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The ’t Hooft solution of 2d QCD

Two-dimensional quantum chromodynamics involves an SU(N) symmetry
group. We saw that models get simplified in the large N limit, and so we would
like to examine the question of whether the large N limit QCD in two dimensions
can be solved. This question was addressed by ’t Hooft who showed that indeed
QCD2 in this limit is almost exactly soluble. The simplest Green’s functions
can be solved in closed forms and the meson spectrum can be extracted by a
non-elaborate numerical computation.

This was derived by ’t Hooft in his seminal paper [124], and it had many
follow ups. In this chapter we consider only [56], which discusses the scattering
properties of QCD in the large N model.

Recall the action of a two-dimensional QCD,

SQC D = −1
2
Tr[Fμν Fμν ] + Ψ̄i(i 	D−mi)Ψi , (10.1)

where the gauge fields are spanned by N ×N Hermitian matrices TA such that
Aμ = AA

μ TA , Fμν = ∂μAν − ∂ν Aμ + i g√
N

[Aμ,Aν ], the covariant derivative Dμ =
∂μ + i g√

N
Aμ , the fermions Ψ are in the fundamental representation of the color

group and i = 1, . . . , Nf indicates the flavor degrees of freedom. There is a sum
over the flavor indices. Note that the gauge coupling was chosen to be g√

N
,

obviously to accommodate a large N approximation with g fixed.
It is convenient to impose the algebraic light-cone gauge. This gauge is advan-

tageous at least for the following two reasons:

(i) The field strength F+− becomes linear in the gauge potential,

A+ = A− = 0 ⇒ F+− = −∂−A+ . (10.2)

(ii) The theory after gauge fixing is still Lorentz invariant. This is obviously a
property of two dimensions only.

In this gauge the Lagrangian of the system becomes,

L = −1
2
Tr[(∂−A+)2] + Ψ̄k

(
i	∂ −mk −

g√
N

γ−A+

)
Ψk . (10.3)

Recall that in the light-cone gauge there are no ghost fields.
The Feynman rules associated with this action in the so-called double line

notation follow from Fig. 10.1, as explained below.
In the following we shall be taking one flavor, for simplicity.
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Fig. 10.1. The Feynman rules of QCD2 in the light cone.

Fig. 10.2. The quark self-energy.

The light-cone gamma matrices obey the relations,

γ2
− = γ2

+ = 0 {γ+ , γ−} = 2. (10.4)

Since the vertex is proportional to γ−, only that part of the propagator that is
proportional to γ+ can contribute. As a consequence we can eliminate all the γ

dependence from the Feynman diagrams. Thus the double line, representing the
gluon propagator, is 1

p2
−

, the fermion line is −ik−
m 2 +2k+ k−−iε , and the coupling is 2g.

Note that for the gauge field propagator one makes use of the principal value
such that,

D++(p) = P
(

1
p2
−

)
≡ 1

2

[
1

(p− + iε)2 +
1

(p− − iε)2

]
. (10.5)

The dressed quark propagator and the quark self-energy, given in terms of the
diagrams in Fig. 10.2, obey the coupled equations,

S(p) =
ip−

2p+p− −m2 − p−Σ(p) + iε

Σ(p) = 4g2
∫

dk+dk−
(2π)2 S(p− k)P

(
1

(k−)2

)
, (10.6)
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The ’t Hooft solution of 2d QCD 193

where Σ is the γ+ part, the only part that appears in the self-energy in our gauge.
If we shift the integration variables p+ − k+ → −k+ we eliminate the dependence
on p+. Hence Σ is only a function of p−. Due to its Lorentz structure it implies
that Σ must be a constant times 1

p−
, namely m2 + p−Σ ≡M 2 . Thus in the

leading large N the sole effect of the interaction, for the propagator, is to replace
the quark mass m by a renormalized quark mass M .

Integrating over k+ we get,

Σ =
g2

2π

∫
dk−sgn(p− − k−)P

(
1

(k−)2

)
= − g2

πp−
, (10.7)

and hence,

M 2 = m2 − g2

π
. (10.8)

In the original treatment of ’t Hooft, the regularization employed was not of
principal value, but rather of a sharp cutoff, namely integrating over |p−| > λ.
This avoids the infrared divergence as well, but introduces a new scale, which is
not gauge invariant. Obviously, one has to check that Green’s functions of gauge
invariant operators are independent of λ when λ→ 0. Thus we find that,

Σ(p) = Σ(p−) = −g2

π

(
sgn(p)

λ
− 1

p−

)
, (10.9)

and correspondingly the dressed quark propagator is,

S(p) =
ip−

2p+p− −m2 + g 2

π −
g 2 |p−|

πλ + iε
. (10.10)

Now the pole of the quark propagator is shifted towards k+ →∞ and hence
there is no physical single quark state.

Let us consider now the spectrum of the mesonic bound states. The propagator
of the meson is given by the sum of diagrams as is shown in Fig. 10.3.

This ladder sum is exact in the planar limit that follows from the large N
approximation. If the propagator has a meson pole, then the ladder diagrams
have to obey the Bethe–Salpeter equation as in Fig. 10.4.

The “blob” is the Fourier transform of the matrix element,

φ̃(p, q) = F.t. <meson|T ψ̄(x)ψ(0)|0>,

with external legs of a quark of mass m, momentum p, and an anti-quark of mass
m and momentum p− q (for simplicity, we take one flavor, and so the same mass
for the quark and anti-quark). The Bethe–Salpeter equation reads,

φ̃(p, q) = −4ig2S(p− q)S(p)
∫

d2k

(2π)2 P
(

1
(k− − p−)2

)
φ̃(k−, q). (10.11)

Defining

φ(p−, q) =
∫

dp+ φ̃(p, q),
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194 The ’t Hooft solution of 2d QCD

Fig. 10.3. The Green’s function of the quark bilinear.
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Fig. 10.4. The Bethe–Salpeter equation.

we get,

φ(p−, q) = −i
g2

π2

∫
dp+S(p− q)S(p)

∫
dk−P

(
1

(k− − p−)2

)
φ(k−, q). (10.12)

The integral over p+ can be done explicitly

I(p−, q) ≡
∫

dp+S(p− q)S(p)

= −
∫

dp+
1[

2(p+ − q+)− M 2 −iε
p−−q−

] 1[
2p+ − M 2 −iε

p−

] . (10.13)

If p− is outside the interval [0, q−] then the two poles are on same side of the
real axis, and the integral vanishes. When p− is inside the interval, the integral
is (taking q− > 0),

−iπ

[
2q+ −

M 2

p−
− M 2

(q− − p−)

]
,

so that,[
2q+ −

M 2

p−
− M 2

q− − p−)

]
φ(p−, q) = −g2

π

∫ q−

0
dk−P

(
1

(k− − p−)2

)
φ(k−, q).

(10.14)
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The ’t Hooft solution of 2d QCD 195

Defining x and y by,

p− = xq−, k− = yq−,

and,

2q+q− = μ2 ,

one finally gets ’t Hooft’s equation,

μ2φ(x) =
[
M 2

x
+

M 2

1− x

]
φ(x)− g2

π

∫ 1

0
dy

1
(x− y)2 )φ(y), (10.15)

with φ(x) defined on the interval [0, 1].
The equation cannot be solved analytically, but one can compute the wave-

functions that correspond to the various states numerically.
Before describing these solutions let us further discuss the equation. In fact

one can derive the equation using a light-cone Schrödinger equation. In the light-
cone coordinates a system is specified at x+, and its dynamics is generated by
P+, the generator of translations of x+. Since the latter commutes with P−,
the generator of translations of x−, it is useful to use the eigenspace of P−.
For example, for a free single particle of mass M, 2P+ = M 2

P−
. Note however

that unlike the ordinary Schrödinger formulation which is expressed in terms
of a real line, the spectrum of P1 , in the light-cone case the spectrum of P− is
the positive half-line. For a system of two particles one can always choose to
normalize the eigenvalue of P− to be one, so that the eigenvalue of the oper-
ator on one of the two particles is x and the on the other it is 1− x, such
that for two non-interacting particles 2P+ = M 2

x + M 2

1−x . This yields the first two
terms in (10.15). The other term, the integral, is just a linear potential term.
If we interpret temporarily x as a position operator, then the operator form of
(10.15) is,

2P+ =
M 2

x
+

M 2

1− x
+ g2 |p|. (10.16)

This is the Hamiltonian of a massless particle moving in a potential and restricted
to a box [0, 1]. This guarantees that the spectrum is discrete and there is no con-
tinuum of two free particles. Moreover we can go further with this interpretation
and argue that at least for high-level states the eigenstates are like those of a
free particle in a box namely,

φn ≈ sin(πnx), μ2
n ≈ g2πn, (10.17)

for n = 1, 2, . . . These states furnish a linear “Regge trajectory” with no con-
tinuum. We will verify shortly that for large n this is indeed the structure of
the eigenstates and eigenvalues. Since the renormalized quark mass becomes
tachyonic for large coupling constant g (eqn. 10.8) one may wonder whether the
mesonic bound states can also be tachyonic. It turns out that this cannot occur.

https://doi.org/10.1017/9781009401654.011 Published online by Cambridge University Press

https://doi.org/10.1017/9781009401654.011


196 The ’t Hooft solution of 2d QCD

From (10.15) it follows that,

μ2
∫ 1

0
|φ(x)|2dx = m2

∫ 1

0
|φ(x)|2

[
1
x

+
1

1− x

]
dx

+
g2

2π

∫ 1

0
dx

∫ 1

0
dy
|φ(x)||φ(y)|

(x− y)2 . (10.18)

To solve the ’t Hooft equation (10.15) we need to specify the boundary condi-
tions.

At x = 0 (x = 1) the solution may behave like x±β ((1− x)±β ) with,

πβ cot g(πβ) +
πM 2

g2 = 0. (10.19)

Let us define the “Hamiltonian” of the system as the right-hand side of equation
(10.15), namely,

Hφ(x) ≡
[
M 2

x
+

M 2

1− x

]
φ(x)− g2

π

∫ 1

0
dyP

(
1

(x− y)2

)
φ(y). (10.20)

This Hamiltonian is Hermitian only when acting on the space of functions that
vanish on the boundary, as can be seen from (10.18). Using the latter one can
show that φn with φn (0) = φn (1) = 0 constitute a complete orthonormal set,∑

n

φn (x)φn (x′) = δ(x− x′)

∫ 1

0
φ∗

n (x)φm (x)dx = δnm . (10.21)

Since the integral in (10.15) gets its main contribution from y close to x and
since for a periodic function we have,

P
(∫ 1

0

eiwy

(x− y)2 dy

)
� P

(∫ ∞

−∞

eiwy

(x− y)2 dy

)
= −π|w|eiwx , (10.22)

then the configurations given in (10.17) are a good approximation of the eigen-
states of the system. The numerical solutions of eqn. (10.15) are drawn in
Fig. 10.5.

In this figure the mass spectrum of mesons is shown for various values of quark
mass. In cases when the mass of the quark and anti-quark are not equal, the term
[M 2

x + M 2

1−x ] in (10.15) is replaced by [M 2
1

x + M 2
2

1−x ].
The masses and wavefunctions cannot be determined in general in an analytic

form. However in certain limits one can write down approximate expressions. In
[52] it was shown that the highly excited states n� 1, where n is the excitation
number have masses given by,

(Mmes)2
n ∼ πg2N

(
n +

3
4

)
+
(
m2

q1
+ m2

q2

)
ln(n) + C

(
m2

q1

)
+ C

(
m2

q1

)
+O

(
1
n

)
,

(10.23)
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Fig. 10.5. The spectrum of mesons. The squared masses are in units of g 2

π
[124].

where mqi
are the masses of the quark and anti-quark and where the functions

C(m2
q ) are given in [52].

The opposite limit of low-lying states and in particular the ground state can
be deduced in the limit of large quark masses, namely mq � g and small quark
masses g � mq . For the ground state in the former limit one finds,

M 0
mes
∼= mq1 + mq2 . (10.24)

In the opposite limit of mq � g,

(M 0
mes)

2 ∼=
π

3

√
g2Nc

π
(m1 + m2). (10.25)

For the special case of massless quarks we find a massless meson.
In Fig. 10.6 the spectrum of meson nonets built from two triplets of flavor

with masses

(a) m1 = 0 m2 = 0.2 m3 = 0.4

(b) m1 = 0.8 m2 = 1.0 m3 = 1.2 (10.26)
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Fig. 10.6. Meson nonets for Nc = 3. In case (a) the masses of the triplet
are m1 = 0.00, m2 = 0.20, m3 = 0.4 and in (b) m1 = 0.80, m2 = 1.00, m3 = 1.2
[124].

is shown, in units of g√
π
. Then the ground state is at 2.7, the first excited state

at 4.16, and level n = 10 is at 20.55. It is obvious from these cases that for larger
n, the wavefunction gets more and more sharply picked around x = 0.5. For the
case of unequal masses, the wavefunction ceases to be symmetric, as can be seen
from Fig. 10.7 for m1 = 1,m2 = 5.

10.1 Scattering of mesons

In the previous section we have described the equation that governs the formation
of mesonic bound states, and the corresponding meson spectrum follows from a
homogeneous Bethe–Salpeter equation. This can be generalized to the equation
for full quark anti-quark scattering amplitude, which takes the form of the non-
homogeneous equation of Fig. 10.8.

The scattering amplitude has the following structure,

Tαβ,γ δ = (γ−)αγ (γ−)βδT (q, q′, p). (10.27)

The undressed amplitude T (q, q′, p) takes the form,

T (q, q′, p) =
ig2

(q− − q′−)2 +
ig2N

π2

∫
dk−φ(k−, q′, p)

(k− − q−)2 , (10.28)
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Fig. 10.7. Wavefunction for m1 = 1, m2 = 5.
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Fig. 10.8. The Bethe–Salpeter equation for quark anti-quark scattering.

where,

φ(q−, q′−, p) =
∫

dq+SE (q)SE (q − p)T (q, q′, p). (10.29)

Similar to the equation for the “wave function” φ(x) we now get the generaliza-
tion to φ(x, x′, p) which reads,

μ2φ(x, x′, p) =
[
M 2

x
+

M 2

1− x

]
φ(x, x′, p)

+
π2

Np−(x− x′)2 +
∫ 1

0
dy

[φ(x, x′, p)− φ(y, x′, p)]
(x− y)2 . (10.30)
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It is now straightforward to express φ(x, x′, p) in terms of φ(x) as,

φ(x, x′, p) = −
∑

n

πg2

p2 − p2
n

1
p−

∫ 1

0
dy

φn (x)φ ∗n (y)
(x− y)2 , (10.31)

and substituting this into (10.28) we find the scattering amplitude,

T (x, x′, p) =
ig2

p2
−(x′ − x)2 −

ig2(g2N)
πp2

−

∑
n

1
p2 − p2

n

×
∫ 1

0
dy

∫ 1

0
dy′ φn (y)φ ∗n (y′)

(x− y)2(x′ − y′)2 =
ig2

p2
−(x′ − x)2 −

∑
n

1
p2 − p2

n[
φ∗

n (x′)
2g

λ

√
g2N

π

(
θ(x′(1− x′))+

λ

2|p−|

(
γ1 − 1

x′ +
γ2 − 1
1− x′−μ2

k

))]
× [(x′ ↔ x)] , (10.32)

where γi for i = 1, 2 are Mi

( g√
π

) .

This clarifies the dynamics of the confinement. The infinite self-mass quark is
cancelled by the quark anti-quark interaction producing finite mass color singlet
bound states, whose mass squared, as we have seen above, increases linearly for
high excited states. The infrared behavior is determined by the dependence on
λ as in (10.9). The bound state wave function is of order 1

λ as λ→ 0. The fact
that the amplitude for a bound state to decay into quarks is infinite as λ→ 0
compensates for the vanishing quark propagator in this limit to produce finite
bound state amplitudes, which contain no multiquark discontinuities.

To test the consistency of the model one has to examine also the hadronic
scattering processes. One has to check that these are finite in the limit of λ→ 0,
unitary and Lorentz invariant. A consequence of the unitarity is the absence of
long range forces among the color singlets.

In Fig. 10.9 the three-particle vertex function and the two-particle scattering
are drawn. The three-particle vertex function, Fig. 10.9(a), is of order g ∼ 1√

N
.

Each quark propagator is of order λ. The k+ loop momentum is of order 1
λ since

it is dominated by the pole at 1
λ . From the three bound state wave functions

we get a factor of ( 1
λ )2 since at least one wave function must be of order unity

to conserve momentum. So altogether the factors of λ cancel out and we get a
finite result in the limit of λ→ 0.

The two-particle scattering is described in Fig. 10.9(b) and 10.9(c). The for-
mer describes a hadronic exchange and the latter a quark exchange. The quark
exchange may seem to be infinite in the limit λ→ 0 since now the quark and
anti-quark can move in the same direction with an amplitude that behaves like 1

λ .
The total dependence on λ is as follows: λ4 from quark propagators, 1

λ4 from the
wave functions and 1

λ from the loop momentum integration. However it can be
shown that when one adds all diagrams that contribute to 1

N order, the terms of
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(a)

(b)

(c)

Fig. 10.9. (a) Three-particle vertex function. (b) Hadronic exchange contribu-
tion to two-particle scattering amplitude. (c) Quark exchange contribution to
two-particle scattering amplitude.

order 1
λ cancel, leaving a finite remainder. In this way we have verified unitarity

of the model to the first non-trivial order.

10.2 Higher 1/N corrections

At N =∞ the mesons are stable since their decay rate, as will be shown shortly,
is proportional to 1

N . Going to the 1
N corrections, a meson has the following

amplitude to decay into two mesons1

A(i, f1 , f2 ;w) =
4g2
√

N√
π

{
1

1− w

∫ w

0
dxφi(x)φf1

( x

w

)
Φf2

(
x− w

1− w

)

− 1
w

∫ 1

w

dxφi(x)Φf1

( x

w

)
φf2

(
x− w

1− w

)}
, (10.33)

1 The 1/N corrections were evaluated in [144].
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where φi, φf1 , φf2 are the wave functions of the initial meson and first and second
final mesons, respectively. The quark ends up being in the second final meson and
the anti-quark in the first final meson. The vertex function Φ(x), with x not ∈
[0, 1], is related to the wave function as,

Φ(x) =
∫ 1

0
dy

1
(x− y)2 φ(y). (10.34)

The kinematic parameter w takes the values,

w± =
μ2

i + μ2
f1
− μ2

f2
∓
√

(μ2
i + μ2

f1
− μ2

f2
)2 − 4μ2

i μ
2
f2

2μ2
i

, (10.35)

where w+ and w− correspond to the right and left moving final state f1 . The
decay can take place only provided μi ≥ μf1 + μf2 . It is clear that for fixed g2N

the amplitude is of order A ∼ O( 1√
N

). The amplitude (10.33) is for a partial
decay and for full-on shell amplitude one has to add the partial decays

A = (1− (−1)σi +σf 1 +σf 2 )(A(i, f1 , f2 ;w+) +A(i, f1 , f2 ;w−)), (10.36)

with σ+ for even parity state and σ− for odd parity state. It was found that
numerically these amplitudes for various excited states do not vanish. This also
shows that the model is not integrable.

It was further found that the amplitudes for mesons made out of massless quark
anti-quark pairs differ significantly from those of mesons made out of massive
ones. An interesting result that follows from the computations of these ampli-
tudes is that the amplitude for decay of an exited meson into a pion and another
meson vanishes, in the case of massless quarks. This is actually to be expected,
as for massless quarks the two-dimensional pion is massless and decoupled, since
there is no chiral symmetry breaking in two dimensions.
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