.30± 0.27, (7.8)

consistent with the Standard Model determination Neff = 3.046 [MaMPPPS 05].
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Problems

(1) Three-generation neutrino mixing
In three-generation mixing, the flavor (α = e, ν, τ ) and energy (j = 1, 2, 3)
eigenstates are related by |να〉 = U ∗αj |νj 〉 = U

†
jα|νj 〉, as in Eq. (3.1).

(a) Show that the amplitude connecting initial and final flavor states |να〉 and
|νβ〉 is Aαβ = UβjDjU

†
jα, given that D is a phase factor (temporarily

unspecified) describing the neutrino’s propagation.
(b) Show that the transition probability is Pαβ = |Aαβ |2 is expressible as

Pαβ =
3∑

j=1

|Uβj |2|Uαj |2 + 2
∑
j>k

UβjU
∗
βkUαkU

∗
αjDjD∗k .

Hint: Partition the double sum as
∑3

j,k=1 =
∑3

j=1+2
∑

j>k .

(c) Determine
∑3

β=1 Pαβ .
(d) Assume that the neutrino propagation factor can be expressed as DjD∗k =

e
−i�m2

kjL/2E , where L is the source-detector separation, E is the (relativis-
tic) neutrino energy and, as in the text, �m2

kj ≡ m2
k −m2

j . Then show

Pαβ =
3∑

j=1

|Uβj |2|Uαj |2 + 2
∑
j>k

cos

[
�m2

kj

2E
L− ϕβ,α;j,k

]
|UβjU ∗βkUαkU ∗αj |,

where ϕβ,α;j,k is the (CP-violating phase) of the Ujk factors.
(2) Two-generation 1 ↔ 3 neutrino mixing

The aim is to obtain a simple expression for the survival probability Pee(L)

for 1 ↔ 3 oscillations starting from the general relation derived above. We
shall ignore CP-violating effects (and thus set ϕβ,α;j,k = 0) and use |�m2

21| �
|�m2

31| � |�m2
32|, which is already known from the text. Because we wish to

observe 1 ↔ 3 oscillations, we take |�m2
31|L/2E ≥ 1 (i.e. 2πL/L(31)

osc ≥ 1).
We also take �m2

21L/2E � 1 (i.e. 2πL/L(21)
osc � 1) to suppress 1 ↔ 2

oscillations. Then show that the survival probability Pee(L) can be written as

Pee(L) = 1− 2|Ue3|2
(
1− |Ue3|2

) (
1− cos(2πL/L(31)

osc )
)
.

Hint: You will want to make use of the unitarity property of the mixing
matrix U .
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