Ergodic theory and dynamical systems

EDITORS

Michel Herman Anatole Katok Klaus Schmidt Peter Walters

EDITORIAL BOARD

- C. C. Conley (University of Wisconsin)
- A. Connes (IHES)
- R. L. Dobrushin (University of Moscow)
- D. B. A. Epstein (University of Warwick)
- J. Feldman (University of California)
- J. Franks (Northwestern University)
- H. Furstenberg (Hebrew University)
- K. Jacobs (University of Erlangen)
- H. Kesten (Cornell University)
- U. Krengel (University of Gottingen)
- W. Krieger (University of Heidelberg)
- G. A. Margulis (University of Moscow)

- J. N. Mather (Princeton University)
- M. Misiurewicz (Warsaw University)
- S. E. Newhouse (University of Nth Carolina)
- D. S. Ornstein (Stanford University)
- J. Palis (IMPA)
- W. Parry (University of Warwick)
- D. Ruelle (IHES)
- Ja. G. Sinai (University of Moscow)
- S. Smale (University of California)
- J. P. Thouvenot (University of Paris 6)
- W. A. Veech (Rice University)
- B. Weiss (Hebrew University)
- R. Zimmer (University of Chicago)

VOLUME 2 1982

CAMBRIDGE UNIVERSITY PRESS CAMBRIDGE LONDON NEW YORK NEW ROCHELLE

MELBOURNE SYDNEY

PUBLISHED BY THE PRESS SYNDICATE OF THE UNIVERSITY OF CAMBRIDGE

The Pitt Building, Trumpington Street, Cambridge CB2 1RP 32 East 57th Street, New York, N.Y. 10022, USA

© Cambridge University Press 1982

Printed in Great Britain by J. W. Arrowsmith Ltd, Bristol

Contents

PART 1 MARCH 1982

Iterated extensions R. Ellis and S. Glasner	1
Subshifts on surfaces D. Fried	15
Equilibrium states for piecewise monotonic transformations F. Hofbauer and G. Keller	23
An ε -free Rohlin lemma E. Lehrer and B. Weiss	45
Dynamical properties of quasihyperbolic toral automorphisms D.A. Lind	49
Geodesics on modular surfaces and continued fractions R. Moeckel	69
A mixing Markov chain with exponentially decaying return times is finitarily	
Bernoulli D. J. Rudolph	85
Repellers for real analytic maps D. Ruelle	99
Dimension, entropy and Lyapunov exponents LS. Young	109

PART 2 JUNE 1982

The bifurcation of periodic orbits of one-dimensional maps L. Block and D. Hart	125
The bifurcation of homoclinic orbits of maps of the interval L. Block and D. Hart	131
On uniformly distributed orbits of certain horocycle flows S. G. Dani	139
Isomorphisms between diffeomorphism groups R. P. Filipkiewicz	159
Isentropic fitting of Anosov automorphisms D. Fried	173
Some remarks on Birkhoff and Mather twist map theorems A. Katok	185
On the subsystems of topological Markov chains W. Krieger	195
A proof of the estimation from below in Pesin's entropy formula F. Ledrappier and JM. Strelcyn	203
Periodic points of maps of degree one of a circle M. Misiurewicz	221
Perturbations and transitivity for certain maps of an interval M. Misiurewicz	229
Symétrie et forme normale des centres et foyers dégénérés R. Moussu	241

PARTS 3 AND 4 DECEMBER 1982

Dedication to V. M. Alexeyev

253

V. M. Alexeyev bibliography	255
Existence of a bounded function of the maximal spectral type V.M. Alexeyev	259
Accuracy of Kepler approximation for fly-by orbits near an attracting centre V. M. Alexeyev and Yu. S. Osipov	263
Singularities of Legendre varieties, of evolvents and of fronts at an obstacle V. I. Arnol'd	301
On the ergodicity of geodesic flows W. Ballmann and M. Brin	311
Invariant measures for some one-dimensional attractors M. V. Jacobson	317
Entropy and closed geodesics A. Katok	339
Perturbations of random matrix products in a reducible case Y. Kifer and E. Slud	367
Finitely-additive invariant measures on Euclidean spaces G.A. Margulis	383
Glancing billards J. N. Mather	397
Attracting Cantor set of positive measure for a C^{∞} map of an interval <i>M. Misiurewicz</i>	405
Gibbs measures for partially hyperbolic attractors Ya. B. Pesin and Ya. G. Sinai	417
Examples of conservative diffeomorphisms of the two-dimensional torus with coexistence of elliptic and stochastic behaviour <i>F. Przytycki</i>	439
Factors of horocycle flows M. Ratner	465
Ergodic behaviour of Sullivan's geometric measure on a geometrically finite hyperbolic manifold D. J. Rudolph	491
Entropy estimates for geodesic flows P. Sarnak	513
On the ergodic properties of piecewise linear perturbations of the twist map <i>M. Wojtkowski</i>	525
Index to Volume 2	543

THE PREPARATION OF TYPESCRIPTS

The attention of authors is particularly directed to the following requests:

1 Typescript

Papers should be typed, double-spaced, on one side of white paper (of which A4, 210 by 297 mm, is a suitable size). The pages must be numbered. Generous margins should be left at the side, top and bottom of each page. The copy sent must be clear.

A cover page should give the title, the author's name and institution, with the address to which mail is to be sent.

The title, while brief, must be informative (e.g. A new proof of the ergodic theorem, whereas Some applications of a theorem of Birkhoff would be useless).

The first paragraph or two should form a summary of the main theme of the paper, providing an abstract intelligible to mathematicians.

For a typescript to be accepted for publication, it must accord with the standard requirements of publishers, and be presented in a form in which the author's intentions regarding symbols etc. are clear to a printer (who is not a mathematician).

The following notes are intended to help the author in preparing the typescript. New authors may well enlist the help of senior colleagues, both as to the substance of their work and the details of setting it out correctly and attractively.

2 Notation

Notation should be chosen carefully so that mathematical operations are expressed with all possible neatness, to lighten the task of the compositor and reduce the chance of error.

For instance n_k (n sub k) is common usage, but avoid if possible using c sub n sub k. Fractions are generally best expressed by a solidus. Complicated exponentials like

$$\exp\left\{z^2\sin\theta/(1+y^2)\right\}$$

should be shown in this and no other way.

In the typescript, italics, small capitals and capitals are specified by single, double and triple underlining. Bold-faced type is shown by wavy underlining; wavy will be printed **wavy**.

It helps if displayed equations or statements which will be quoted later are numbered in order on the right of their line. They can then be referred to by, for example, 'from (7)'.

The author must enable the printer (if necessary by pencilled notes in the margin) to distinguish between similar symbols such as o, O, o, O, 0; x, $X, \times; \phi, \Phi, \emptyset; l, 1; \varepsilon, \epsilon; \kappa, k.$

Greek letters can be denoted by Gk in the margin.

If an author wishes to mark the end of the proof of a theorem, the sign \Box may be used.

Footnotes should be avoided.

3 Diagrams

It is extremely helpful if diagrams are drawn in Indian ink on white card, faintly blue or greenlined graph paper, or tracing cloth or paper. Symbols, legends and captions should be given on a transparent overlay. Each text figure must be numbered as Figure 1, Figure 2,... and its intended position clearly indicated in the typescript:

Figure 1 here

The author's name in pencil must be on all separate sheets of diagrams.

A figure is expensive to reproduce and should be included only when the subject matter demands it, or when it greatly clarifies the exposition.

The publisher recognizes that some authors do not have the facilities for producing drawings of a sufficiently high standard to be reproduced directly and is therefore willing to have such diagrams re-drawn, provided that they are clear.

4 Tables

Tables should be numbered (above the table) and set out on separate sheets. Indicate the position of each in the text as for figures:

Table 3 here

5 References

References should be collected at the end of the paper numbered in alphabetical order of the authors' names. A reference to a book should give the title, in italics, and then in roman type the publisher's name and the place and year of publication:

[4] N. Dunford & J. T. Schwartz Linear Operators Part I. Wiley: New York, 1958.

A reference to a paper should give in italics the title of the periodical, the number of the volume and year, and the beginning and end pages of the paper. Titles should be abbreviated as in *Mathematical Reviews*:

[6] J. E. Littlewood. The 'pits effect' for function: in the unit circle. J. Analyse Math. 23 (1970) 236–268.

Ergodic theory and dynamical systems

VOLUME 2 PARTS 3 AND 4 DECEMBER 1982

CONTENTS

Dedication to V. M. Alexeyev	253
V. M. Alexeyev bibliography	255
Alexeyev, V. M. Existence of a bounded function of the maximal spectral type	259
Alexeyev, V. M. and Osipov, Yu. S. Accuracy of Kepler approxima- tion for fly-by orbits near an attracting centre	263
Arnol'd, V. I. Singularities of Legendre varieties, of evolvents and of fronts at an obstacle	301
Ballmann, W. and Brin, M. On the ergodicity of geodesic flows	311
Jacobson, M. V. Invariant measures for some one-dimensional attractors	317
Katok, A. Entropy and closed geodesics	339
Kifer, Y. and Slud, E. Perturbations of random matrix products in a reducible case	367
Margulis, G. A. Finitely-additive invariant measures on Euclidean spaces	383
Mather, J. N. Glancing billiards	397
Misiurewicz, M. Attracting Cantor set of positive measure for a C^{∞} map of an interval	405
Pesin, Ya. B. and Sinai, Ya. G. Gibbs measure for partially hyper- bolic attractors	417
Przytycki, F. Examples of conservative diffeomorphisms of the two- dimensional torus with coexistence of elliptic and stochastic	
behaviour	439
Ratner, M. Factors of horocycle flows	465
Rudolph, D. J. Ergodic behaviour of Sullivan's geometric measure on a geometrically finite hyperbolic manifold	491
Samak, P. Entropy estimates for geodesic flows	513
Wojtkowski, M. On the ergodic properties of piecewise linear per- turbations of the twist map	525
Index	543

© Cambridge University Press 1983

CAMBRIDGE UNIVERSITY PRESS

The Pitt Building, Trumpington Street, Cambridge CB2 1RP

32 East 57th Street, New York, NY 10022

Printed in Great Britain by J. W. Arrowsmith Ltd, Bristol