A SERIES FOR $\zeta(s)$

by U. BALAKRISHNAN

(Received 10th June 1986)

We obtain a series representation for $\zeta(s)$ valid in $\operatorname{Re} s>-k(<0)$. This representation is obtained by a sequence of regrouping of the series $1-2^{-s}+3^{-s}-4^{-s}+\cdots\left(=\left(1-2^{1-s}\right) \zeta(s)\right.$, $\operatorname{Re} s>0$). We can obtain asymptotic relations like

$$
\begin{equation*}
\frac{3^{3^{2} 5^{5^{2}} 7^{7^{2}} \ldots(2 N+1)^{(2 N+1)^{2}}}}{2^{2^{2}} 4^{4^{2}} 6^{6^{2}} \ldots(2 N)^{(2 N)^{2}}} \sim \exp \left\{3 / 2-7 \zeta(3) /\left(4 \pi^{2}\right)\right\}(2 N)^{2 N^{2}+3 N+1} e^{3 N / 2} \tag{1}
\end{equation*}
$$

as an application of our series representation for $\zeta(s)$. We first have the following:

Theorem. Let k be a positive integer, $\alpha>0$ and $s=\sigma+i t$. Then the Hurwitz zeta function

$$
\zeta(s, \alpha)=\alpha^{-s}+(1+\alpha)^{-s}+(2+\alpha)^{-s}+\ldots, \sigma>1
$$

satisfies the relation

$$
\begin{align*}
& 2^{k-s}\left\{\zeta(s, \alpha / 2)-\zeta\left(s, \frac{1+\alpha}{2}\right)\right\}=\alpha^{-s}-\left\{(1+\alpha)^{-s}-\binom{k}{1} \alpha^{-s}\right\} \\
& \quad+\left\{(2+\alpha)^{-s}-\binom{k}{1}(1+\alpha)^{-s}+\binom{k}{2} \alpha^{-s}\right\}-\cdots+ \\
& \quad+(-1)^{k-1}\left\{(k-1+\alpha)^{-s}-\binom{k}{1}(k-2+\alpha)^{-s}+\binom{k}{2}(k-3+\alpha)^{-s}-\cdots+(-1)^{k-1}\binom{k}{k-1} \alpha^{-s}\right\} \\
& \quad+\sum_{n=0}^{\infty}(-1)^{n+k}\left\{(n+k+\alpha)^{-s}-\binom{k}{1}(n+k-1+\alpha)^{-3}+\binom{k}{2}(n+k-2+\alpha)^{-s}-\cdots+\right. \\
& \left.\quad+(-1)^{k}(n+\alpha)^{-s}\right\} \tag{2}
\end{align*}
$$

valid in $\sigma>-k$. This gives, in particular, the analytic continuation of $\zeta(s, \alpha / 2)-\zeta(s,(1+\alpha) / 2)$. Also (2) implies, for $\sigma>-k$,

$$
\begin{equation*}
2^{-s}\left\{\zeta(s, \alpha / 2)-\zeta\left(s, \frac{1+\alpha}{2}\right)\right\}=\alpha^{-s}-(1+\alpha)^{-s}+(2+\alpha)^{-s}-\cdots+(2 N+\alpha)^{-s}-f_{k}(2 N+\alpha)+o(1) \tag{3}
\end{equation*}
$$

as $N \rightarrow \infty$ where

$$
\begin{equation*}
f_{k}(x)=\langle k, 0\rangle(x+1)^{-s}-\langle k, 1\rangle(x+2)^{-s}+\langle k, 2\rangle(x+3)^{-s}-\cdots+(-1)^{k-1}\langle k, k-1\rangle(x+k)^{-s} \tag{4}
\end{equation*}
$$

with

$$
\begin{equation*}
\langle k, r\rangle=2^{-k}\left\{2^{k}-\binom{k}{0}-\binom{k}{1}-\binom{k}{2}-\cdots-\binom{k}{r}\right\} . \tag{5}
\end{equation*}
$$

Observe that all terms in (3), save $f_{k}(2 N+\alpha)$, are independent of k. The case $\alpha=1$ of the above theorem, in view of $\zeta\left(s, \frac{1}{2}\right)=\left(2^{s}-1\right) \zeta(s)$, is the following

Corollary 1. For $\sigma>-k$, we have the representation

$$
\begin{align*}
& 2^{k}\left(1-2^{l-s}\right) \zeta(s)=1-\left\{2^{-s}-\binom{k}{1}\right\}+\left\{3^{-s}-\binom{k}{1} 2^{-s}+\binom{k}{2}\right\}-\cdots+ \\
& \quad+(-1)^{k-1}\left\{k^{-s}-\binom{k}{1}(k-1)^{-s}+\binom{k}{2}(k-2)^{-s}-\cdots+(-1)^{k-1}\binom{k}{k-1}\right\} \\
& \quad+\sum_{n=1}^{\infty}(-1)^{n+k-1}\left\{(n+k)^{-s}-\binom{k}{1}(n+k-1)^{-s}+\binom{k}{2}(n+k-2)^{-s}-\cdots+(-1)^{k} n^{-s}\right\} . \tag{6}
\end{align*}
$$

This gives the analytic continuation of $(s-1) \zeta(s)$. Further, for $\sigma>-k$,

$$
\begin{equation*}
\left(1-2^{1-s}\right) \zeta(s)=1-2^{-s}+3^{-s}-\cdots+(2 N+1)^{-s}-f_{k}(2 N+1)+o(1) \tag{7}
\end{equation*}
$$

as $N \rightarrow \infty$, where $f_{k}(x)$ is given by (4).
We have the following special cases of (6) and (7) as examples.

$$
\begin{align*}
& 2\left(1-2^{1-s}\right) \zeta(s)=1-\left(2^{-s}-1\right)+\left(3^{-s}-2^{-s}\right)-\left(4^{-s}-3^{-s}\right)+\ldots, \text { for } \sigma>-1, \tag{6.1}\\
& 16\left(1-2^{1-s}\right) \zeta(s)= 1-\left\{2^{-s}-4\right\}+\left\{3^{-s}-4.2^{-s}+6\right\}-\left\{4^{-s}-4.3^{-s}+6.2^{-s}-4\right\} \\
&+\left\{5^{-s}-4.4^{-s}+6.3^{-s}-4.2^{-s}+1\right\} \\
&-\left\{6^{-s}-4.5^{-s}+6.4^{-s}-4.3^{-s}+2^{-s}\right\}+\ldots, \text { for } \sigma>-4 \tag{6.2}
\end{align*}
$$

$$
\begin{gather*}
\left(1-2^{1-s}\right) \zeta(s)=\lim _{N \rightarrow \infty}\left(1-2^{-s}+3^{-s}-\cdots+(2 N+1)^{-s}-\frac{1}{2}(2 N+2)^{-s}\right), \text { for } \sigma>-1, \tag{7.1}\\
\left(1-2^{1-s}\right) \zeta(s)=\lim _{N \rightarrow \infty}\left(1-2^{-s}+3^{-s}-\cdots+(2 N+1)^{-s}-\frac{1}{16}\left\{15(2 N+2)^{-s}\right.\right. \\
\left.\left.-11(2 N+3)^{-s}+5(2 N+4)^{-s}-(2 N+5)^{-s}\right\}\right), \text { for } \sigma>-4, \tag{7.2}
\end{gather*}
$$

and so on.
Denote by h^{\prime} the differential coefficient of a function h with respect to s. From the proof of the theorem it will be clear that term by term differentiation of the right side of (2) is justified in $\sigma>-k$. The differentiation of (2) yields a relation which would be the same as obtained by differentiating (3) with the $o(1)$ retained as such. By taking exponentials on both sides we obtain an asymptotic relation. Let us state this result only for the case $k=4$ as the expression for general k is a bit complicated.

Corollary 2. For $\sigma>-4$ and $\alpha>0$ we have, as $N \rightarrow \infty$,

$$
\begin{align*}
& \frac{(1+\alpha)^{(1+\alpha)^{-3}}(3+\alpha)^{(3+\alpha)^{-3}} \cdots(2 N-1+\alpha)^{(2 N-1+\alpha)^{-3}}}{\alpha^{-3}}(2+\alpha)^{(2+\alpha)^{-3}} \cdots(2 N+\alpha)^{(2 N+\alpha)^{-3}} \\
& \sim C(s, \alpha)\left(\frac{(2 N+2+\alpha)^{11(2 N+2+\alpha)^{-3}}(2 N+4+\alpha)^{(2 N+4+\alpha)^{-3}}}{(2 N+1+\alpha)^{15(2 N+1+\alpha)^{-3}}(2 N+3+\alpha)^{5(2 N+3+\alpha)^{-3}}}\right)^{1 / 16}, \tag{8}
\end{align*}
$$

with

$$
\begin{equation*}
C(s, \alpha)=\exp \left\{2^{-s}\left(\left\{\zeta^{\prime}(s, \alpha / 2)-\zeta^{\prime}\left(s, \frac{1+\alpha}{2}\right)\right\}-\log 2\left\{\zeta(s, \alpha / 2)-\zeta\left(s, \frac{1+\alpha}{2}\right)\right\}\right)\right\} \tag{9}
\end{equation*}
$$

We obtain from (9) that

$$
\begin{equation*}
C(s, 1)=\exp \left\{\left(1-2^{1-s}\right) \zeta^{\prime}(s)+2^{1-s} \log 2 \zeta(s)\right\} . \tag{10}
\end{equation*}
$$

Also it follows from the functional equation

$$
\xi(s)=\pi^{-s / 2} \Gamma(s / 2) \zeta(s)=\xi(1-s)
$$

that, for $n=1,2,3, \ldots$,

$$
\begin{equation*}
\zeta(2 n+1)=-4 \zeta(2 n) \zeta^{\prime}(-2 n) / B_{2 n} \tag{10.5}
\end{equation*}
$$

where $B_{2 n}$ are Bernoulli numbers. Thus we get from (10)

$$
\begin{equation*}
C(-2 n, 1)=\exp \left(\left(2^{2 n+1}-1\right) \zeta(2 n+1) B_{2 n} /\{4 \zeta(2 n)\}\right) \tag{11}
\end{equation*}
$$

in view of the fact that $\zeta(-2 n)=0$. Now (1) follows from (8) with the value of $C(-2 n, 1)$ from (11).

We observe that the term

$$
(n+k)^{-s}-\binom{k}{1}(n+k-1)^{-s}+\binom{k}{2}(n+k-2)^{-s}-\cdots+(-1)^{k} n^{-s}
$$

is an integer for $s=0,-1,-2, \ldots$, where n is any integer. Since the infinite series in (6) is convergent for $s=0,-1,-2, \ldots, 1-k$, we arrive at the identity

$$
\begin{equation*}
x^{r}-\binom{k}{1}(x-1)^{r}+\binom{k}{2}(x-2)^{r}-\cdots+(-1)^{k}\binom{k}{k}(x-k)^{r} \equiv 0 \tag{12}
\end{equation*}
$$

in x, for $r=0,1,2, \ldots, k-1$. Hence we deduce from the Theorem the following:

Corollary 3. Let k be a positive integer. Then, for $r=0,1,2, \ldots, k-1$ we have, with $\langle k, r\rangle$ defined in (5), that

$$
\begin{aligned}
2^{r}\left\{\zeta(-\mathrm{r}, \alpha / 2)-\zeta\left(-r, \frac{1+\alpha}{2}\right)\right\}= & \langle k, 0\rangle \alpha^{r}-\langle k, 1\rangle(1+\alpha)^{r}+\langle k, 2\rangle(2+\alpha)^{r}-\cdots \\
& +(-1)^{k-1}\langle k, k-1\rangle(k-1+\alpha)^{r}
\end{aligned}
$$

For $\alpha=1$ this becomes

$$
\begin{equation*}
\left(1-2^{r+1}\right) \zeta(-r)=\langle k, 0\rangle-\langle k, 1\rangle 2^{r}+\langle k, 2\rangle 3^{r}-\cdots+(-1)^{k-1}\langle k, k-1\rangle k^{r} \tag{12.5}
\end{equation*}
$$

Further in view of $n^{r}+\binom{r}{1} n^{r-1}+\cdots+1=(n+1)^{r}$ and (12) we obtain for any positive integer r,

$$
\begin{aligned}
& \zeta(0)+\binom{r}{1}\left(2^{2}-1\right) \zeta(-1)+\binom{r}{2}\left(2^{3}-1\right) \zeta(-2)+\cdots+ \\
&+\binom{r}{r-1}\left(2^{r-1}\right) \zeta(1-r)+2\left(2^{r+1}-1\right) \zeta(-r)+1=0
\end{aligned}
$$

We come to a proof of the Theorem. We make use of the following:
Lemma. Define, for real r,

$$
v_{r}(s, k)=r^{-s}-\binom{k}{1}(r+1)^{-s}+\binom{k}{2}(r+2)^{-s}-\cdots+(-1)^{k}(r+k)^{-s}
$$

Then

$$
\begin{equation*}
v_{r}(s, k)=s(s+1) \ldots(s+k-1) \int_{0}^{1} d u_{1} \int_{0}^{1} d u_{2} \ldots \int_{0}^{1} d u_{k}\left(r+u_{1}+u_{2}+\cdots+u_{k}\right)^{-s-k} \tag{13}
\end{equation*}
$$

Proof. This is easily proved by induction on k. In fact

$$
\begin{aligned}
& s(s+1) \ldots(s+k) \int_{0}^{1} d u_{1} \int_{0}^{1} d u_{2} \ldots \int_{0}^{1} d u_{k+1}\left(r+u_{1}+u_{2}+\cdots+u_{k+1}\right)^{s-k-1} \\
&= s(s+1) \ldots(s+k-1) \int_{0}^{1} d u_{1} \int_{0}^{1} d u_{2} \ldots \int_{0}^{1} d u_{k}\left(\left(r+u_{1}+u_{2}+\cdots+u_{k}\right)^{-s-k}\right. \\
&\left.\quad-\left(r+1+u_{1}+u_{2}+\cdots+u_{k}\right)^{-s-k}\right) \\
&= v_{r}(s, k)-v_{r+1}(s, k)
\end{aligned}
$$

Now

$$
\begin{equation*}
v_{r}(s, k)-v_{r+1}(s, k)=v_{r}(s, k+1) \tag{14}
\end{equation*}
$$

which easily follows from the definition of $v_{r}(s, k)$, and the proof of the lemma is complete.

It is immediate from the above lemma that

$$
\begin{equation*}
\left|v_{r}(s, k)\right|=0\left(r^{-\sigma-k}\right) \tag{15}
\end{equation*}
$$

with the 0 -constant not depending on r.
For $\sigma>1$,

$$
\begin{aligned}
& 2^{-s}\left\{\zeta(s, \alpha / 2)-\zeta\left(s, \frac{1+\alpha}{2}\right)\right\}=\alpha^{-s}-(1+\alpha)^{-s}+(2+\alpha)^{-s}-\cdots=\frac{1}{2}\left(\alpha^{-s}-\left\{(1+\alpha)^{-s}-\alpha^{-s}\right\}\right. \\
& \left.\quad+\left\{(2+\alpha)^{-s}-(1+\alpha)^{-s}\right\}-\ldots\right)
\end{aligned}
$$

and a sequence of k such operations bring us to the relation (2). Now we have only to prove that the right side of (2) is convergent for $\sigma>-k$. The infinite series part, $\sum_{n=0}^{\infty}$ there, can be written as $\sum_{n=0}^{\infty}(-1)^{n} v_{n+\alpha}(s, k)$, following the notation in the above lemma. We see from (15) that, for $\sigma>-k, v_{r}(s, k) \rightarrow 0$ as $r \rightarrow \infty$. Hence we can make the rearrangement

$$
\sum_{n=0}^{\infty}(-1)^{n} v_{n+a}(s, k)=\sum_{n=0}^{\infty}\left(v_{2 n+a}(s, k)-v_{2 n+1+a}(s, k)\right)
$$

valid in $\sigma>-k$. Now the right side series is convergent in $\sigma>-k$, thanks to (14) and (15) and the proof of the theorem is complete.

Remarks 1. Ramanujan's proof for

$$
\pi \sum_{n=0}^{\infty}(-1)^{n}\left\{(2 n)^{1 / 2}+(2 n+2)^{1 / 2}\right\}^{-1}=\sum_{n=0}^{\infty}(2 n+1)^{-3 / 2}
$$

reproduced, in essentials, in Corollary 4 to entry 4 in [1] runs as follows:

$$
\begin{align*}
\pi \sum_{n=0}^{\infty}(-1)^{n}\left\{(2 n)^{1 / 2}+(2 n+2)^{1 / 2}\right\}^{-1} & =\frac{\pi}{2^{1 / 2}} \sum_{n=0}^{\infty}(-1)^{n}\left\{(n+1)^{1 / 2}-n^{1 / 2}\right\} \\
& =2^{1 / 2} \pi \sum_{n=1}^{\infty}(-1)^{n+1} n^{1 / 2} \tag{*}\\
& =2^{1 / 2} \pi\left(1-2^{3 / 2}\right) \zeta\left(-\frac{1}{2}\right) \\
& =\left(1-2^{-3 / 2}\right) \zeta(3 / 2) \\
& =\sum_{n=0}^{\infty}(2 n+1)^{-3 / 2}
\end{align*}
$$

Thus it turns out that the above proof of Ramanujan is more than sufficient by a step in the sense that if we remove just the step (*) the proof becomes perfectly alright in view of (6.1).
2. Proof of equivalent forms of Corollary 2, (7) and (3) can be given by an application of Euler-Maclaurin summation formula.
3. Relation (12.5) gives an explicit formula for $\zeta(-r)$ and hence for the Bernoulli numbers. Also the method of the paper could be used to obtain the analytic continuation of the Dirichlet series $\sum_{n=1}^{\infty}(-1)^{n}\left(f(n)^{-s}\right.$ where $f(n)$ is a polynomial in n.

REFERENCE

1. Bruce C. Berndt and Ronald J. Ivans, Chapter 7 of Ramanujan's second Notebook, Proc. Indian Acad. Sci. Math. Sci. 92 (1983), 67-96.

School of Mathematics
Tata Institute of Fundamental Research
Homi Bhabha Road
Bombay 400005
India

