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Abstract. Advances in computer technology have made possible a greater sophistication in 
the statistical analysis of pedigree data, however this is not necessarily manifest by fitting 
more comprehensive causative models. Planned twin and family studies measure numerous 
explanatory variables, including perhaps genetic and DNA marker information status on 
all pedigree members, and the cohabitation of all pairs of individuals. A statistical analysis 
should examine the contribution of these measured factors on individual means, and in 
explaining the variation and covariation between individuals, concurrently with the postu­
lated effect of unmeasured factors such as polygenes. We present two models that meet 
this requirement: the Multivariate Normal Model for Pedigree Analysis for quantitative 
traits, and a Log-Linear Model for Binary Pedigree Data. For both models, important 
issues are examination of fit, detection of outlier pedigrees and outlier individuals, and 
critical examination of the model assumptions. Procedures for fulfilling these needs and 
examples of modelling are discussed. 
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INTRODUCTION 

In recent years the availability of fast computation has made it feasible to fit more sophis­
ticated models in the statistical analysis of pedigree data. For example, following Elston 
and Stewart [3 ], algorithms that incorporate maximisation routines have been used to fit 
a variety of genetic models, using maximum likelihood theory. However, although there 
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has been a tendency to fit more comprehensive causative models, this is not the only nor 
most informative way in which the increased computer power can be utilised. 

Properly conducted twin and family studies measure numerous explanatory variables 
as a matter of course. In particular, genetic or DNA marker information on all pedigree 
members, and the cohabitation history of all pairs of individuals, might be collected. A 
proper statistical analysis should examine the contribution of measured factors, a) on mean 
values, and b) in explaining the (co)variation between individuals, concurrently with the 
postulated effect of unmeasured factors such as polygenes. For quantitative traits the 
multivariate normal model for pedigree analysis [11,20], and for binary traits a log-linear 
model for binary pedigree data [7,8], meet this requirement. For both models important 
issues are: examination of fit, detection of outlier pedigrees, detection of outlier individ­
uals, the effect of departures from model assumptions, and testing of both statistical 
and biological model assumptions. 

The classical twin method makes the assumption that the effect of shared environ­
ment is the same in monozygotic (MZ) pairs as in dizygotic (DZ) pairs. This assumption 
cannot be tested from twin data alone, yet it is an observation that on average MZ twins 
have more similar lifestyles and more similar environments. It has been argued that this 
could be, at least in part, a consequence of their greater genetic similarity [16]. However, 
notwithstanding the cause, this observation biases the twin method. If the correlation 
between MZ pairs, r(MZ), is greater than the correlation between DZ pairs, r(DZ), this 
does not "prove" a genetic hypothesis, while if r(MZ) = r(DZ) this does not necessarily 
"disprove" a genetic hypothesis. 

As a strategy for overcoming some of the weaknesses of the classical twin method, it 
has been proposed that designs involving twin families or a combination of twin and fam­
ily data (which provide contrasts between genetic factors and common environment 
factors and are therefore more informative designs than twins alone) be used. Therefore 
the analysis of twin studies can be viewed as a special case of pedigree analysis. 

THE MULTIVARIATE NORMAL MODEL FOR PEDIGREE ANALYSIS 

Consider a pedigree of size n, on which a continuous trait X with observed values x = 
= (Xj,x2,..., xn) ' has been measured. The expected values are E[X] = ju = (/x1,^2,..., Mn), 
where /u-, (j = 1,2, ..., n) may depend on measured explanation variables, such as the age, 
sex, and other characteristics of individual j . It is assumed that X is distributed as a multi­
variate normal variate with mean /x and variance-covariance matrix £2, where £2 depends 
on the relationship between members of the pedigree, and on the proposed causal model. 

A linear model for the fixed effects assumes that 

Mj = <v< 3 iyi j + , 3 2y2j + - + 0 p y p j ' 

for individual j where v.- is the value of the kth. explanatory variable. As suggested by 
Hopper and Mathews [11], of particular importance in genetic modelling is the case where 
these explanatory variables represent one or more measured genetic loci with at most 
several alleles [2,22]. 

Most causal models make the assumption that the "random" effects are independent 
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and additive, and as such the variance-covariance matrix can be decomposed into linear 
components; ie, £2 = 2 9^t- The parameters 0. represent the random effects, and could 
themselves be functions of other measured variables, such as the ages of pedigree members 
[23,25]. To model unmeasured additive genetic effects, £1 = 2<fr where 0 is the kinship 
matrix [20]. 

For a measured genetic marker that is highly polymorphic, eg, HLA, £1 = (^:k) 
where i//-. is 1 if individuals j and k share both haplotypes, or 0.5 if j and k share one 
haplotype [11,12]. 

For a cohabitation effect, many parameterisations are possible, [eg, 24]. One possible 
parameterisation involves letting £1 = (7jk), where if time t is measured from when 
individuals j and k first begin cohabiting and tQ is the time at which they may have 
ceased to cohabitate, then j - . is 1 - e"xt if t < tQ, otherwise (1 - e " ° )e" ° [11]. 
This parameterisation allows a large range of possible shapes; [6:Fig.l]. Furthermore, a 
stochastic mechanism has been proposed that causes covariances to converge or diverge 
exponentially fast as relatives cohabit or lead separate lives [2,19]. 

Considerable cohabitation effects have been observed in analyses of family data using 
this parameterisation. For example, a large difference in correlation between cohabiting 
and non-cohabiting siblings was evident for blood lead levels [12], while a disaggregating 
effect attributed to cohabitation was detected for Cattell's personality factor A (sizia 
versus affectia) for mother-offspring pairs [6]. Large cohabitation effects for MZ, and to a 
lesser extent DZ twins were observed in anxiety and depression symptom scores, and in 
alcohol consumption of drinking twins, in a study of UK twin families [4]. 

It is possible also to derive the £l{ by reference to a path diagram [26]. 
Parameters are estimated by maximimum likelihood methods. The log likelihood of a 

pedigree i is to a constant 

log L- = - 1/2 [login | + (x -nya^ix. - / / ) ] . 

If it is the case that pedigrees are independently sampled, the sample log likelihood is 8 = 
= 2 log L. It is a function £ = C(j3, 8, \,v) of parameters representing the effects of mea­
sured explanatory variables, the effects of unmeasured factors that influence covariation, 
and aspects of the effects of cohabitation. Maximization of £ with respect to a parameter 
space is achieved by an iterative method; for example by direct search using MAXLIK 
[15], or by Quasi-Newton methods using SEARCH [19]. 

Is is important to consider the fit to the multivariate normal distribution, because (i) 
skewness influences estimates of the mean, and (ii) kurtosis influences estimates of stand­
ard errors [14]. For example, we conducted a simulation study for samples of 20 pedi­
grees, of size 5 according to the simple model X~ = A; + E-, (i = 1, ..., 20; j = 1,..., 5) 
where A and E are independent Student's t variates on 6 degrees of freedom with variances 
ô  and ô  respectively, a2 = o^ + o2,. It was found that as the within-pedigree correlation, 

p = o*Jo2, increased from 0 to 1/5 to 1/3 the degree of underestimation in estimates of 
the standard error for p increased from 2.7% to 14.4% to 19.2%. However, the marginal 
kurtosis decreased from 3.0 to 2.0 to 1.67. Therefore, kurtosis in the component induces 
underestimation in standard error estimates, but examination of marginal kurtosis alone 
may not reveal this even when there is small within-pedigree correlation. 

It is of interest, however, to notice that the estimates of p itself are reasonably robust 
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to skewness [26], and to kurtosis. In the simulation study above, the mean of the esti­
mates for p were 0.00, 0.19 and 0.32 respectively. 

Hopper and Mathews [11 ] introduced some proposals for assessing fit. For each ped­
igree i, decompose £2j = BJAJB'J, A; diagonal. Let z{ = Aj~ I2 B'^Xj-jij), and replace \ . 
B and n- by their respective maximum likelihood estimates. A test of the multivariate 
normal assumption is provided by examining a plot of the ordered (Zj.) against the ex­
pected normal order statistics [11 ]; in particular the correlation provides an easily calcu­
lated omnibus test statistic [14]. A test for outlier pedigrees is based on examination of 
Q = z'z- [11,18]. A test for multivariate kurtosis can be based on 2 Q? [14,21]. 

A LOG-LINEAR MODEL FOR BINARY PEDIGREE DATA 

Consider binary pedigree data. For individual j let Z. = 1 if disease is present, else 0. The 
disease probability n. = P (Z. = 1), is either the prevalence or the cumulative risk, de­
pending on sampling considerations. It has been the practice to analyse binary pedigree 
data by liability models [27,29]. Although this approach has been applied extensively 
there are several drawbacks: 1) one can never test the assumption of multivariate normal­
ity of liability, yet the estimation procedure is model dependent; 2) there are problems 
in the numerical approximations used for calculating the tails of multivariate normal dis­
tributions; and 3) it is not clear whether adjustments for measured covariates such as age 
of onset and sex should be made to threshold, or to the variance of liability. 

Other authors [28,30] have sought to develop methods that might not have some of 
these difficulties. We have proposed a descriptive model for binary pedigree analysis [8] 
which does not make the multivariate normal liability assumption, is numerically stable, 
and allows for adjustments for measured covariates to be made to the disease probability. 
This model makes the assumption: for every pair of individuals j and k, the odds ratio 

*.k = P(Z.= l , Z k = l )P(Z j = 0,Zk = 0) /P(Z j = l ,Z k = 0)P(Zj = 0 .Z k = 1) 

is independent of any event involving neither Z. nor Zk. This structure is motivated by 
considering log-linear models with no second- or higher-order interactions. If the disease 
is rare, vl* approximates the relative risk of an individual being affected for the presence 
of an affected relative, and our assumption above is almost equivalent to relative risks 
being multiplicative. In theory it is possible to test this assumption by fitting fugher-order 
interactions and for small pedigrees this is feasible [9 ]. 

From an epidemiological point of view it is convenient to express disease concordance 
between a pair of relatives in terms of the odds ratio, and for computational purposes the 
"natural" scales are log \J> and logit n. As an example of the model, analysis of a family 
study of panic disorder [10] showed that after adjusting the disease probability for age of 
onset by logistic regression, the presence of an affected first-degree relative induced about 
a five-fold increase in the risk of being affected, irrespective of whether the relationship 
was between parent and offspring or between sibling pairs. 

Although the model is descriptive, genetic/environmental interpretations can be in­
troduced. In particular, the model can accomodate genetic markers, either by modelling 
the disease probability as a function of alleles or genotypes, or by allowing concordance 
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between pairs of individuals to be a function of the number of alleles or haplotypes 
shared [8]. Cohabitation history can also be modelled in a similar way to that suggested 
above for the multivariate normal modelling of continuous traits [5]. 

The model fit can be assessed to some extent by comparing the number of cases in 
each pedigree with the number expected under the fitted model, and as a consequence 
atypical pedigrees can be identified. As mentioned above it is possible to test for higher-
order interactions, but for large pedigrees this involves introducing an additional large 
number of parameters, with a consequent increase in computational time. Tests have 
shown that computation time increases rapidly with the size of pedigree, n, at a rate 
greater than (2.5)n. For our current implementation it is necessary to work with pedi­
grees of 10 or less individuals, unless simplifying assumptions [eg, 8] can be used to de­
compose larger pedigrees. 

DISCUSSION 

In the near future a large amount of genetic marker information will be routinely collected 
as part of pedigree studies. In practice it is a matter of form for researchers to collect data 
on variables that are known or hypothesised to be important. Therefore, it is logical that 
these should be examined in an analysis, concurrently with studying familial aggregation. 
Both the methods discussed above, for continuous and for binary pedigree data, can be 
applied to samples of pedigrees of arbitrary size and structure, and allow for measured 
factors to be incorporated in the analysis concurrently with the postulated effect of un­
measured factors such as polygenes. 

In several examples significant differences between the correlation between cohab­
iting and non-cohabiting pairs of relatives have been found, the more so for twin pairs. 
These effects related to cohabitation have been shown to have a considerable influence on 
the genetic/environmental interpretation of trait variation [4]. It is possible that in partic­
ular cases there would be other measured factors which influence trait covariation, and 
the methods of analysis proposed would allow these to be investigated. 

Although there has been a tendency in biometrical modelling for researchers to dev­
elop more comprehensive causative models (conveniently represented by path analysis 
diagrams) they have invariably invoked hypothetical, although intuitively realistic, un­
measured factors. These models can be analysed by the multivariate normal model for 
pedigree analysis [25 ] and it is suggested that attention should given to complementing 
these models by including measured factors in model specification and in analysis. 
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