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Existence of Solutions to Poisson’s Equation

Mary Hanley

Abstract. Let Ω be a domain in R
n (n ≥ 2). We find a necessary and sufficient topological condition

on Ω such that, for any measure µ on R
n, there is a function u with specified boundary conditions that

satisfies the Poisson equation ∆u = µ on Ω in the sense of distributions.

1 Introduction

Let Ω be an unbounded domain in Euclidean space R
n (n ≥ 2), and let f : Ω → R be

a locally bounded measurable function. The purpose of this paper is to characterize
the domains Ω for which there exists a solution to the Poisson equation ∆u = f (in
the sense of distributions) with boundary values 0. (As usual, the boundary condition
is relaxed at the polar set of irregular boundary points.) We will also address the

corresponding problem where f is replaced by a measure. We impose the minor
restriction that Ω be Greenian, that is, Ω possesses a Green function. Thus, when
n = 2, the set Ω must have non-polar complement.

Theorem 1 Let Ω be an unbounded, Greenian domain in R
n. The following state-

ments are equivalent:

(i) For each locally bounded measurable function f : Ω → R there exists a continu-

ous function u : Ω → R satisfying:

(a) ∆u = f (in the distributional sense) on Ω;

(b) u has limit 0 at regular points of ∂Ω;

(c) u is bounded near each irregular point of ∂Ω.

(ii) For each compact set K in R
n there is a compact set L which contains the bounded

components of Ω \ K whose closure intersects K.

We note that the topological condition (ii) has arisen previously in connection
with the Dirichlet problem on unbounded domains [2]. It is also reminiscent of the
“long islands” condition first introduced by Gauthier [3] in connection with Carle-
man approximation by holomorphic functions.

Before stating the next result, we make some definitions. We denote the open ball
in R

n with centre x and radius r by B(x, r). The fine topology is the coarsest topology
on R

n that makes every superharmonic function on R
n continuous in the extended

sense. A set E ⊂ R
n is said to be thin at a point y if there is a superharmonic function

u on a neighbourhood of y such that lim infx→y,x∈E u(x) > u(y). We will say that
a function f : Ω → [−∞,+∞] has fine limit l at a point y ∈ ∂Ω if there is a set
E ⊂ Ω that is thin at y and f (x) → l as x → y along Ω \ E. Finally, if a proposition
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concerning a point y in a set A is true for all y ∈ A apart from a polar set, then it is
said to hold for quasi-every point y ∈ A.

Theorem 2 Let Ω be an unbounded Greenian domain in R
n. The following statements

are equivalent:

(i) For each measure µ on Ω there is a subharmonic function u on Ω satisfying:

(a) ∆u = µ on Ω (in the distributional sense),

(b) lim supx→y u(x) ≤ fine limx→y u(x) = 0 at quasi-every point y ∈ ∂Ω,

(c) lim supx→y u(x) < +∞ at each point y ∈ ∂Ω,

(d) lim infx→y u(x) > −∞ whenever y ∈ ∂Ω and
∫

B(y,ε)∩Ω
U (·, z) dµ(z) is

bounded above for some ε > 0.

(ii) For each compact set K in R
n there is a compact set L which contains the bounded

components of Ω \ K whose closure intersects K.

In the proofs of these theorems we will make use of the function U on R
n × R

n

defined by

U (x, y) =






− log ‖x − y‖ (x 6= y; n = 2),

‖x − y‖2−n (x 6= y; n ≥ 3)

+∞ (x = y).

2 Proof of Theorem 1

Suppose that Ω is an unbounded Greenian domain in R
n satisfying the topological

condition (ii) and that f : Ω → R is a locally bounded measurable function. Without
loss of generality, we can assume that f ≥ 0. Further, we can assume that f is defined
on all of R

n and valued 0 outside Ω.

We will apply the method used to prove Theorem 4.3.10 of [1] to get a subhar-
monic function s on R

n which has Riesz measure fλn, where λn denotes Lebesgue
measure on R

n. We define a sequence of functions ( fk) by

f1(x) =

{
f on B(0, 2),

0 elsewhere.

and, for k ≥ 2,

fk(x) =

{
f on B(0, k + 1) \ B(0, k),

0 elsewhere.

The function uk(x) = −
∫

U (x, y) fk(y) dλn(y) (x, y ∈ R
n) is subharmonic on R

n

and harmonic on B(0, k) when k ≥ 2. The harmonic function uk on B(0, k) has

an expansion in terms of homogeneous harmonic polynomials. By suitably truncat-
ing this expansion we see that there is a harmonic polynomial hk on R

n such that
|uk − hk| < 2−k on B(0, k − 1) when k ≥ 2. We define

s = u1 +

∞∑

m=2

(um − hm).
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Since, for k ≥ 2, the series
∑∞

m=k(um − hm) converges uniformly on B(0, k) to a
harmonic function, the function s is subharmonic on R

n.

Let ψ be a real-valued infinitely differentiable function on R
n with compact sup-

port in Ω. We can choose k such that the support of ψ is contained in B(0, k). We
write the function s in the form

s(x) = −

∫

B(0,k)

U (x, y) f (y) dλn(y) −

k−1∑

m=2

hm(x) +

∞∑

k

(um − hm)(x).

Now the function
∫

B(0,k)
U ( · , y) f (y) dλn(y) is a potential on R

n when n ≥ 3, and

a logarithmic potential on R
2, with associated Riesz measure f |B(0,k)λn. Let an =

max{1, n − 2}σ(∂B), where σ(∂B) denotes surface area measure of the unit sphere

in R
n. Since

∑k−1
m=2 hm and

∑∞
m=k(um −hm) are harmonic on B(0, k), and the support

of ψ is contained in B(0, k), it follows that

∫

Ω

s∆ψ dλn = an

∫

B(0,k)

ψ f dλn = an

∫

Ω

ψ f dλn,

that is, ∆s = an f in the sense of distributions.

Since fk is a bounded Lebesgue integrable function with compact support in R
n,

it follows from [1, Theorem 4.5.3] that uk is a continuous function on R
n. Hence∑∞

k=2(uk − hk), which converges locally uniformly on R
n, is also continuous on R

n,
and so s is continuous on R

n ⊃ ∂Ω. Since the topological condition (ii) is precisely
that required to solve the Dirichlet problem on unbounded domains for arbitrary
continuous boundary data (see [2]), there is a harmonic function hs on Ω such that

hs(x) → s(y) as x → y when y is a regular point of ∂Ω and lim supx→y |hs(x)| < +∞
when y is an irregular point of ∂Ω. If we define u = 1/an(s − hs), then u satisfies the
conditions in (i).

Conversely, suppose that the topological condition (ii) fails. Then there is a com-
pact set K in R

n and a sequence (Ωk) of bounded components of Ω \ K such that
Ωk ∩ K 6= ∅ and Ωk \ B(0, k) 6= ∅. We choose xk ∈ Ωk, for each k, such that
dist(xk,K) < 1/k. Then, by replacing (Ωk) by a suitable subsequence if necessary,

we can assume that (xk) converges to some point x∗ of ∂Ω ∩ K. Let Bk be an open
ball such that Bk ⊂ Ωk \ B(0, k), and xk 6∈ Bk. For each k, there exists εk > 0 such
that GΩk

(xk, y) > εk when y ∈ Bk, where GΩk
(x, y) is the Green function for Ωk. Let

ck = λn(Bk) and define

(2.1) f (y) =






k

GΩk
(xk, y)ck

(y ∈ Bk; k ≥ 1),

0 elsewhere.

For each k, we define

vk(x) =

∫

Ωk

GΩk
(x, y) f (y) dλn(y) (x ∈ Ωk).
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Then vk is a potential on Ωk since f is bounded (0 ≤ f < k(ckεk)−1) and has compact
support in Ωk for each k. Also, ∆vk = −an f on Ωk in the sense of distributions.

Now suppose, for the sake of contradiction, that u is a continuous function on Ω

that satisfies the conditions in (i) for the function f . Since ∆u = f ≥ 0 on Ω in the
sense of distributions, it follows that u is also subharmonic on Ω (see [4, Theorem
2.5.8]). Let

(2.2) m = sup
K∩Ω

u+.

Since u is bounded near each point of ∂Ω∩K and is a continuous function on K ∩Ω,

we see that m is finite. Similarly, u is bounded above on Ωk since ∂Ωk ⊂ ∂Ω∪(K∩Ω).
By our supposition limx→y u(x) = 0 for every point y in ∂Ωk∩∂Ω except the polar set
of irregular points and, by (2.2), limx→y u(x) ≤ m for every y in ∂Ωk ∩ K, so we can
apply the maximum principle (the general form provided in [1, Theorem 5.2.6(i)])

to the subharmonic function u − m to see that u ≤ m on Ωk for each k. By the Riesz
decomposition theorem, since vk is the potential on Ωk of the Riesz measure f = ∆u,
it follows that u = −a−1

n vk + Hk on Ωk for each k, where Hk is the least harmonic
majorant of u on Ωk. Clearly Hk ≤ m on Ωk. Hence,

u(xk) = −
1

an

∫

Ωk

GΩk
(xk, y) f (y) dλn(y) + Hk(xk),

= −
k

anck

∫

Bk

dλn(y) + Hk(xk)

≤ −
k

an
+ m → −∞ as k → ∞,

(2.3)

contradicting the supposition that u satisfies condition (c) of (i).

3 Proof of Theorem 2

Suppose that Ω satisfies the topological condition in (ii). Let µ be a positive measure
on R

n. We can assume that µ(R
n \ Ω) = 0 and, without loss of generality, that

B(0, 2) ⊂ Ω. For each j and k in N, we define

Ω j,k = {x ∈ Ω ∩ (B(0, k + 1) \ B(0, k)) : dist(x,R
n \ Ω) ≥ 1/ j}.

Then as j → ∞, µ(Ω j,k) ↑ µ
(
Ω∩ (B(0, k + 1) \ B(0, k))

)
. For each k, we can choose

jk such that µ
(

(Ω \Ω jk,k)∩ (B(0, k + 1)\B(0, k))
)
< 2−k. Let Ω1 =

(⋃
k≥1 Ω jk,k

)
∪

B(0, 1). Then Ω1 is a relatively closed subset of Ω since B(0, 2) ⊂ Ω and jk ≥ 1.
Further,

(3.1)

∫

Ω\Ω1

dµ(y) ≤

∞∑

k=1

2−k
= 1.

https://doi.org/10.4153/CMB-2008-024-8 Published online by Cambridge University Press

https://doi.org/10.4153/CMB-2008-024-8


Existence of Solutions to Poisson’s Equation 233

Now we define µ1 = µ|
Ω1∩B(0,2) and µk = µ|

Ω1∩(B(0,k+1)\B(0,k)) when k ≥ 2. Let

uk(x) = −

∫
U (x, y) dµk(y)

and let hk (k ≥ 2) be a harmonic function on R
n such that |uk − hk| < 2−k on

B(0, k − 1). Then, as in the proof of the previous theorem, the function

s = u1 +

∞∑

k=2

(uk − hk)

is subharmonic on R
n, harmonic (and so, in particular, continuous) on R

n \ Ω1 ⊃
∂Ω, and has associated Riesz measure µ|Ω1

. By hypothesis, Ω satisfies the topological
condition required to solve the Dirichlet problem for continuous boundary data (see
[2]), so there is a harmonic function hs on Ω such that hs(x) → s(y) as x → y for

each regular point y ∈ ∂Ω and lim supx→y |hs(x)| < +∞ for each point y ∈ ∂Ω.
Clearly ∆(s − hs) = anµ|Ω1

,

(3.2) fine lim
x→y

(s − hs)(x) = lim
x→y

(s − hs)(x) = 0

at each regular point y of ∂Ω, and lim supx→y |s − hs|(x) < +∞ at each y ∈ ∂Ω.
Thus, since the set of irregular points of ∂Ω is polar, the conditions in (i) are fulfilled
for the measure µ|Ω1

by the function a−1
n (s − hs).

Let B = B(0, 1). By (3.1), the function defined by

v(x) =






∫
U (x, y) dµ|Ω\Ω1

(y) (x ∈ R
n, n ≥ 3),∫

G
R2\B(x, y)dµ|Ω\Ω1

(y) (x ∈ R
2 \ B, n = 2),

0 (x ∈ B, n = 2).

is a Newtonian potential when n ≥ 3 and a potential on R
2 \ B when n = 2. We let

Ω0 = R
n when n ≥ 3 and Ω0 = R

2 \ B when n = 2, and define

R̂v(x) =

{
R̂

Ω0\Ω

v (x) (x ∈ Ω0),

0 (x ∈ B, n = 2),

where R̂
Ω0\Ω

v denotes the regularized reduced function of v with respect to superhar-

monic functions on Ω0 and the set Ω0 \ Ω. Then ∆(R̂v − v) = anµ|Ω\Ω1
on Ω (for

n ≥ 3), since R̂v is harmonic on Ω. In the case where n = 2, both v and R̂v restricted
to Ω

◦
1 \B (where Ω

◦
1 denotes the interior of Ω1) are non-negative harmonic functions

with limit 0 at ∂B, so they are subharmonic functions on Ω
◦
1 whose associated Riesz

measures have support in ∂B. Let w1 (respectively w2) be the potential on Ω of the
measure on ∂B associated with v (respectively R̂v) and let v0 = w2 − w1. Then v0 is
harmonic on Ω \ ∂B, and ∆v0 = ∆(v − R̂v) on Ω

◦
1 , so

∆(R̂v − v + v0) = anµ|Ω\Ω1
on Ω (n = 2).
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When n ≥ 2, both of the functions v and R̂v are superharmonic on R
n \ B and

hence finely continuous there. Also, by [1, Theorem 5.7.3], they are equal quasi-

everywhere on R
n \ Ω, which contains ∂Ω. Hence

(3.3) lim sup
x→y,x∈Ω

(R̂v − v)(x) ≤ 0 = fine lim
x→y

(R̂v − v)(x)

at quasi-every point y ∈ ∂Ω ⊂ R
n \Ω, since the set of points in ∂Ω where v = +∞ is

also a polar set. The function v0 is the difference of two potentials on Ω of measures

with compact support, and so

(3.4) fine lim
x→y

v0(x) = lim
x→y

v0(x) = 0

at every regular point y ∈ ∂Ω, that is, at quasi-every point y ∈ ∂Ω. We define

u =






1

an

(R̂v − v + s − hs) (n ≥ 3),

1

an

(R̂v − v + v0 + s − hs) (n = 2).

Then u is subharmonic on Ω, with ∆u = µ|Ω\Ω1
+ µ|Ω1

= µ on Ω. Thus u satisfies
conditions (i)(a) and (b), in view of (3.2), (3.3) and (3.4).

Since lim supx→y |s − hs|(x) < +∞ at each y ∈ ∂Ω, and since v0 (being
the difference of two potentials with compact support) is also bounded near each

y ∈ ∂Ω, it remains to show that R̂v − v satisfies conditions (c) and (d) of (i). Con-
dition (c) is immediate, since R̂v − v ≤ 0 on Ω0. Finally, if y ∈ ∂Ω and there exists
ε > 0 such that

∫
B(y,ε)∩Ω

U ( · , z) dµ(z) is bounded above, we let

v1 =

{∫
B(y,ε)

U ( · , z) dµ|Ω\Ω1
(z) (n ≥ 3),

∫
B(y,ε)

G
R2\B( · , z) dµ|Ω\Ω1

(z) (n = 2);

v2 =

{∫
Rn\B(y,ε)

U ( · , z) dµ|Ω\Ω1
(z) (n ≥ 3),

∫
(R2\B)\B(y,ε)

G
R2\B( · , z) dµ|Ω\Ω1

(z) (n = 2).

Then v = v1 +v2 on R
n\B. (We may assume that ε < 1.) The function v2 is harmonic

on B(y, ε), so it has a finite limit at y. When n = 2, for each z ∈ R
2 \ B, let hz denote

the greatest harmonic minorant of U (·, z) on R
2 \ B, so that

G
R2\B(x, z) = U (x, z) − hz(x).

The function hx(z) is harmonic in (x, z) and hence bounded on B(y, ε) × B(y, ε).
Thus

v1(x) =

∫

B(y,ε)

U (x, z) dµ|Ω\Ω1
(z) −

∫

B(y,ε)

hx(z) dµ|Ω\Ω1
(z)

≤

∫

B(y,ε)

U (x, z) dµ|Ω\Ω1
(z) + µ(B(y, ε)) sup

z∈B(y,ε)

|hx(z)|,
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and so v1 is clearly bounded above on B(y, ε). Hence lim supx→y v(x) < +∞ for all

n ≥ 2 whenever
∫

B(y,ε)∩Ω
U ( · , z) dµ(z) is bounded above. Since R̂v ≥ 0 on R

n, it

follows that lim infx→y u(x) > −∞ at any point y where
∫

B(y,ε)∩Ω
U ( · , z) dµ(z) is

bounded above.
Conversely, suppose that Ω is an unbounded Greenian domain in R

n for which
the topological condition in (ii) fails for some compact subset K of R

n. We define a

sequence (Ωk) of bounded components of Ω \K and a sequence of points (xk) which
converges to x∗ in ∂Ω ∩ K as in the proof of the converse of the previous theorem.
We next define f as in (2.1) and let µ = fλn. Then f = 0 on R

n \
⋃

k Bk. Clearly
there exists ε > 0 such that f = 0 on B(x∗, ε) ∩ Ω and thus

(3.5)

∫

B(x∗,ε)∩Ω

U ( · , z) f dλn(z) = 0.

Now suppose that u is a subharmonic function satisfying the four conditions in
(i) of the statement of the theorem, with µ = fλn. Then, by condition (d) and (3.5),

(3.6) lim inf
x→x∗

u(x) > −∞.

It follows from the upper-semicontinuity of u and condition (c) of (i) that m =

supK∩Ω
u+ is finite (see the justification of (2.2)). So lim supx→y(u − m)(x) ≤ 0 at

every point y of ∂Ωk ∩ K and, by condition (b) of (i), lim supx→y u(x) = 0 at quasi-
every point y ∈ ∂Ωk ∩ ∂Ω. Thus lim supx→y(u − m)(x) ≤ 0 at quasi-every point
y in ∂Ωk, for each k. Further, by condition (c), the function u is bounded above

on Ωk for each k. Thus, by the maximum principle applied to the bounded set Ωk,
the subharmonic function u and its least harmonic majorant are bounded above by
m on Ωk, for each k. As in Section 2 (see (2.3)), this leads to the conclusion that
u(xk) → −∞ as xk → x∗, which contradicts (3.6).
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