A NOTE ON SOME THEOREMS FOR ORDINARY DIFFERENTIAL EQUATIONS

by YIK-HOI AU-YEUNG (Received 22nd April 1965)

1. In his first stability theorem [(1), p. 259], Liapounoff has proved the following fact: Let

$$\frac{dy}{dt} = Y(t, y), \tag{*}$$

where Y is continuous on the region

 $R^*: t \ge T, |y| \le H,$

where T and H(>0) are constants, and Y(t, 0) = 0 for $t \ge T$. If for (*) there exists a continuously differentiable positive definite function V(t, y) such that V(t, 0) = 0 for $t \ge T$ and

$$\frac{\partial V}{\partial t} + \frac{\partial V}{\partial y} Y \leq 0,$$

then the trivial solution of (*) is stable. Now if we make a transformation x = 1/t, then Liapounoff's second method can be used to study the behaviour of the solutions of the equation

$$\frac{dy}{dx} = f(x, y) \tag{1}$$

where f is defined and continuous on the region

$$R: \quad 0 < x \leq a, \ 0 \leq y \leq b,$$

and f(x, 0) = 0 for $0 < x \le a$. In particular, Theorem 1 below can be obtained in this way. However, since the direct proof is quite short, we give this as well.

2. Some theorems for ordinary differential equations

Theorem 1. If for (1) there exists a function $g(x) \in C((0, a])$ satisfying $0 \leq g(x) \leq b$, g(a) > 0, and a function V(x, y), defined and continuously differentiable on the region

$$R_1: \quad 0 < x \leq a, \quad 0 \leq y \leq g(x),$$

such that

$$\inf_{\{0 \le x \le a, g(x) \ne 0\}} V(x, g(x)) > 0,$$
 (A)

$$V(a, 0) = 0,$$
 (B)

$$\frac{\partial V}{\partial x} + \frac{\partial V}{\partial y} f(x, y) \ge 0, \tag{C}$$

then there is a $\delta > 0$ such that any solution y = y(x) of (1) in region R_1 satisfying y(a) = k with $0 \le k \le \delta$ can be continued to the left as a solution of (1) in R_1 defined on (0, a].

Proof. Let $\gamma = \inf_{\substack{\{0 < x \leq a, g(x) \neq 0\}\\ \{0 < x \leq a, g(x) \neq 0\}}} V(x, g(x))$, then by (A) we see that $\gamma > 0$. By (B) there is $\delta > 0$ ($\delta \leq g(a)$) such that

$$V(a, k) < \gamma, \tag{2}$$

for all k satisfying $0 \le k \le \delta$. Take a solution y = y(x) of (1) in region R_1 satisfying y(a) = k with $0 \le k \le \delta$. Suppose this solution cannot be continued to the left in R_1 at a point x_0 in (0, a); then, by the continuation theorem (for example, see (2), p. 15) and the fact that y = 0 is a solution of (1) in R_1 defined on (0, a], we have $y(x_0) = g(x_0) \ne 0$. By (C) we have

$$\frac{dV(x, y(x))}{dx} \ge 0$$

for all $x \in (x_0, a)$. Therefore,

$$V(a, y(a)) \ge V(x_0, y(x_0)).$$

But on the other hand by (2) and (A), we have

$$V(a, y(a)) = V(a, k) < \gamma,$$

and

$$V(x_0, y(x_0)) = V(x_0, g(x_0)) \ge \gamma.$$

This is a contradiction. Thus Theorem 1 is proved.

As an immediate consequence of Theorem 1, we have the following theorem for ordinary differential equations (this can also be obtained directly from the result quoted in \S 1).

Theorem 2. If for (1) there exists a function $g(x) \in C([0, a])$, satisfying g(0) = 0 and $0 < g(x) \leq b$ for all $x \in (0, a]$, and a function V(x, y), defined and continuously differentiable on R_1 , such that

$$\inf_{0 < x \leq a} V(x, g(x)) > 0, \qquad (A')$$

$$V(x, 0) = 0,$$
 (B')

$$\frac{\partial V}{\partial x} + \frac{\partial V}{\partial y} f(x, y) \ge 0, \tag{C'}$$

then for any $\alpha > 0$ ($\alpha \leq a$) there are infinitely many solutions of (1) in R_1 defined on $[0, \alpha]$ passing through (0, 0).

In particular, if we take $g(x) = x^{\beta}$, where β is a positive real number, and take $V(x, y) = y/x^{\beta}$, then it is obvious that conditions (A') and (B') are satisfied. In this case, condition (C') is equivalent to the condition that $f(x, y) \ge \beta y/x$. Hence we have the following corollary.

Corollary. If for (1), there exist a $\beta > 0$ and an a_1 satisfying $0 < a_1 \leq a$ and $a_1^{\beta} \leq b$ such that in the region

$$R_2: \quad 0 < x \leq a_1, \ 0 \leq y \leq x^{\beta}$$

we have $f(x, y) \ge \beta y/x$ then for any $\alpha > 0$ ($\alpha \le a_1$) there are infinitely many solutions of (1) in R_2 defined on [0, a] passing through (0, 0).

3. An example

Consider the following equation (3)

$$\frac{dy}{dx} = f(x, y) \tag{3}$$

where

$$f(x, y) = \begin{cases} (1+\varepsilon)y/x \text{ for } 0 < y < x^{1+\varepsilon}, \\ (1+\varepsilon)x^{\varepsilon} & \text{for } y \ge x^{1+\varepsilon}, \\ 0 & \text{for } y \le 0, \end{cases}$$

where $x \ge 0$ and ε is a positive constant. In the region

$$R_3: \quad 0 < x \leq a, \ 0 \leq y \leq x^{1+\epsilon}$$

where a is any positive real number, it is obvious that $f(x, y) \ge (1+\varepsilon)y/x$. Hence by the Corollary we see for any a>0 there are infinitely many solutions of (3) in R_3 defined on [0, a] passing through (0, 0).

REFERENCES

(1) A. LIAPOUNOFF, Problème Général de la Stabilité du Mouvement (Princeton, 1947).

(2) E. A. CODDINGTON and N. LEVINSON, *Theory of Ordinary Differential Equations* (McGraw-Hill, 1955).

(3) O. PERRON, Eine Hinreichende Bedingung für die Unität der Lösung von Differentialgleichungen erster Ordnung, *Math. Z.* 28 (1928), 216-219.

UNIVERSITY OF HONG KONG