
10 
The geometry of D-branes 

As we have seen, branes of various sorts are solutions of string theory 
which are localised to some extent, and have well-defined mass and charge 
per unit volume. Since these masses and charges are measured at infinity, 
meaning that the branes are sources of fields from the massless sector, we 
might expect that they must be actually be solutions of the low energy 
equations of motion: the gravity sector and other fields such as the various 
antisymmetric tensor fields, and possibly the dilaton. These field configu­
rations can be thought of as representing interesting backgrounds in which 
the string can propagate. It has become increasingly important in many 
recent research areas to consider the details of such solutions, and we shall 
begin exploring this highly developed technology in the present chapter. 

10.1 A look at black holes in four dimensions 

Before we launch into a description of the solutions associated to branes, 
it is a good idea to start with something more familiar in order to gain 
some intuition about how the solutions work. We will start in four di­
mensions with a familiar system: Einstein's gravity coupled to Maxwell's 
electromagnetism. The more advanced reader may wish to skip directly to 
section 10.2 if the following is too elementary, but beware, since we shall 
be uncovering and emphasising probably less familiar features in order to 
prepare for analogous properties of branes in higher dimensions. 

10.1.1 A brief study of the Einstein-Maxwell system 

Let us consider the Einstein-Hilbert action for gravity coupled to the 
Maxwell system: 

S = 16~G / d4x (_g)1/2 [R - GFJ-LvFfW ], (10.1) 
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10.1 A look at black holes in four dimensions 225 

where 
p{tv = 3{lAv - 3vAw 

The equations of motion for this system resulting from varying with re­
spect to g{lV are of course: 

(10.2) 

where 

(10.3) 

A particularly interesting spherically symmetric solution of this system, 
(see insert 10.1) representing a source of mass M and electric charge Q 
is, for the metric: 

2 ( 2MG Q2) 2 ( 2MG Q2)-1 2 2 2 ds = - 1 - -- + - dt + 1 - -- + - dr + r d02, 
r r2 r r2 

(10.4) 
where dO§ == de2 + sin2 edrj} , is the metric on a round 52 in standard 
polar coordinates, and 

Let us note some of the key properties of these solutions. 

10.1.2 Basic properties of Schwarzschild 

We begin with the case Q = 0, an empty-space solution (i.e. a solution 
of pure Einstein gravity), which is the Schwarz schild solution. The first 
thing to take note of is that the solution has various obvious symmetries. 
Notice that the metric components do not depend on t or ¢. So there is 
a pair of symmetries coming from invariance under translations in these 
coordinates. In other words, the solution is static, and symmetric about 
the ¢ axis. Well, of course it is manifestly spherically symmetric as well. 
In a more sophisticated language, we would say that there are 'Killing 
vectors' k, of this solution satisfying 

\7 {lkv + \7 Vk{l = 0, 

where \7 {l is the covariant derivative. Our two obvious ones are: 

e{l = (:t){l = (1,0,0,0); 

TJ{l = (:¢) {l = ( 0, 0, 0, 1), 

(10.7) 

(10.8) 

(10.9) 
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226 10 The geometry of D-branes 

Insert 10.1. Checking the Reissner-Nordstrom solution 

It is worthwhile listing some of the objects that the diligent reader 
would have computed if checking by hand that equation (10.4) is a 
solution. They will be useful later. The non-vanishing components of 
the 'affine' or 'metric' connection are: 

Mr-Q2. (r2-2Mr+Q2)(Mr-Q2) 
r~t = --'-----------=----'----'----------'--

r (r2 - 2 M r + Q2)' r 5 

M r - Q2 r2 - 2 M r + Q2 ----,----,;-_____ ---;:-.,--. rr = _ . 
r (r2 - 2 M r + Q2)' ee r' 

(r2 - 2 M r + Q2) sin2e 

r 
1 r¢ -_. 

r¢ - r' 
¢ cose 

re¢ = sine' 
e 1 

r¢e =-, 
r 

(10.5) 

remembering that it is symmetric in its lower components. Taking 
some more derivatives to make the Riemann-Christoffel tensor, and 
then contracting gives the non-vanishing components of the Ricci 
tensor: 

Q2 
Rrr = - r2 (r2 _ 2 M r + Q2); 

(10.6) 

from which it is easy to see that its trace, the Ricci scalar R, actually 
vanishes. Computing the stress tensor gives the result that T/Lv = 

R/Lv/8Tr, proving that it is a solution. 

in an obvious notation *. To see the full spherical symmetry, it is in fact 
better to change variables to the 'isotropic coordinates', so called because 
it makes the spatial part of the metric conformal to fiat space, which 
means that all distances measured are rescaled by an overall factor, but 
the locally measured angles between vectors are preserved. Changing to 

* Here, and in many other places, we will use the fact that in curved spacetime it is 
very useful to define vectors as differential operators. 
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10.1 A look at black holes in four dimensions 227 

a new coordinate p defined by 

r=p(l+~r, 
the metric becomes t 

(1_M)2 M 4 

ds 2 = - 2p 2 dt2 + (1 + -) (dx2 + dy2 + dz2), 
(1 + ~n 2p 

(10.10) 

where p2 = x2 + y2 + z2. Then the Killing vectors corresponding to spher­
ical symmetry are 

a a a a a a 
L3 = x ay - y ax' LI = y az - z ay , L2 = z ax - x az . 

One can check that they satisfy the Al (i.e. 50(3)) Lie algebra: [Li' L j ] = 

EijkLk. It is worth knowing that the existence of Killing vectors guarantees 
certain important properties of the solutions, helping to exhibit certain 
conserved physical quantities. For example, a/at, being timelike, ensures 
that the geometry is static, since Killing's equation results in agMv / at = O. 

Recall that a vector (or more properly a vector field in curved space­
time) define a curve, by being the tangent to it at every point. In fact, 
along a curve generated by a Killing vector k, the combination u . k is a 
conserved quantity, which will be useful later on. Notice that e and 'r/, as 
defined above, define for us (respectively) a conserved energy and angular 
momentum per unit rest mass. 

Now, it is of course a familiar feature of the solution that the spherical 
surface r = rH = 2M is an horizon, since we can see that, for example, 
gtt vanishes there. While looking at the vanishing of gtt is a quick way 
of reading off the location horizon, for the general geometry (10.4), it is 
misleading in general. We should characterise it as follows: 

The spherical surface at radius r = R has a unit normal vector to it, il, 

given by (see insert 10.2) 

1 ( a)M 
n M 

= Jlgrr I ar 
(10.11) 

In fact, the norm n2 = nMnM takes the value +1 for r > rH and -1 
for r < rH, while for r = rH, it is zero. So the spherical surface cor­
responding to the horizon is a 'null hypersurface'. For r > rH, had we 

t It is worth checking that this can be done for non-zero Q also, solving for the new 
radial coordinate via (r2 - 2Jvlr+ Q2) -1/2dr = p-1dp. More generally, any spherically 
symmetric solution can be written in isotropic form, with sufficient effort. 
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228 10 The geometry of D-branes 

approached this spacetime in a spaceship, we can blast our rockets and 
avoid the horizon if we choose, so any hypersurface this side of it is time­
like, while any hypersurface the other side of it is spacelike, since we have 
to encounter them. Why do we have to encounter them? Well, looking 
back at the metric we see that in fact the role of t and r have exchanged 
roles for r < rHo This is because it is now the coefficient of dr 2 which 
is negative, and so it is really a time coordinate. So once we are in the 
region r < rH, all smaller values of r are in the inevitable future. The 
'singularity' at r = 0 is a special case of one the inevitable spacelike hy­
persurfaces, so it is in our future as soon as we cross the horizon. In other 
words, Schwarzschild has a spacelike singularity, which is an important 
fact. 

10.1.3 Basic properties of Reissner-Nordstrom 

Let us consider the case of Q i- 0, the charged black hole geometry. 
The set of spacelike Killing vectors representing spherical symmetry is 
similar to the case we had before, and there is again a timelike Killing 
vector arising form the t-invariance of the metric components, showing 
that the solution is static. When we come to look at the horizon structure, 
things get interesting. There are two, since there are two places where the 
hypersurface normal in equation (10.11) can go null: 

It should be clear that there is a singularity at r = 0 again. Very inter­
estingly, we can can see by looking at n that the singularity is timelike, 
and so it is in fact avoidable with sufficient effort, if one were moving in 
the geometry. 

We have tacitly assumed that M ~ Q, or there will be no horizons, 
and the singularity at r = 0 will be a 'naked singularity', which is not 
allowed by the cosmic censors, it is believed292 . That this is a strict and 
physical bound makes a lot of sense when we study this solution further, 
especially in a supersymmetric context, which we should do next. 

10.1.4 Extremality, supersymmetry, and the BPS condition 

There is a very important special case arising when we saturate the lower 
bound on M, making it equal to Q. Then we see that both horizons 
coincide at r = Q. Let us change coordinates to R = r - Q, giving: 
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10.1 A look at black holes in jour dimensions 229 

Insert 10.2. A little hypersurface technology 

Let us formulate the idea of hypersurfaces within the parent geometry 
a bit more generally. This is a natural thing to consider in a text 
emphasising branes as hypersurfaces, and it shall be very useful to 
us later. Our spacetime M has coordinates xIL, and a metric GIL!!' A 
general hypersurface 2; within M deserves its own coordinates ea , 

and so it is specified by an equation of the form j(xIL(ea)) = O. We 
have already met that there is natural metric induced on 2;, which is 
the 'pull-back' of the spacetime metric: 

axIL axl/ 
Gab = aea aeb GILI/' 

and we can define other useful quantities too. For example, the unit 
vector normal to this hypersurface is then specified as 

± aj 
nIl = ±cr-a ' 

I" x lL 
where cr = IGILI/ aj aj 1-1/2 

axIL ax!! 
(10.12) 

In the simple case where 2; is, say, a spherical hypersurface of ra­
dius R, of one dimension fewer than M (with radial coordinate r), the 
equation specifying 2; is just j = r - R = O. We can use the remain­
ing angular coordinates of M as coordinates on 2;. Now, aj jar = 1, 
giving (note the contravariant index): 

nIL - ± -1 (a)IL 
- ~ ar 

A final useful thing we shall need is the extrinsic curvature or 'second 
fundamental form' of the surface, which is given by the pull-back of 
the covariant derivative of the normal vector: 

(10.13) 

Like the induced metric, this is a tensor in the spacetime 2;. This 
might seem to be a daunting expression, but (like many things) it 
simplifies a lot in simple symmetric cases. So in our spherical exam­
ple, using r = R, and the coordinates ea = x a , we get the simple 
expreSSIOn: 

± _ 1 IL aGab 
Kab - -n±-a--' 

2 x lL 
(10.14) 
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230 10 The geometry of D-branes 

and the reader should notice that the metric is in a very special isotropic 
form. It is worth emphasising that the whole solution has a nice form, 
and can be written as: 

ds 2 = _e2U dt2 + e-2U (dR2 + R2dO~); 

A = - (e- U - 1) dt, where e-u = 1 + ~. (10.16) 

This special form and generalisations of it (involving higher dimensions, 
extended objects, and the presence of other fields) will appear many times 
in what we study later, and so this is a good place to admire it properly 
before things get more complicated. 

A very important reason why the extremal Reissner-Nordstrom solu­
tion is quite special is because it behaves very much like a BPS object, 
where M 2: Q is the BPS bound. This is worth looking at very carefully, 
since it is an important theme that we have already visited, and we shall 
see many times again. To see the BPS properties, we can think of our 
Einstein-Maxwell action as the bosonic part of an N = 2 supersymmet­
ric theory of gravity. N = 2 supergravity in four dimensions has three 
important types of massless multiplet. The gravity multiplet itself con­
tains the graviton, two gravitinos and a vector called the graviphoton. So 
the bosonic content of our Einstein-Maxwell theory matches this nicely. 
We need only include a pair of spin ~ ('Rarita-Schwinger') fields 1.lf to 
play the role of the gravitino. The other two multiplets are the massless 
vector multiplet which contains a vector, a scalar and two spin ~ parti­
cles, and the hypermultiplet which contains two spin ~ particles and four 
scalars. The supersymmetry variations take bosonic fields into fermionic 
ones and vice versa, and the algebra can be written as: 

{Q~,QY} = 21~~P{l8ij, 

{Q~, Q~} = 2Ea~zij, (10.17) 

where the supercharges are written as Weyl spinors Q~, (0: = 1,2, i = 

1,2), with QY being the Hermitian conjugate. The quantity Zij is anti­
symmetric, and commutes with everything else in the algebra. It is the 
central charge. Let us consider massive representations of the superalge­
bra. We can choose a basis in which P{l = (M, 0, 0, 0). The little group is 
80(3). Writing the Z eigenvalue as simply Z12 = Z, we get 

{Q~, QY} = M8ij , 

{Q~, Q~} = Ea~lzIEij, 
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10.1 A look at black holes in four dimensions 231 

which, after taking linear combinations, we can write in terms of two fam­
ilies of fermionic creation and annihilation operators, aa, at and ba, bt: 

{aa, at} = (M + IZI)8ij , 

{ba , bt} = (M -IZI)8ij . 

We can build representations of the algebra by starting with a Lorentz 
representation of some 80(3) spin, s. We can write a ground state Is), 
which is defined as being annihilated by at and bt, and then we can 
proceed make 24 states by acting with the aa and ba. For example, starting 
with spin 1, one can make a massive vector multiplet whose content is 
the sum of the vector and hypermultiplet above. This the generic 'long' 
massive multiplet63 . 

Since we must make unitary representations, the left hand side of the 
algebra above must be positive, and so we find that there is a bound 

M~IZI· (10.18) 

The only way to saturate this bound is if the state is annihilated by the 
bt s, which is to say the state is invariant under half of the supersymmetry 
algebra. Then we only have the aas acting to make our multiplets and 
they are half the size. These are the special 'short' massive multiplets63, 64. 

There is a vector and a hyper of the same content mentioned above for 
the massless case, except that these can have any mass M. 

The key point about extremal Reissner-Nordstrom is that it is part of 
a short hypermultiplet65, 69. This comes about in two stages. First, it has 
no fermion fields, and so the variation of all of the bosonic fields vanish 
when evaluated on this solution. This would be true for any old bosonic 
solution, of course. The remaining property is of course that the fermionic 
variations vanish for some choice of infinitessimal spinor fa generating 
the variation. Of course, it must be that only some of the spinors do this, 
otherwise we would be in a trivial situation. Setting the variation of the 
gravitino to zero, asks that there exists a spinor which solves: 

(10.19) 

where Ft-v = ~(F{w ± i*F{lv) , and recall from equation (2.125) that the 
covariant derivative on the spinor involves the spin connection, wab {l 
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232 10 The geometry of D-branes 

This is asking for the existence of a 'covariantly constant', or 'Killing', 
spinoL It is a useful exercise to show that there are indeed such spinors. 
In fact, the problem reduces to just one differential equation which is 
satisfied everywhere by half of the available spinor components, matching 
the result above that half of the supersymmetries annihilate the solution. 

In terms of the mass and the charge, things match as well. The gravipho­
ton embedded in the gravity multiplet is a U(l) gauge field whose charge is 
in fact the central charge. (There are gauge symmetries associated to the 
central charge operator which are local symmetries in supergravity67.) So 
in fact, Z is the integral of the field strength two-form: Z = (J F)/4Tr = Q, 
in the normalisation we are using. This matches with the property of our 
black hole solution. 

10.1.5 Multiple black holes and multicentre solutions 

It is important to note that there is a simple generalisation of the extremal 
solution to a case representing N distinct black holes of the same type: 

A = - (e- U - 1) dt, 

(10.20) 

where, in this 'multicentre' solution, iii is a three-vector giving the lo­
cation of the centre of the ith black hole with mass mi = qi. The total 
charge sourced by the whole configuration is, by Gauss's Law, simply 
Q = LI~l qi, which, by the BPS bound, is also equal to the total mass. 
This implicitly tells us that there is also a no-force condition applying 
to our black holes, since the total mass-energy is simply the sum of the 
individual mass-energies - there is no binding energy, coming from work 
against interaction forces. 

The quickest way to see that this form arises as a solution is to rewrite 
the equation for the present Killing spinor as a condition on the solution 
written in the form in the first line of equation (10.20). We can do it for 
the slightly more general form where dR2 + R 2dO§ is replaced by dx· dx. 
The resulting equation is simply that the e-u be an harmonic function 
on the transverse space ]R3, for which after normalising it to be unity 
at infinity, we can choose for it to be written in the multicentre form. 
These are in general known as the Majumdar-Papapetrou solutions66, 

and the spherical cases we've been looking at here are a special subclass 
corresponding to Reissner-Nordstrom. 
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10.1 A look at black holes in four dimensions 233 

10.1.6 Near horizon geometry and an infinite throat 

It is particularly interesting to look closely at the horizon of the charged 
black hole in the extremal limit. Let us look at equation (10.15) in the 
neighbourhood of R = 0, the horizon, where we have 

(10.21) 

The spatial part of the solution has degenerated into the product of an 
infinitely long tube or 'throat' of topology]]{ x S2 with fixed radius set by 
the charge. The whole geometry, called the 'Bertotti-Robinson' universe 
is actually AdS 2 x S2, a two dimensional 'anti-de Sitter' spacetime being 
the (t, R) part. Anti-de Sitter spacetime is the most symmetric 'vacuum' 
solution to two dimensional Einstein's equations with a negative cosmo­
logical constant. This pleasingly simple near-horizon geometry is a sign 
of something more general which will occur in all its glory in chapter 18 
and so it is worthwhile understanding the toy example presented here, 
and also worthwhile digressing on solutions of Einstein's equations in the 
presence of cosmological constant, for later use. 

This has special meaning for the supersymmetric discussion above as 
well. At infinity, the solution is of course fiat space, which has all eight of 
the maximum set of available Killing spinors. At arbitrary radius, there 
are four, as mentioned above. It turns out that the Bertotti-Robinson ge­
ometry also has eight Killing spinors, and so is also a maximally supper­
symmetric vacuum of the theory, just like fiat space. In this sense we see 
that the extremal Reissner-Nordstrom solution is akin to a soliton65 , since 
it behaves as an interpolating solution between two vacua (see insert 1.4). 
Much the same thing will be true for some of the extremal brane solutions 
which we shall encounter later68. 

10.1.7 Cosmological constant; de Sitter and anti-de Sitter 

In General Relativity, the Einstein tensor GjJ,V == RjLl/ - ~gjLl/R is arrived 
at by asking that the field equations be written in terms of the unique 
symmetric, rank two covariantly conserved object constructed out of the 
metric and its derivatives which has Minkowski space as a vacuum solu­
tion. If we wish to relax that final condition somewhat, we have a slightly 
more general choice. Of course, the metric itself is a symmetric rank two 
tensor, and since \7 jLgjLl/ = 0, so it is also a candidate. We can add it in 
with an arbitrary constant, to give 

(10.22) 
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234 10 The geometry of D-branes 

for which the generalisation of the Einstein-Hilbert Lagrangian is 

£ = (_g)1/2(R - 2A). 

Recall from General Relativity292 the form of the stress tensor for a perfect 
fluid of scalar density and pressure p and p: 

(10.23) 

We see that the 'cosmological constant' A acts like an intrinsic universal 
pressure. A > 0 is a cosmological repulsion, while A < 0 is an attraction. 

While Minkowski space is no longer a solution, there are highly sym­
metric solutions analogous to it in the presence of non-zero A. Actually, 
the type of solutions we are looking for are called 'maximally symmetric' 
and satisfy the condition 

2 
R )..jUeV = =t= £2 (g )..",g {W - g)..v 9 "'{l) , 

2A 
or Rjw = ± (D _ 2)g{W 

where £2 = _ (D - 11lD - 2). (10.24) 

Already familiar are the signature (+ + + ... ) spaces which satisfy equa­
tion (10.24) with the plus sign, the round spheres SD. In fact, for signature 
( - + + ... ) the spaces of interest here may be written as: 

d8' ~ - (1 -± ~:) dt' + (1 -± ~: r dr' + r'dnj,_" (10.25) 

where dfl'b_2 is the metric on a unit round D - 2 sphere. 
The cosmological constant sets a length scale, £. The larger the cosmo­

logical constant, the smaller the scale. The limit r « £ therefore returns us 
locally to Minkowski space, since if we fall below the length scale set by A, 
we simply do not notice, locally, that we have a cosmological constant, A. 
For r '::::' £ or greater we cannot ignore the effect of the cosmological 
constant. 

10.1.8 de-Sitter spacetime and the sphere 

For instance, notice that for the case of the plus sign, de Sitter space, 
there is an horizon at r = £. Since r cannot exceed £, we might as well 
write r = £sine. A little algebra shows that, if we analytically continue 
time via it = £1/;, we get the metric 

ds2 = £2(de2 + cos2e d1/;2 + sin2 e dOb-2), (10.26) 

which is the metric on a round sphere SD, with radius £, if 1/; and e have 
the appropriate periodicities. 
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10.1. 9 Anti-de Sitter in various coordinate systems 

The case of anti-de Sitter, the minus sign, we can instead take r = f! sinh p, 
and get 

(10.27) 

which is a useful form which we will see much later. Notice that we can 
view this as an analytic continuation of the metric of the sphere SD, given 
in equation (10.26). 

There is a useful form of the metric to present which can be thought of 
as the r » f! limit. In this case, drop the 1 from (1 + r2 / f!2), and work with 
local coordinates. So write f!2dSlb_2' the metric on the SD-2 of radius f! 
embedded in lRD - 1 in Cartesian coordinates 

f}2d,,2 d 2 d 2 d 2 (X1 dx1 + X2 dx2 + ... + XD_2 dxD_2)2 
1'- HD-2 = Xl + X2+"'+ XD-2+ 2 , 

xD-1 

where Xb-1 = f!2- L~11 xT- Then we can work in the local neighbourhood 
of Xi rv 0, XD-1 rv f!, giving 

Choosing these local coordinates is equivalent to the large radius limit of 
the sphere, and the rest of the geometry therefore takes the form: 

r2 dr2 
ds2 = - (-dt2 + dx2 + ... + dx2 ) + f!2_ f!2 '1 'D-2 r2 ' (10.28) 

which is known as the 'Poincare' form of the metric, which arose already 
as part of the throat (10.21) of the Reissner-Nordstrom solution, and 
it shall arise again later. The radial coordinate R used there should be 
compared to r here, and the infinite line lR coordinatised by t should be 
compared to the lRD - 1 coordinatised by (t, Xl, ... ,XD-2). Notice that the 
metric on that subspace (obtained by radial slices of constant r) is actually 
that of D - 1 dimensional Minkowski, a fact which will be important for 
us later. The horizon at R = 0 compares to an horizon at r = 0 here, 
which is an important clue as to where anti-de Sitter will arise in later 
sections and chapters. 

Actually, we can write another metric for AdS as follows: 

2 r 2 r 2 2 ~2 ( 2) ( 2)-1 ds = - -1 + f!2 dt + -1 + f!2 dr + r d:::..D- 2, 

where d'2b_2 is the 'unit' metric on aD - 2 dimensional hyperbolic space 
JH[D-2. This metric can be obtained by analytically continuing dSlb_2' For 

https://doi.org/10.1017/9781009401371.011 Published online by Cambridge University Press

https://doi.org/10.1017/9781009401371.011


236 10 The geometry of D-branes 

this case, the radial slices are lHID - 2 x ]]{ instead of D - 1 Minkowski space 
for the previous form (10.28) or SD-2 x]]{ for the form in equation (10.25). 
Just as before, we can do a hyperbolic change to a new coordinate r = £ 
cosh p, and get 

ds 2 = - sinh2pdt2 + £2dp2 + £2 cosh2pd2 b_2)' 

In summary, we have AdS D in the following metrics: 

<is' ~ - (u ~:) <it' + (k :~) + ~:dLi.D-2' 
where the (D - 2)-dimensional metric dL,~,D_2 is 

{ 
£2dDb_2 for k = +1 

dL,~,D_2 = L~12 dxr for k = 0 
£2d2b_2 for k = -1, 

(10.29) 

(10.30) 

The k = 0 form can be thought of as the local physics in all three cases. 
Anti-de Sitter space in D dimensions has an SO(2, D - 1) isometry, of 

which a subgroup SO(I, 1) x ISO(I, D - 2) is manifest as 

(t, U, Xl, ... ,XD-2) ----+ (At, A -lu, AXl, ... ,AxD-2), 

for the first factor, and the Poincare group (i.e. Lorentz boosts and trans­
lations) acting on the Minkowski part. The group SO(2, D - 1) is the 
conformal group in D -I-dimensional Minkowski space, and the SO(I, 1) 
is the dilation part of it. The reader may recall that we met this group all 
the way back in chapter 3, and its appearance here will be given physical 
significance in terms of a duality in chapter 18. 

10.1.10 Anti-de Sitter as a hyperbolic slice 

It is worth noting that AdS D has a very natural geometrical represen­
tation. Start with the (D + I)-dimensional spacetime with signature 
(-, -, +, +," .), with metric: 

D-l 

ds 2 = - dX6 - dX'b + L dxl· (10.31) 
i=l 

Notice that the isometry group of this homogeneous and isotropic space­
time is SO(2, D -1). Now consider the hyperboloid within this spacetime, 
given by the equation 

D-l 

X6 + x'b - L xl = £2. 
i=l 
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A solution of this equation is 

Xo = J! cosh p cos T / J!, XD = J! cosh p sin T / J!, Xi = J!Di sinh p, 

where the angles Di are chosen such that L~11 Di = 1. We can substitute 
this solution into the metric (10.31) in order to find the metric on this hy­
perboloid, and we find the global AdSD metric given in equation (10.27). 
With 0 ~ T ~ 27T and 0 ~ p, our solution covers the entire hyperboloid 
once, and this is why these are called the 'global' coordinates on AdS. 
The time T is usually taken not as a circle (which gives closed timelike 
curves) but on the real line, -00 ~ T + 00 giving the universal cover of 
the hyperboloid. 

Another solution to the hyperboloid equation is: 

Xo = 21r (1+r2(J!2+ x2- t2)), 

1 ( 2 (2 ~2 2)) XD-l = 2r 1-r J! -x +t , 

which defines coordinates which cover a half of the hyperboloid. The re­
sulting metric after substitution into equation (10.31) is the Poincare form 
exhibited in equation (10.28). These are the 'local' coordinates. 

10.1.11 Revisiting the extremal solution 

How did constant curvature spaces, and negative cosmological constant 
become relevant to the Reissner-Nordstrom solution near the horizon at 
extremality? Well, it is worth examining the Ricci tensor in the extremal 
limit, in the coordinate R = r - Q, in the neighbourhood of the horizon 
r = Q: 

1 
Rrr = - R2; Ree = 1; 

and so we see that, upon comparing to equation (10.21): 

1 
R/Lv = - Q2 g/LV; for IL, 1/ = torr; 

1 
R/Lv = + Q2 g/LV; for IL, 1/ = e or ¢. 

(10.32) 

(10.33) 

Since the Maxwell stress tensor essentially obeys the same relations, giv­
ing something proportional to the metric tensor, it can be seen that the 
flux due to the charge carried by the hole is what is responsible for supply­
ing the effective cosmological constant. It is worth noting that we could 
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have formulated the same sort of features in terms of magnetic fields. 
In that case, we would have traded in the electric two form components 
for magnetic components F = QE2' where E2 = sin BdB /\ d¢ is the vol­
ume form of S2. In this form, the decomposition of the throat solution 
by dualising the electric source into a magnetic source will generalise 
into something called the 'Freund-Rubin' ansatz in higher dimensional 
supergravity19. 

10.2 The geometry of D-branes 

Now let us return to the full ten dimensional equations of motion of the 
type IIA and type IIB supergravity equations (7.41) and (7.42), where 
we have additional fields coming from the R-R sector and the NS-NS 
sector. 

10.2.1 A family of 'p-brane' solutions 

There is an interesting family of ten dimensional solutions, which source 
gravity, the dilaton, and the R-R potentials, and can be written as 
follows94, 95: 

dS2 = Z;;1/2(r) ( - K(r )dt2 + t, dX;) + Zi/2(r) (:~:) + r2dOLp) , 

(10.34) 
where dO§_p is the metric on a unit round S8-p sphere, and 

In the above 

Zp (r) = 1 + O:p (r; ) 7 -p , 

K(r) = 1- (r;)7-P, 

2 <I> 2 (3-p) 
e = 9sZp(r) 2 , 

C(p+1) = 9;;1 [Zp(r)-l - 1] dxo /\ ... /\ dxp. 

7-p _ d (2 )p-2 N 1(7-p)/2 r p - p 7T 98 0: , 

(10.35) 

(10.36) 
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One should not be intimidated by the form of these solutions. They rep­
resent p-dimensional extended objects called 'p-branes', and as such, are 
localised in the 9 - p directions transverse to them. Since we have rota­
tional symmetry in those directions, we can use polar coordinates with a 
radial coordinate r, and the angles on an (8 - p)-sphere. The branes are 
aligned along the (xl, x 2 , ... ,xP ) directions, and move in time, so they 
have a (p + 1) dimensional world volume, with geometry jRP+ I, generalis­
ing the worldline of the black hole solutions we studied earlier. It is useful 
to observe how the solution is split between the transverse and parallel co­
ordinates and then look at, say, the Schwarzschild or Reissner-Nordstrom 
solution (10.4) and see that the analogue of this is happening in that solu­
tion too. There, the world-volume is replaced by a simple world-line, the 
space jR coordinatised by t. The rest of the solution concerns the trans­
verse part of the spacetime. Since there is rotational symmetry it has a 
simple presentation in terms of the radius r and the two angles on the 
round 52. From our analysis of the black hole solutions, it should be clear 
that these solutions have an horizon at radius r = rH, and a singularity 
at r = O. 

10.2.2 The boost form of solution 

Actually there is another way of writing the solution which is instructive 
and useful for later. We could instead write: 

Zp(r) = 1 + o;p (;:) 7-p (r;) 7-p = 1 + sinh2 (-Jp (r;) 7-P, 

where, given the nice form of o;p in equation (10.36), we can write 

( rp )7-P _ o;p -
rH 

and hence 

1 
-+ 
4 

rp . 2 ( 7-P) 2 1 
-- - - = smh {3 7-p 2 p, rH 

1 
cosh2 {3p = - + 

2 

1 
-+ 
4 

(r;-P) 2 

7-p rH 

The tension and charge can be written in terms of these nicely as: 

( ) 
7-p 

rH N 1 2 
Tp = - - (-- + cosh (-Jp ) , 

rp g8 7 - P 

( )7-P 
Qp = N ~: sinh {3p cosh {3p = N. (10.37) 

https://doi.org/10.1017/9781009401371.011 Published online by Cambridge University Press

https://doi.org/10.1017/9781009401371.011


240 10 The geometry of D-branes 

So we see that in fact the solutions above are normalised such that they 
carry N units of the basic D-brane R-R charge /-Lp, where N is an integer. 
Observe that the mass is larger than the charge, in a manner analogous 
to the Reissner-Nordstrom solution. 

Notice that when the parameter {3p goes to zero, the solution simpli­
fies drastically, becoming uncharged. The function Zp becomes unity, the 
dilaton becomes constant, and the solution simply becomes a (10 - p)­
dimensional Schwarzschild black hole, with horizon at r = rH, times the 
space lPi.p . 

10.2.3 The extremal limit and coincident D-branes 

Just like in the case of the charged black hole solution, there are extremal 
limits of these solutions. The extremal cases are BPS solutions of the 
ten dimensional supersymmetry algebra, as we shall see. For now, the 
similarity with the detailed case study of Reissner-Nordstrom black holes 
in earlier sections should be borne in mind, although there are differences 
which will become apparent shortly. The extremal limit is simply O:p = 1, 
where the solutions are: 

ds2 = H;1/2rJflV dxfldxv + H,j/2dxi dx i , 

2<I> 2H (3-p) 
e = gs P 2 , 

C(p+1) = -(Hp -1 - l)g;ldx O 1\ ... 1\ dxP, (10.38) 

where /-L = 0, ... , p, and i = p + 1, ... ,9, and the harmonic function Hp is 

( )
7-P 

Hp = 1 + r; , (10.39) 

where rp is still given in equation (10.36). In the boost form mentioned 
at the end of the last subsection, it is the limit of infinite boost, {3p ----+ 00, 

combined with sending the horizon parameter rH to zero while holding 
fixed the combination r~-P)e2(3p /4 = r;-p. 

It is worth comparing this to the form in equation (10.16), where the 
extremal black hole is written in isotropic form analogous to what we 
have here. Furthermore, it should be clear that there is a multicentre 
generalisation of this solution, where we write for the harmonic function 

~ r;-P 
Hp = 1 + ~ I~_ ~.17-p· 

i=l r r t 

(10.40) 

This represents N different branes located at arbitrary positions given 
by the vectors ri. A clear sign that the solution is a BPS object made 
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of lots of smaller such objects is the fact that the mass computed for 
this solution is just the sum of the individual masses and is equal to the 
total charge. There is no binding energy since the interaction forces are 
zero. 

It is clear that in all cases (except p = 3) the horizon, located at r = 0, 
is a singular place of zero area, since the radius of the S8-p vanishes there. 
In the p = 3 case, however, the inverse quartic power of r appearing in 
the harmonic function means that the square root yields a cancellation 
between the vanishing of the horizon size and the divergence of the metric, 
leaving an horizon of finite size r~/2 = ex' (4'ITgsN) 1/2. Some simple algebra 
shows that the geometry is simply AdS5 x S5, with the sizes of each 
factor set byr~/2. The dilaton is constant, and the R-R field is F(5) = 

dC(4) + *dC(4) , where dC(4) = r3E(5) where E(5) is the volume form on S5. 
Note again the sharp analogy with the case of Reissner-Nordstrom. The 

appearance of this simple smooth near-horizon geometry is interesting, 
and we will explore this much later, in chapter 18. 

More complicated supergravity solutions preserving fewer supersym­
metries (in the extremal case) can be made by combining these simple 
solutions in various ways, by intersecting them with each other, boosting 
them to finite momentum, and by wrapping, and/or warping them on 
compact geometries. This allows for the construction of finite area hori­
zon solutions, corresponding to R-R charged Reissner-Nordstrom black 
holes, and generalisations thereof. We shall in fact do this in chapter 17. 

These solutions are R-R charged with N units of Dp-brane charge, but 
we have already established to all orders in string perturbation theory 
that Dp-branes actually are the basic sources of the R-R fields. It is nat­
ural to suppose that there is a connection between these two families of 
objects: perhaps the solution (10.38) is 'made of D-branes' in the sense 
that it is actually the field due to N Dp-branes, all located at r = O. This 
is precisely how we are to make sense of this solution as a supergravity 
soliton solution. We must do so, since (except for p = 3 as we have seen) 
the solution is actually singular at r = 0, and so one might have sim­
ply discarded them as pathological, since solitons 'ought to be smooth'. 
However, string duality, which we shall encounter in chapter 12, forces 
us to consider them, since smooth NS-NS solitons of various extended 
sizes (which can be made by wrapping or warping NS5-branes (see sec­
tion 12.3 for their entry into our story) in an arbitrary compactification) 
are mapped165 into these R-R solitons under it, generalising what we 
have already seen in ten dimensions. With the understanding that there 
are D-branes 'at their core', which fits with the fact that they are R-R 
charged, they make sense of the whole spectrum of extended solitons in 
string theory. 
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Let us build up the logic of how they can be related to D-branes. Re­
call that the form of the action of the ten dimensional supergravity with 
NS-NS and R-R field strengths Hand G respectively is, roughly: 

(10.41) 

There is a balance between the dilaton dependence of the NS-NS and 
gravitational parts, and so the mass of a soliton solution95 carrying 
NS-NS charge (like the NS5-brane) scales like the action: TNS rv e-2<I> rv 

9;;2. An R-R charged soliton has, on the other hand, a mass which goes 
like the geometric mean of the dilaton dependence of the R-R and gravi­
tational parts: TR rv e-<I> rv 9;;1. This is just the behaviour we saw for the 
tension of the Dp-brane, computed in string perturbation theory, treating 
them as boundary conditions. 

We have so far treated Dp-branes as point-like (in their transverse di­
mensions) in an otherwise fiat spacetime. We were able to study an ar­
bitrary number of them by placing the appropriate Chan-Paton factors 
into amplitudes. However, the solutions (10.38) have non-trivial spacetime 
curvature, and is only asymptotically fiat. How are these two descriptions 
related? 

Well, for every Dp-brane which is added to a situation, another bound­
ary is added to the problem, and so a typical string diagram has a factor 
9sN since every boundary brings in a factor 9s and there is the trace over 
the N Chan-Paton factors. So open string perturbation theory is good 
as long as 9sN < 1. Notice that this is the regime where the supergrav­
ity solution (10.38) fails to be valid, since the typical squared curvature 
invariant behaves as 

On the other hand, for 9sN > 1, the supergravity solution has its curva­
ture weakened, and can be considered as a workable solution. This regime 
is where the open string perturbation theory, on the other hand, breaks 
down. 

So we have a fruitful complementarity between the two descriptions. In 
particular, since we only derived the supergravity equations of motion in 
string perturbation theory, i.e. g8 < 1, for most computations, we can work 
with the supergravity solution with the interpretation that N is very large, 
such that the curvatures are small. Alternatively, if one restricts oneself to 
studying only the BPS sector, then one can work with arbitrary N, and 
extrapolate results - computed with the D-brane description for small 
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gs - to the large g8 regime (since there are often non-renormalisation 
theorems which apply), where they can be related to properties of the 
non-trivial curved solutions. This is the basis of the successful statistical 
enumeration of the entropy of black holes, for cases where the solutions 
(10.38) are used to construct R-R charged black holes. We shall do this 
in chapter 17. 

In summary, for a large enough number of coincident D-branes or for 
strong enough string coupling, one cannot consider them as points in 
fiat space: they deform the spacetime according to the geometry given 
in equation (10.38). Given that D-branes are also described very well 
at low energy by gauge theories, this gives plenty of scope for finding a 
complementarity between descriptions of non-trivially curved geometry 
and of gauge theory. This is the basis of what might be called 'gauge 
theory / geometry' correspondences. In some cases, when certain conditions 
are satisfied, there is a complete decoupling of the supergravity description 
from that of the gauge theory, signalling a complete duality between the 
two. This is the basis of the AdS/eFT correspondence, which we shall 
come to in chapter 18. 

10.3 Probing p-brane geometry with Dp-branes 

In the previous section, we argued that the spacetime geometry given 
by equations (10.38) represents the spacetime fields produced by N Dp­
branes. We noted that as a reliable solution to supergravity, the product 
gsN ought be be large enough that the curvatures are small. This corre­
sponds to either having N small and gs large, or vice versa. Since we are 
good at studying situations with g8 small, we can safely try to see if it 
makes sense to make N large. 

10.3.1 Thought experiment: building p with Dp 

One way to imagine that this spacetime solution came about at weak 
coupling was that we built it by bringing in N Dp-branes, one by one, 
from infinity. If this is to be a sensible process, we must study whether 
it is really possible to do this. Imagine that we have been building the 
geometry for a while, bringing up one brane at a time from r = 00 to 
r = O. Let us now imagine bringing the next brane up, in the background 
fields created by all the other N branes. Since the branes share p common 
directions where there is no structure to the background fields, we can 
ignore those directions and see that the problem reduces to the motion of 
a test particle in the transverse 9 - p spatial directions. What is the mass 
of this particle, and what is the effective potential in which it moves? 
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We can answer this sort of question using the toolbox which com­
bines the fact that at low energy we know the world-volume action of the 
D-brane, describing how it interacts with the background fields with the 
fact that the probe brane is a heavy object which can examine many 
distance scales in the theory106. 

10.3.2 Effective Lagrangian from the world-volume action 

We can find the answers to all of the above questions by deriving an effec­
tive Lagrangian for the problem which results from the world-volume ac­
tion of the brane. We can exploit the fact that we have spacetime Lorentz 
transformations and world-volume reparametrisations at our disposal to 
choose the work in the 'static gauge'. In this gauge, we align the world­
volume coordinates, ~a, of the brane with the spacetime coordinates such 
that: 

~o = x O = t; 
~i = xi; i = 1, ... ,p, 

~m = ~m(t); m = p + 1, ... ,9. (10.42) 

The Dirac-Born-Infeld part of the action (5.21) requires the insertion of 
the induced metric derived from the metric in question. In static gauge, 
it is easy to see that the induced metric becomes: 

Goo + Lmn Gmnvmvn 0 0 0 

0 Gll 0 

[Glab = (10.43) 

0 0 0 Gpp 

where Vm == dxm /d~o = i;m. 
In our particular case of a simple diagonal metric, the determinant 

turns out as 

(p+l) ( 9) (p+l) 
det[-Gabl = H;-2- 1- Hp L v;;' = H;-2- (1- H pv2 ). 

m=p+1 
(10.44) 

The Wess-Zumino term representing the electric coupling of the brane is, 
in this gauge: 

J C - J dP+ 1 ~ caoal· .. ap [C 1 ox{!O OX{!l ... ox{!p 
/Lp (pH) - /Lp (pH) {!O{!l .. .{!p o~ao o~al o~ap 

= /Lp Vp J dt [Hp-1 - 1] g;;l, (10.45) 
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where Vp = I dPx, the spatial world-volume of the brane. Now, we are 
going to work in the approximation that we bring the branes slowly up the 
the main stack of branes so we keep the velocity small enough such that 
only terms up to quadratic order in v are kept in our computation. We can 
therefore the expand the square root of our determinant, and putting it all 
together (not forgetting the crucial insertion of the background functional 
dependence of the dilaton from (10.38)) we get that the action is: 

S = /Lp Vp J dt ( _g;;l Hp-1 + 2~s v2 + g;;l Hp-1 _ g;;l) 

= J dt£ = J dt (tm p v2 - m p ), (10.46) 

which is just a Lagrangian for a free particle moving in a constant po­
tential, (which we can set to zero) where mp = Tp Vp is the mass of the 
particle. 

This result has a number of interesting interpretations. The first is sim­
ply that we have successfully demonstrated that our procedure of 'build­
ing' our geometry (10.38) by successively bringing branes up from infinity 
to it, one at a time, makes sense. There is no non-trivial potential in the 
effective Lagrangian for this process, so there is no force required to do 
this; correspondingly there is no binding energy needed to make this sys­
tem. 

That there is no force is simply a restatement of the fact that these 
branes are BPS states, all of the same species. This manifests itself here as 
the fact that the R -R charge is equal to the tension (with a factor of 1/ g8), 
saturating the BPS bound. It is this fact which ensured the cancellation 
between the r-dependent parts in (10.46) which would have otherwise re­
sulted in a non-trivial potential U(r). (Note that the cancellation that we 
saw only happens at order v 2 - the slow probe limit. Beyond that order, 
the BPS condition is violated, since it really only applies to statics.) 

10.3.3 A metric on moduli space 

All of this is pertinent to the world-volume field theory as well. Recall 
that there is a U(N) (p + I)-dimensional gauge theory on a family of N 
Dp-branes. Recall furthermore that there is a sector of the theory which 
consists of a family of (9 - p) scalars, <I>m, in the adjoint. Geometrically, 
these are the collective coordinates for motions of the branes transverse to 
their world-volumes. Classical background values for the fields, (defining 
vacua about which we would then do perturbation theory) are equivalent 
to data about how the branes are distributed in this transverse space. 
Well, we have just confirmed that there is a 'moduli space' of inequivalent 
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vacua of the theory corresponding to the fact that one can give a vacuum 
expectation value to a component of a <I>m, representing a brane moving 
away from the clump of N branes. That there is no potential translates 
into the fact that we can place the brane anywhere in this transverse 
clump, and it will stay there. 

It is also worth noting that this metric on the moduli space is fiat; 
treating the fields <I>m as coordinates on the space jR9-p , we see (from the 
fact that the velocity squared term in (10.46) appears as v 2 = omnvmvn) 
that the metric seen by the probe is simply 

(10.47) 

This flatness is a consequence of the high amount of supersymmetry (16 
supercharges). For the case of D3-branes (whether or not they are in the 
AdS5 x S5 limit, to be described later), this result translates into the fact 
there that there is no running of the gauge coupling g?M of the supercon­
formal gauge theory on the brane, (since in this example, and in the case 
of eight supercharges, supersymmetry relates the coupling to the kinetic 
term). This is read off from the prefactor gY~f = T3(27Ta/)2 = (27Tgs )-1 in 
the metric. The supersymmetry ensures that any corrections which could 
have been generated are zero. We shall later see less trivial versions, where 
we have nontrivial metrics in the case of eight supercharges and even four 
supercharges. Before we do that, we have to go back to studying D-branes 
as boundary conditions, in order to see how to put together multiple 
D-branes, and branes of different types. 

10.4 T-duality and supergravity solutions 

In principle, nothing stops us from studying the action of T-duality on 
the Dp-branes, now starting with their representation as a supergrav­
ity solution, and correspondingly using the background field T-duality 
rules given in equation (5.4) for the NS-NS sector, and equations (8.2) 
for the R-R sector. One should expect to get the supergravity solution 
of a D(p + l)-brane or D(p - l)-brane, depending upon whether one 
T-dualised in a direction containing the Dp-brane's world-volume or not. 
This expectation is indeed borne out to some extent, but we must be 
careful. Let us discuss the subtlety by example. 

10.4.1 D(p + 1) from Dp 

Start with the case of T-dualising in a direction transverse to a Dp-brane, 
lying in directions Xl, ... , X p . What this really means, recall, is that we 
must place the branes on a circle of radius R, and find an equivalent 
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representation for the system on a dual circle of radius R' = ex' / R. We 
can represent this as an infinite array of identical branes on the line with 
coordinate X p+1, a distance 2 'IT R apart, identifying Xp+l ;v Xp+1 + 2 'IT R. 
We can easily write a supergravity solution for this, since the branes are 
BPS, and so the multibrane harmonic function in equation (10.40) can be 
employed here. Let us write the radius in the directions transverse to the 
Dp-brane in terms of Xp+l and a radius in the remaining directions: 

in terms of which the appropriate harmonic function including all of the 
images is: 

+00 r 7-p 
Harray = 1 + '"""' -----, ____ ----'--P __ -----,-----,-,-_-,----,-,--

P n~oo If2 + (XP+l - 27T17.R) 2 I (7-p)/2 . 
(10.48) 

If the circle's radius is very small, then the sum in the above can be 
replaced by an integral, to a good approximation, since the difference 
between each term in the sum is small. Defining a new variable u via 
fu = 2n'ITR - Xp+1, we get: 

Harray 1 P U r7- p 1 /00 d 
P ;v + 2'ITR f6-p -00 (1 + u2)(7-p)/2' (10.49) 

where we have used f8u = 2'ITR8n to get the measure right. The integral 
is: 

/

00 du for [~(6 - p)] 
-00 (1 + u 2)(7-p)/2 - r [~(7 - p)] , 

and so looking at the definition of the constant r;-P given m equa­
tion (10.36), we see that 

/Cl 7-(p+l) 
Harray ;v H _ ex rp+l 1 

p p+l - 1 + R f 7-(p+1) , (10.50) 

which is the correct form of the harmonic function for a D(p + l)-brane. 
We should check normalisations here. If we had started with a single 

brane on the array, i.e. with N = 1, then we get the new number of branes 
as f.r = /Cl / R. So if R = /Cl, then we have the correct normalisation for 
a single brane on_the dual side also. Better perhaps is to have N = R/ /Cl, 
giving a single N = 1 as the T -dual. This has the interpretation in the 
original theory as R/ /Cl for each 2 'IT R of length, or 2'IT/Cl branes per 
unit length. 
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We can work on the full Dp-brane metric with the T-duality rules (5.4), 
treating X p+ 1 as the isometry direction. Following the rules through, we 
see that the transformation will invert the metric function Gp+1,p+1, which 
will indeed convert the metric for a p-brane to that of a (p + 1)-brane. So 
the new dilaton is, according to the rules in equation (5.4), 

which after replacing Hp by H;rray , which becomes Hp+1 as we have shown 
above, gives the dilaton for the D(p + 1 )-brane supergravity solution. 
Similarly, equations (8.2) give the correct R-R potential. 

This works very well because it is easy to soften the power of r which 
appears in the denominator of the harmonic function, as needed for a 
larger brane. 

10.4.2 D(p - 1) from Dp 

Harder to get is the increase of the power of r in the dependence of 
the harmonic function, which we would need for a D(p - l)-brane, if we 
T-dualised in a world-volume direction, say XP. Clearly the powers of the 
harmonic function itself will in the metric, dilaton and R-R potential, 
using the rules (5.4) and (8.2). The problem is that we would get 

(10.51) 

This is not really what we want. We can, however, interpret this as the 
result of 'smearing' the brane in the direction XP, i.e. the result of inte­
grating a uniform density of branes (with the correct 1/r(8-p ) behaviour) 
over XP. This will indeed yield the behaviour given in (10.51). We shall en­
counter such smeared solutions, or 'brane distributions' in later chapters. 
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