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Stein quasigroups I:

Combinatorial aspects

M.J. Pelling and D.G. Rogers

This paper, in conjunction with its algebraic sequel, aims to

provide a foundation, long outstanding, to the theory of quasi-

groups obeying the law x(xy) = yx , otherwise known as Stein

quasigroups.

1 . Introduction

Quasigroups satisfying the law x(xy) = yx seem first to have been

considered by Stein [7 3], in which paper he raised the problem of

determining their spectrum. Standard constructions using Galois fields

yield possible orders km, where the square-free part of m does not

contain any prime p E 2, 3 (mod 5) ([70], [73]). Later, in [74], Stein

used certain block designs to construct the orders 12k + 1, 12k + U,

20k + 1, 20k + 5 for all k > 0 , and in [9] Lindner used the singular

direct product of Sade [72] to obtain further orders, including 17 • By

construction of more elaborate block designs we show (Section 4) that

systems exist for all orders greater than 10^2 . We also apply block

design methods to consideration of isomorphisms and automorphisms (Section

5) and to subsystems (Section 6 ) , and in Section 7 we consider further

constructions involving a generalisation of the singular direct product and

a block design analogue.

It is known [2] that there are Latin squares orthogonal to their

transpose of all orders n ? 2, 3, 6 . Since any Stein system is

orthogonal to its transpose ([73], Section IV) our results provide an
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additional proof for n >

For further discussion and references see also [3], [4], [5],

2 . The method o f b l o c k des igns

In this paper a block design, as originally introduced by Bose and
Shrikhande [7], will mean a triple {S, D, K) where 5 is a set, D a
non-empty collection of subsets of 5 called blocks, and K a set of
integers greater than or equal to 2 satisfying:

(i) for any x t y in S there is a unique block B € D
containing x and y ;

(ii) if B € D then \B\ t K .

If |S| = v we write V € B(K) and shall also use B(K) to denote
the whole class of block designs with block sizes a l l in K . The
following theorem (Stein [74], Section k) is the basis of this paper.

THEOREM 1. Let V be a variety of idempotent quasigroups in which
all the defining laws involve at most two variables. Suppose that for
every k in a set K of integers greater than or equal to 2 there is a
member S, of V of order k . Then if v € B(K) , there is a member of

V of order v .

Proof. Let (S, D, K) be a block design with \s\ = V . Then S
becomes a member of V if each block of size k is regarded as a system
S, and the binary operation x.y of S is defined (when x t y ) by

restriction to the unique block system S-, containing x and y ; x-x

is defined to be x . / /

For brevity we say that n is an i?-number or J?(w) if there is a
S+ein system of order n . The following methods can now be used to
construct new f?-numbers from previously known ones. For completeness we
include the known results.

MO. R(p) if p is a prime p = 0, 1, h (mod 5) and R\J> } if p

is a prime p = 2 , 3 (mod 5) •

2
Proof. In the first case the equation a + a = 1 is soluble in the

Galois field GF(p) , and defining x-y = a x + cy turns GF(p) into a
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Stein system. The same construction works in the second case with the

field GF[p2) . II

Ml. If R(m) and R(n) then R{rm) . //

M2. Suppose v € B(K) where R(k), R(k-l) for each k € K , and let

(S, D, K) be a blook design with \s\ = v . Suppose that S* c S forms a

subdesign (that is to say, any blook containing two elements of S* is a

subset of S* ) and let \S*\ = v* 2 0 . Then if 0 £ m 5 v* and R(m) ,

then also R(v-v*-m) . If S* = 0 , we only need R(k) for k € K .

Proof. Delete v* - m of the points of S* leaving a set W of m

points. Define a block design on (S\S*) u W by taking as blocks

(i) the blocks in D which do not meet S* ,

( i i) the blocks of D which meet S* in one point only, that

point being deleted if not-in W ,

( i i i ) W i tself .

R(v-V*+m) follows on applying Theorem 1 to this design. / /

M3. Suppose v € B(K) where R(k), R(k+l) for each k € K , and

that the design (S, D, K) admits m > 1 disjoint resolutions into

parallel blocks, that is there are distinct blocks B. . , 1 £ i £ m ,
13

t.
1

1 £ 3 £ t. , such that S = U B. . and, for any i , B. ., B.., are
1 •_. 13 13 ^3

disjoint when 3 t 3' . Then if R{m) , then also R(v-m) .

Proof. Add new points a. , a~, ..., a and apply Theorem 1 to the
1 d. m

design on S u {a , a-, . . . , a } with blocks:

(i) any block B different from any B. . in D ;
13

( i i ) any s e t B.. u { a . } ;
13 t

(iii) {av a2, . . . , aj . II

M4. Suppose P is a subsystem of a Stein system Q and let

p = |p| 3 q = \Q\ . Then if R{q-p) and R(v) , then also R{v(q-p)+p) .

In particular, if q = k + 1 , R(vk+l) is implied by R{k), R(k+l), R(v) .
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Proof. This is obtained by Lindner's construction [9], using the

singular direct product. / /

The final three methods (see also [6]) use block designs constructed

from T-systems. For an account of T-systems see Hanani [6], whose

notation we adopt here.

M5. If t € TQ(m) and i?(t+l), i?(m) , then R(mt+l) .

Proof. Given a T-system with t € T (m) , add a new point a* and

define blocks

(i) the t m-tuples of the T-system,

(i i ) the sets T . u {a*} , 1 < i 5 m , where the T . are the

t-element sets of the T-system.

A block design with K = {m, t+1] results , and Theorem 1 can be applied.//

M6. If t € T (m), R(t), R{m), R(m+l) , and R(k) for k < e , then

R(mt+k) .

Proof. Select k parallel sets D , D-, . . . , D, of m- tuples in the

T-system and le t new points a , a^, . . . , a, be added. Apply Theorem 1

with blocks:

(i) a l l m-tuples not in any D. ;

( i i ) the t-element sets T. of the T-system;

( i i i ) a l l sets L. u {a.} for L. € D. , 1 < i < k ;

(iv) {ax, a2, . . . , â ,} . / /

M7. If t € T (m), i ? ( t + l ) , R{m), R(m+1) , and R(k+l) for k 2 e ,

then R(mt+k+l) .

Proof. Select k parallel sets D., D-, ..., D-, of m -tuples in

the T-system and let new points a, a^, a., ..., a, be adjoined. Apply

Theorem 1 with blocks:

(i) all m-tuples not in any D. ;
tr

https://doi.org/10.1017/S0004972700008030 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700008030


S t e i n q u a s i g r o u p s 225

( i i ) the (t+l)-element sets T. u {a} , 1 £ i 5 m ;

( i i i ) a l l sets L. u {a.} for L. € D. , 1 5 i £ fc ;
% "V Is If

( i v ) {a , a 1 , a 2 , . . . , afe} . / /

3. Known orders up to 116

We now l i s t a l l known i?-numbers up to Il6 , br ief ly justifying each

number as l i s t e d . For example 92 = 1+-19 + 16 (M6) wi l l mean that 92 i s

an i?-number on the basis of M6 with m = k , t = 19 , k = 16 . As for

the existence of the relevant T-systems we only use the fact [6] tha t

t € TAm) (which implies t € T (m) for e 5 t ) i f t i s a product of

s .-
prime powers p . 5 m .

( i ) From MO and Ml we obtain: 1, It, 5, 9, 11, 16, 19, 20, 25, 29,

31, 36, 1+1, M», i+5, 1*9, 55, 59, 6 l , 6U, 71, 76, 79, 80, 8 l , 89, 95, 99,

100, 101, 109, I l6 .

( i i ) 17 = U-U + 1 (Mh or M5) and then 68, 85 by Ml. Also

96 = 5-19 + 1 (MU) .

( i i i ) 12k + 1 , 12k + h, 20k + 1, 20k + 5 for k > 0 by Theorem 1

and known block designs in B{h), B(5) (see [ 6 ] , [ 7 ] , [74]) giving with

Ml: 13, 52, 65, 21 , 8h, 105, 28, 112, 37, 1+0, 73, 88, 97 .

(iv) There are resolvable B(k) designs for u = 12k + 1+ (see i&l) ;

so R{l2k+5) by M3, giving 53, 77, 113 .

(v) Applying M2 to the 3-dimensional projective space over GF(lt) ,

the blocks being the l i nes , by deleting points in a hyperplane we deduce

the i?-numbers 69 = 61+ + 5 , 75 = 61+ + 11 , 83 = 61+ + 19 .

(vi) Applying M2 to a block design in S(5) with u = 20k + 1 or

V = 20k + 5 and deleting 1, 1+ , or 5 points from one of i t s blocks, we

deduce 20k - h , 20k - 3 , 20k , 20k + h , giving Zh, 56, 57, 60, 10l+ .

(v i i ) By [6] there i s a design in S(l+) with v = 28 in which the

63 blocks fa l l into 9 para l l e l se ts of 7 each. By M3 therefore we

obtain 32 = 28 + 1+ and 33 = 28 + 5 ; or 33 = U-8 + 1 (M5) .

(v i i i ) 1+8 = 1+-11 + 1+ (M6) , 63 = 1+-13 + 11 (M6) , 72 = 1+-17 + U
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(M6) , 87 = 1*-19 + 11 (M6) , 91 = ^-20 + 11 (M6) , 92 = U-19 + 16 (M6) ,

93 = 4-19 + 17 (M6) , 103 = U-23 + 11 (M7) , 108 = l*-23 + 16 (M7) ,

111 = k-25 + 11 (M6) .

These resu l t s may be collected in a theorem.

THEOREM 2. The numbers in the following list are possible orders of

Stein systems: 1, k, 5, 9, 11, 13, 16, 17, 19, 20, 21, 2k, 25, 28, 29, 31,

32, 33, 36, 37, kO, kl, kk, 1*5, 1*8, 1*9, 52, 53, 55, 56, 57, 59, 60, 6 l , 63,

61+, 65, 68, 69, 71, 72, 73, 75, 76, 77, 79, 80, 81, 83, 81*, 85, 87, 88, 89,

91, 92, 93, 95, 96, 97, 99, 100, 101, 103, 10U, 105, 108, 109, 111, 112,

113, 116 . / /

I t should be noted that there are no numbers kk + 2 in this l i s t .

4 . Pos s ib l e o rde r s in general

THEOREM 3. There are Stein systems of the following orders:

(i) all numbers of the form kk + 1 ;

(ii) all numbers of the form kk excepting 8 and 12 ;

(Hi) all numbers of the form kk + 3 excepting 3 and 7 , and

possibly excepting 15, 23, 27, 35, 39, k3, kl, 51, 67,

107, 115 ;

(iv) 210, 211* , and all numbers of the form kk + 2 > 10l*2 .

Orders 2, 6, 10, ll* are not possible.

Proof, (i) If t = 12k + 1 , 12k + 1* , or 12k + 5 , then

t € 2\(1*) and R{t) ; so, by M6, if R{v) , then i?(l*8k+l++y) for

*£

y < 12k + 1 , i?(l*8k+l6+y) for^ V < 12k + k , and /?(l*8k+20+u) for

v £ 12k + 5 . With appropriate values of v the following i?-numbers are

obtained:
V = 1

v = 5
v = 9

y = 13

y = 17

y = 21

y = 25

!+8k •

U8k •

l*8k •

1+8A: •

l*8fc •

!*8k •

l*8fc •

• 5 ,

• 9 ,

• 1 3

^ 33

»• 3 7

y l » l

• 1*5

17, 21

25

, 29

k > 0 ,

k > l ,

k > 1 ,

k > 1 ,

• k > 1 ,

k > 2 ,

k > 2 ,

https://doi.org/10.1017/S0004972700008030 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700008030


S t e i n q u a s i g r o u p s 227

y = 29 l*8ft + 1 ft 2 -3 ;

and in conjunction wi th Theorem 2 t h i s proves p a r t (i).

(HJ Repeat the preceding wi th va lues of y as fo l lows:

y = 0 gives !*8ft + 1*, 16, 20 ft > 0 ,

y = h l*8ft + 8 , 21* ft > l ,

v = 16 !+8ft + 3 2 , 36 ft > l ,

y = 20 l*8ft + 1*0 ft > 2 ,

y = 21* l»8ft + 2 8 , 1*1* ft 2 2 ,

y = 28 l*8ft ft > 3 ,

y = 1*0 l*8ft + 12 ft > 1* .

In conjunction with Theorem 2 and the value 156 = !*• 32 + 28 (M6) th i s

proves part (ii) - that there are no systems of order 8 or 12 i s shown

in E H ] .

(•Lii,) That there are no systems of order 3 or 7 i s shown in [ 11 ] .

Applying the preceding method, but including now the case t = 12ft + 8 for

ft 2 1 which gives i?(l*8ft+32+y) when i?(y) and y < 12ft + 8 , the

following i?-numbers are obtained:

y = 11
y = 19

y = 19

y = 31

y = 55

y = 63

y = 71

!+8ft -

l*8ft •

!+8fc •

l*8ft •

!+8ft -

!+8ft •

l*8ft •

• 1 5 ,

• 2 3 ,

t- 3

^ 1*7

t- 1 1

• 1 9

•• 7

27,
35,

31, 1*3
39

ft> 1 ,
ft 2 2 ,

ft > 2 ,

ft 2 3 ,
ft> 6 ,

ft > 7 ,
ft 2 8 .

The following cases must be verified separately.

(a) U8ft + 1*7 for ft = 2 . Then 1**3 = 11*13 (Ml) .

(b) U8ft + 1 1 for ft = 3, h, 5 . Then 155 = 5*31 (Ml) ,

203 = U-l*3 + 31 (M7) , 251 (MO) .

(c) I+8ft + 19 for ft = 3, h, 5, 6 . Then l63 = 1**36 + 19 (M6) ,

211 (MO) , 259 = Jf60 + 19 (M6) , 307 = U-72 + 19 (M6) .

(d) l*8ft + 7 for ft = 3, 1*, 5, 6, 7 • Then 151 (MO) ,

199 (MO) , 21*7 = U-59 + 11 (M6) , 295 = 5'59 (Ml) ,

3U3 = !t«8l + 19 (M6) .
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In conjunction with Theorem 2 this completes the proof of part (Hi) .

(iv) The impossibility of orders 2, 6, 10, lU is shown in [ H ] . We

have 210 = 11*19 + 1 (MU or M5) and 2llt = 11«19 + 5 (Ml*) . Since

t (. Tt(h) for a l l t > 51 (see [«]) , parts (i)-(iii) and M6 give

R(210+hn) for a l l m > 210 and m B 0, 1, 3 (mod k) . So l6k + 105U ,

l6fc + 1058 , l6k + 1062 are i?-numbers for k > 0 . Similarly i?( ZLh+km)

for m > 2llt and m = 1 (mod It) , giving l6fe + 1082 for k > 0 .

Finally, 1066 = 5'213 + 1 (M5) , 1050 = 5*210 (Ml) ,

10U6 = 5-209 + 1 (M5) . / /

COROLLARY. There are Stein systems, and Latin squares orthogonal to

their transpose for all orders greater than 101+2 . / /

In view of the comparative incompleteness of part (iv) i t is of

interest to know whether there are any orders hk + 2 < 210 .

5. Isomorphism and automorphism

In this section we show hov block designs methods can yield

interesting results about isomorphisms and automorphisms of Stein systems.

THEOREM 4. There are at least 1821 non-isomorphio Stein systems of

order 16 all of whose 2 element generated subsystems are of order h .

Proof. The affine plane T over GF(U) , regarded as a B(h) block

design, can be converted as in Theorem 1 into a Stein system of order 16

by imposing a binary operation on each line to make it an order h sub-

system. The automorphism group of the unique Stein system of order h is

the alternating group A< , and there are 20 lines, so this can be done

20in 2 different ways. Any isomorphism of two of these systems must map

lines to lines and so is also an automorphism of the affine plane T .

There are 57^0 such automorphisms so the number of non-isomorphic systems

20
is at least 2 /5760 , which exceeds 1820 . //

THEOREM 5. There is a Stein system of order 75 which admits only

the identity automorphism.

Proof. Let S be the 3-dimensional projective space V over

with 10 points deleted in a hyperplane E . S is converted into a Stein

system by taking blocks as in M2 - the set W of 11 points remaining in

https://doi.org/10.1017/S0004972700008030 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700008030


Stein quasigroups 229

H and the lines not in H of 5 points (if they meet W ) or 1* points

(if they do not). Any automorphism of S induces an automorphism f of

the projective space V , and it suffices to show that W and the binary

operations in the blocks can be chosen to force / to be the identity.

Certainly f(H\W) = H\W , since W is the unique subsystem of S of

order 11 . Let I, m be distinct lines in H and P.. , . .. , P be the

points of I with P = I n m . Let additional points Pg, P , Pg • be

chosen on m in such a way that ?-,pg> pp^7' * V 8 a r e c o l l i n e a r i n Pq

and P^g. PoP7» pi,P8 a r e c o l l i n e a r in p
10 • Taking

H\W = {P , P , , P,Q} , it is easy to see that any projective

automorphism of H which leaves H\W invariant must be the identity. It

follows that with this choice of W , f must be a translation on the

affine space V\H .

Now there are 21 directions d, , 0 5 k 5 20 , in V\H and, apart

from the identity, 3 translations in each direction. Let I, be a line

(of k or 5 points appropriately) in the direction d. . The 3

translations in direction d, . map L, into 3 new lines Z, ,

£ = 1 , 2 , 3 , and if in each case the binary operation on I. is chosen

different from the translated operation on I, , then / cannot be a

translation in direction d, , . This can be done for every value of k

(mod 21) , so that / is forced to be the identity. //

6. Subsystems

In this section we show how block designs can be used to construct

Stein systems whose 2 element generated subsystems are of prescribed

type; we also give constructions for systems with large subsystems.

LEMMA. Let K be a set of integers hk (k 2 l) and K' a set of

integers hk + 1 (k > l) . Then v 6 B{K u K') implies that v i 0, 1

(mod U) .

Proof. It suffices to deal with the finite case K = {k., ..., k ] ,
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K ' = { k ' . . . , k ' } . L e t P . , 1 £ 3 £ v , b e t h e p o i n t s o f a B(K u X ' )
X 771 Q

design and suppose b. . k .-blocks and b\ . k '.-blocks contain P. . Then
13 t VQ % Q

1 " ^ ) (mod k) ,

whence

n r V
v(v-l) i 3 I £ b..\ (mod l*) .

i=i y=l tJJ

V
But Y, b.. = N.k. = 0 (mod h) , where ff. is the total number of

k .-blocks, so that v(v-l) = 0 (mod 1+) ; which proves the lemma. //
If

THEOREM 6. v 6 B(h, 5) if and only if v = 0, 1 (mod It) ,

excepting 8, 9 , 12 , ow<i -possibly excepting 1*8 . Excluding these

exceptions there is a Stein system of all such orders v with the property

that every 2 element generated subsystem is the system of order h or

5 •

Proof. We have 12fe + 1 and resolvable 12k + h in B{U) , k > 0 ,

so tha t by M3 also 12k + 5 € B(k, 5) . Since t € T.(k) for
V

t = 12k + 1 > h , i t follows by M6 that k8k + h + 12j + 1* (. B(h, 5) for

0 5 3 5 k , 1 < k , and l+8k + It + 12j + 5 € S(U, 5) for 0 < j £ k-1 .

So 12i + 8 € B{h, 5) for t > 12 and 12i + 9 6 B(k, 5) for

£ » 16 , and the remaining cases congruent t o 8, 9 (mod 12) are , apart

from 8 and 9 , covered by Section 3 (vi) and (v i i ) or are amongst the

following: 68 = U»i6 + h (M6) , 69 = U-l6 + 5 (M6) , 92 = U«19 + 16

(M7) , 93 = l*-23 + 1 (M5) , 128 = U-32 using 32 € TQ{k) ,

129 = lt*32 + 1 (M6) , 153 = U«32 + 25 (M6) , 189 = If 1*0 + 29 (M6) .

Hence 12k + 8 and 12k + 9 are in S(lt, 5) for k > 1 .

Finally It8k + 1* + 12j + 8 6 B(h, 5) by M6 for 1 < 3 £ k-1 , and

the remaining cases congruent to 0 (mod 12) not covered by Section 3 (vi)

a r e , apart from 12 and 1*8 : 72 = If 17 + h (M6) , 108 = If 23 + 16 (M7) ,

132 = If 28 + 20 (M6) , 192 = If 1*1* + 16 (M6) , 252 = If 56 + 28 (M6) .

Hence 12k € B(k, 5) for k ? 1, h . We have not been able to s e t t l e
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the case 48 , but 8 and 12 are impossible since there are no Stein

systems of these orders and 9 is impossible because there is no Stein

system of order 9 with a subsystem of order It or 5 • / /

For a similar theorem with v = 2, 3 (mod 4) i t is necessary to bring

in a block size not of the forms kk, kk + 1 . Adding 11 we have:

THEOREM 7. v € 5(4, 5, l l ) for v = 3 (mod h) , v > 2hJ , and for

v = 2 (mod 4) , u > 1198 . For any such v there is a Stein system of

order v such that any 2 element generated subsystem is of order 4 or

5 or 11 . In particular (by Theorem 6) this is true for a l l u > 1198 .

Proof. We have 55 € 5(4, 5, 11) by 55 = 5'11 and 11 € TQ(5) ,

and 63 € fl(4, 5, l l ) by 63 = 4*13 + 11 (M6) . Since t € 2\(4) for

t > 51 , i t follows by M6 that h-hk + 55 , 4-4& + 63 , h-i.kk+1) + 55 ,

h'{Uk+l) + 63 € 5Ct, 5, 11) for J: > 16 , that is l6i + 7 , l6i + 11 ,

l5i + 15 for i > 19 , and l6i + 3 for i i 20 . This deals with

v = 3 (mod U) for u 2 311 , and the remaining cases down to 2^7 can be

proved individually - we omit the details.

Also 210, 21 It € S(U, 5, 11) by a T-system modification of MU (see

Section 7), since 210 = 11-19 + 1 , 214 = 11*19 + 5 , 19 € 2" ( l l) ,

20 € S(lt, 5) , and 2k € B{k, 5) with a subsystem of order 5 . I t

follows by M6 that l»*lt& + 210 , U*(ltfe+l) + 214 ,

k'kk + 214 € S(4, 5, 11) for hk+1 2: 214 and, using the f irst part, also

h'(hk+3) + 210 € 5(4, 5, 11) for 4fc+3 > 247 , which completes the

proof. / /

Almost certainly the lower bounds 247, 1198 which occur in this

theorem can be improved.

If a Stein system S has a proper subsystem T then \s\ * 3\T\ + 1

(see [7/]) and equality does sometimes hold. For example if 5 is the

n-dimensional projective space over GF(3) considered as a design in

B(4) , then we may apply Theorem 1 to obtain an ascending chain

SQ c S c S2 c . . . of Stein systems with | s j = %(3W+1-i) = 3|S | + 1 .

Write Q(n) if there is a Stein system of order n which is a subsystem

of one of order 3n + 1 .
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THEOREM 8. If n € TQ(k) and Q(n) then Q(hn) .

Proof. We make use of a construction of Hanani ( [ 6 ] , p . 363). Given

a T-system for n € TrS^ » w e may i n t n e cartesian x - y plane regard

the four n- tuples as four sets of points A. = {(£, y) | 0 £ i/ £ n-l} ,

i = 0, 1, 2, 3 , and the traversing l*-tuples as graphs y = yAx) ,

0 £ x £ 3 , for h = 1, 2, ..., n2 .

S i m i l a r l y 3 € TQ(^ i n t h e x - z p l a n e w i t h t r a v e r s i n g l * - t u p l e s

3 = z . ( x ) , 1 £ j < 9 1 a n d we may s u p p o s e t h a t z.(x) = 0 , 0 £ x < 3 .
t7 1

Then 3w 6 ^r^1*) with traversing it-tuples {yAx), z .(x)) if we

take the four 3w-tuples as the sets

B- = {(^, 2/, 2) I 0 5 y £ n-1, 0 £ s £ 2}

for i = 0, 1, 2, 3 . If the set 4. is identified with

{(i, y, 0) I 0 £ y £ n-l} and ̂ (x) with (^(x), s1(x)) , then

A. c 5. , and the original T-system for n € T^C*) is contained in the
"hi- U

r-system for 3w € T (k) .

Adding a new point a* , the quasigroup multiplication can be defined,

since Q{n) , to make A. a subsystem of S. u {a*} , and can be defined

in the res t of 5 = BQ u B u B^ u B_ u {a*} by separate definition in the

^-tuples of the T-system. Then A = A. u A u A u i4_ i s a subsystem of

5 , and | s | = 3|i4| + 1 , \A\ = kn . II

COROLLARY. Q(n) holds for n = Um(3fc+1-l)/2 and m, k > 0 . / /

7. Other constructions

In this section the singular direct product ([9], [12]) is

generalised to a product of n factors, and since the law x(xy) = yx is

preserved, i t provides another construction of Stein systems. A block

design analogue is also considered.

THEOREM 9. Suppose that P. is a subquasigroup of a quasigroup Q.
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with binary operation g. , 1 5 i £ n , where the Q. are idempotent for

i > 1 . P. = 0 is allowed, but not P. = Q. , and the Q. are assumed

disjoint as sets. Suppose there is a binary operation g on

W = Pu ? 2 u . . . u P which makes W into a quasigroup with each

(P., g-lr,) & subquasigroup. Let P'. = Q-\P. and suppose that [P1., g'.)

are idempotent quasigroups for 1 £ i 5 n . Then (V, * ) is a quasigroup,
n

where V = 1 T P'. u W and * is defined by:
i=l %

(i) if x, y € W , then x*y = g(x, y) ;

(ii) if x'€ P. and y = [yy ..., y^ I J~[ P\ , then

( v • - . , vd_v 9d{x, yd), yj+1. ••-, yn)

and

y*x = d , l f . . . , y._x, g.{y., x) , y.+x, . . . , t / J ;

(Hi) i / i " ^ i j , y = {yv . . . , yn) « TT ^

x. ? y. for at least two values of i , then

**y = U i O v yj- •••. ^ ( x
n > J/n)) '

(iv) if x = (x1, . . . , xn) , y = ( ^ ^ ) € TJ P'i

x. = y. for i * j but x. * y. , then
1 % 3d

x*y = { x 1 , ..., x . _ x , g . { x . , y d ) , x d , - . . , x j

i f 9 d i x j > yd)
 € p j and

(v) if x = [x±, ..., xj €

x*x = (ff1(a:1, x j , x2, . . . , xJ if ^ i ^ i ' xj) € p '

The proof is a straightforward verification and is omitted. The Sade
singular direct product is the case n = 2 , P_ = 0 , in which case the
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idempotence condition on (P', g') can be relaxed.

The following is the block design analogue. Suppose (5, D, K) is a

block design such that S admits n partitions B. , B. , ..., B., ,

1 < i 5 n , into disjoint blocks. Let the remaining blocks be B-, ,

I = 1, 2, ... , and suppose that the operation g., on B-, converts it

into a Stein system. Suppose also that there are disjoint sets P.

(disjoint from S ) and binary operations g. . on Q. . = P. u B. . ,

1 S i < n , 1 5 «/ £ Zc. , and g on W = P u P u ... u P which convert

these sets into Stein systems with P. being the common subsystem of W

and Q.. . Then (SOW, *) is a Stein system, if * is defined by:
1-3

(i) x*y = g(x, y) if x, y € P/ ;

(ii) x*y = #. .(x, y) if x, y Z B. . or x € S. . ,

V € P. or x € P. , w € B . . :
•z. v * 13

(iii) x*j/ = gx(x, y) if x, y (. B^ .

The methods M5, M6, M7 are instances of this construction. Also Ml*

can be replaced by i t provided that a suitable block design exists to

replace the singular direct product. For example 21U = 11»19 + 5 and

19 € T-dl) so that we may take [S, D, K) as the T-system with the

11-tuples and 19-tuples as the blocks and n = 1 , the B. . as the

19-tuples, and P. as the Stein system of order 5 (which is a subsystem

of a suitable Stein system of order 2\ ).

The block design analogue also works for other idempotent quasigroups

whose defining laws only involve two variables.
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