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Calculus in Locally Convex Spaces

1.1 Introduction

It is well known that ‘multidimensional calculus’, aka ‘Fréchet calculus’, car-
ries over to the realm of Banach spaces and Banach manifolds (see e.g. Lang,
1999). As we have seen in the Preface, Banach spaces are often not sufficient
for our purposes. To generalise derivatives we will, as a minimum, need vector
spaces with an amenable topology (which need not be induced by a norm).

1.1 Definition Consider a vector space E. A topology T on E making ad-
dition + : E × E → E and scalar multiplication · : R × E → E continuous is
called a vector topology (where R carries the usual norm topology). We then
say that (E,T ) (or E for short) is a topological vector space (or TVS for short).

1.2 Example (a) Every normed space and, in particular, every finite-dimen-
sional vector space is a topological vector space.

(b) For a more interesting example, fix 0 < p < 1. Two measurable functions

γ,η : [0,1] → R are equivalent γ ∼ η if and only if
∫ 1

0
|γ(s) − η(s) |ds =

0. Denote by Lp[0,1] the vector space of all equivalence classes [γ] of

functions such that
∫ 1

0
|γ(s) |pds < ∞. Topologise Lp[0,1] via the metric

topology induced by

d([γ], [η]) �
∫ 1

0
|γ(s) − η(s) |pds.

In a metric space, we can test continuity of the vector space operations
using sequences. For this, pick λn → λ ∈ R and [γn] → [γ], [ηn] → [η]
(with respect to d) and use the triangle inequality to obtain:
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2 Calculus in Locally Convex Spaces

d(λn[γn] + [ηn], λ[γ] + [η])

≤ |λn − λ |pd([γn], [0]) + |λ |pd([γn], [γ]) + d([ηn], [η]).

This shows that the vector space operations are continuous, that is, Lp[0,1]
is a TVS.

In topological vector spaces, differentiable curves can be defined as
follows:

1.3 Definition Let E be a topological vector space. A continuous mapping
γ : I → E from a non-degenerate interval1 I ⊆ R is called a C0-curve. A
C0-curve is called a C1-curve if the limit

γ′(s) � lim
t→0

1
t

(γ(s + t) − γ(s))

exists for all s ∈ I◦ (interior of I) and extends to a continuous map d
dt γ �

γ′ : I → E, s �→ γ′(s). Recursively for k ∈ N, we call γ a Ck -curve if γ

is a Ck−1-curve and dk−1

dtk−1 γ is a C1-curve. Then dk

dtk
γ �

(
dk−1

dtk−1 γ
) ′

. If γ is a

Ck -curve for every k ∈ N0, we also say that γ is smooth or of
class C∞.

Unfortunately, calculus on topological vector spaces is, in general, ill be-
haved. The next exercise shows that derivatives may fail to give us meaningful
information.

Exercises

1.1.1 Given 0 < p < 1 we let Lp[0,1] be the topological vector space from
Example 1.2(b). Recall that the topology on Lp[0,1] is induced by the

metric d([γ], [η]) �
∫ 1

0
|γ(s) − η(s) |pds. For a set A ⊆ [0,1] write

1A for the characteristic function and define

β : [0,1] → Lp[0,1], β(t) := [1[0, t[].

Show that β is an injective C1-curve with β′(t) = 0, for all t ∈ [0,1].

Obviously we would like to avoid this defect, and so we have to strengthen
the assumptions on our vector spaces.

1 That is, I has more than one point. In the following, we will always assume this when talking
about intervals.
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1.2 Curves in Locally Convex Spaces

Calculus in topological vector spaces exhibits pathologies that can be avoided
by strengthening the requirements on the underlying space. This leads to
locally convex spaces, whose topology is induced by so-called seminorms. See
also Appendix A for more information on locally convex spaces.

1.4 Definition Let E be a vector space. A map p : E → [0,∞[ is called a
seminorm if it satisfies the following:

(a) p(λx) = |λ |p(x),∀λ ∈ R, x ∈ E,
(b) p(x + y) ≤ p(x) + p(y).

Note that, in contrast with the definition of a norm, we did not require that
p(x) = 0 if and only if x = 0. The next definition uses the notion of an initial
topology, which we recall for the reader’s convenience in Appendix B.

1.5 Definition A topological vector space (E,T ) is called a locally convex
space if there is a family {pi : E → [0,∞[| i ∈ I} of continuous seminorms for
some index set I such that

(a) T is the initial topology with respect to the canonical projections
{qi : E → E/p−1

i (0)}i∈I onto the normed spaces E/p−1
i (0).

(b) If x ∈ E with pi (x) = 0 for all i ∈ I, then x = 0. Thus the seminorms
separate the points, that is, T has the Hausdorff property.2

We then say that the topology T is generated by the family of seminorms
{pi }i∈I and call this family a generating family of seminorms. Usually we sup-
press T and write (E, {pi }i∈I ) or simply E instead of (E,T ).

Alternative to (a) We will see in Appendix A that equivalent to (a), we can de-
fine T to be the unique vector topology determined by the basis of 0-neighbour-
hoods given by (finite) intersections of the balls Bi,ε (0) = {x ∈ E | pi (x) < ε},
where pi runs through a generating family of seminorms. These balls are all
convex, thus justifying the name locally convex space.

A locally convex space (E, {pi }i∈N) with a countable system of seminorms
is metrisable (i.e. its topology is induced by a metric; see Exercise 1.2.1) and
if E is complete, it is called Fréchet space.

1.6 Example (a) Every normed space (E, ‖·‖) is a locally convex space,
where the family of seminorms consists only of the norm ‖·‖.

2 Some authors do not require separation of points, whence our locally convex spaces are
Hausdorff locally convex spaces in their terminology.
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4 Calculus in Locally Convex Spaces

(b) Consider the space C∞([0,1],R) of all smooth functions from the interval
[0,1] to R (with pointwise addition and scalar multiplication). This space
is not naturally a normed space.3 We define a family of seminorms on it
via

‖ f ‖n � sup
0≤k≤n

�
�
�
�
�

dk

dtk
f

�
�
�
�
�∞
= sup

0≤k≤n
sup

t ∈[0,1]

�
�
�
�
�

dk

dtk
f (t)

�
�
�
�
�

,n ∈ N0.

The topology generated by the seminorms is called the compact-open C∞-
topology and turns C∞([0,1],R) into a locally convex space, which is even
a Fréchet space (Exercise 1.2.2).

Locally convex spaces have many good properties, for example, they admit
enough continuous linear functions to separate the points, that is, the following
holds.

1.7 Theorem (Hahn–Banach (Meise and Vogt, 1997, Proposition 22.12)) For
a locally convex space E the continuous linear functionals separate the points,
that is, for each pair x, y ∈ E there exists a continuous linear λ : E → R such
that λ(x) � λ(y).

1.8 Definition Let E be a locally convex space, then we denote by E ′ =
L(E,R) the continuous linear maps from E to R. The space E ′ is the so-called
dual space of E. There are several ways to turn E ′ into a locally convex space
(Rudin, 1991, p. 63f) but, in general, we will not need a topology beyond the
special case if E is a Banach space and E ′ carries the operator norm topology.

With the help of the Hahn–Banach theorem, we can avoid the pathologies
observed for topological vector spaces. To this end, we need the notion of a
weak integral.

1.9 Definition Let γ : I → E be a C0-curve in a locally convex space E and
a,b ∈ I. If there exists z ∈ E such that

λ(z) =
∫ b

a

λ(γ(t))dt, ∀λ ∈ E ′,

then z ∈ E is called the weak integral of γ from a to b and denoted∫ b

a
γ(t)dt � z.

Note that weak integrals (if they exist) are uniquely determined due to the
Hahn–Banach theorem.
3 For any normed topology, the differential operator D : C∞ ([0, 1], R) → C∞ ([0, 1], R),

D( f ) = f ′ must be discontinuous (which is certainly undesirable). To see this, recall that a
continuous linear map on a normed space has bounded spectrum, but D has arbitrarily large
eigenvalues (consider fn (t ) � exp(nt ), n ∈ N).
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1.10 Proposition (First part of the fundamental theorem of calculus) Let
γ : I → E be a C1-curve in a locally convex space E and a,b ∈ I, then

γ(b) − γ(a) =
∫ b

a

γ′(t)dt.

Proof Let λ ∈ E ′. It is easy to see that λ ◦ γ : I → R is a C1-curve with
(λ ◦ γ)′ = λ ◦ (γ′). The standard fundamental theorem of calculus yields

λ(γ(b) − γ(a)) = λ(γ(b)) − λ(γ(a)) =
∫ b

a

(λ ◦ γ)′(s)ds =
∫ b

a

λ(γ′(s))ds.

Hence z = γ(b) − γ(a) satisfies the defining property of the weak integral. �

Note that Proposition 1.10 implies that Lp[0,1] cannot be a locally convex
space for 0 < p < 1; see Rudin (1991, 1.47) for an elementary proof of this
fact.

1.11 Remark Also the second part of the fundamental theorem of calculus is
true in our setting. Thus if γ : I → E is a C0-curve, a ∈ I and the weak integral

η(t) �
∫ t

a

γ(s)ds

exists for all t ∈ I. Then η : I → E is a C1-curve in E, and η ′ = γ.
The proof, however, needs more techniques based on convex sets which we

do not wish to go into (see Glöckner and Neeb, forthcoming).

The reader may wonder now, when do weak integrals of curves exist? One
can prove that weak integrals of continuous curves always exist in the comple-
tion of a locally convex space. The key point is that the integrals can be defined
using Riemann sums, but these do not necessarily converge in the space itself
(Kriegl and Michor, 1997, Lemma 2.5). Thus weak integrals exist for suitably
complete spaces. To avoid getting bogged down with the discussion of com-
pleteness properties, we define the following:

1.12 Definition A locally convex space E is Mackey complete if for each
smooth curve γ : [0,1] → E there exists a smooth curve η : [0,1] → E with
η ′ = γ.

Due to the fundamental theorem of calculus this implies that η(s) − η(0) =∫ s

0
γ(t)dt. Thus the weak integral of smooth curves exists in Mackey complete

spaces.

1.13 Remark Mackey completeness is a very weak completeness condi-
tion, in particular, sequential completeness (i.e. Cauchy sequences converge
in the space) implies Mackey completeness. This is evident from the
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6 Calculus in Locally Convex Spaces

alternative characterisation of Mackey completeness using sequences; see Def-
inition A.1. Note, however, that it is not entirely trivial to find examples of
Mackey complete but not sequentially complete spaces. We mention here that
the space K (E,F) of compact operators between two (infinite-dimensional)
Banach spaces E,F with the strong operator topology is not sequentially com-
plete but Mackey complete (see Voigt, 1992).

However, in metrisable locally convex spaces (e.g. in normed spaces) Mackey
completeness is equivalent to completeness; see Jarchow (1981, 10.1.4). We
refer to Kriegl and Michor (1997, I.2) for more information on Mackey com-
pleteness. In particular, Kriegl and Michor (1997, Theorem 2.14) show that
integrals exist for C1-curves in Mackey complete spaces.

So far we have defined differentiable curves with values in locally convex
spaces. The next step is to consider differentiable mappings between locally
convex spaces. Here a different notion of calculus is needed. It turns out that
(even on Fréchet spaces) there are many generalisations of Fréchet calculus
(see Keller, 1974) without a uniquely preferable choice. In the next section, we
present a simple and versatile notion called Bastiani calculus. Another popular
approach to calculus in locally convex spaces, the so-called convenient calcu-
lus, is discussed in Appendix A.7.

Exercises

1.2.1 Let (E, {pn }n∈N) be a locally convex space whose topology is gener-
ated by a countable set of seminorms. Prove that

d(x, y) :=
∑

n∈N
2−n pn (x−y)

pn (x−y)+1

is a metric on E and the metric topology coincides with the locally
convex topology.

1.2.2 Consider C∞([0,1],R) with the compact open C∞-topology (see
Example 1.6).

(a) Show that a sequence ( fk )k ∈N converges to f in this topology
if and only if for all 
 ∈ N0

(
d�

dt � fk
)
k

converges uniformly to
d�

dt � f .
Hint: The uniform limit of a sequence of continuous functions
is continuous. If a function sequence and the sequence of (first)
derivatives converges, the limit of the sequence is differentiable.

(b) Deduce that every Cauchy sequence in the compact open C∞-
topology converges to a smooth function. As C∞([0,1],R) is

https://doi.org/10.1017/9781009091251.002 Published online by Cambridge University Press

https://doi.org/10.1017/9781009091251.002


1.3 Bastiani Calculus 7

a metric space by Exercise 1.2.1, this implies that the space is
complete, that is, a Fréchet space.

(c) Show that the differential operator

D : C∞([0,1],R) → C∞([0,1],R), f �→ f ′

is continuous linear. Hint: Lemma A.5.

1.2.3 Let (E, {pi }I ) be a locally convex space whose topology is generated
by a finite set of seminorms. Show that p(x) = maxi∈I pi (x) defines
a norm on E, which induces the same topology as the family {pi }. In
this case we call E normable.

1.2.4 Establish the following properties of weak integrals:

(a) If the weak integrals of γ,η : [a,b] → E from a to b exist and

s ∈ R, then also the weak integral of γ+ sη exists and
∫ b

a
(γ(t)+

sη(t))dt =
∫ b

a
γ(t)dt + s

∫ b

a
η(t)dt .

(b) If γ : [a,b] → E is constant, γ(t) ≡ K , then
∫ b

a
γ(t)dt exists and

equals (b − a)K .

(c)
∫ c

a
γ(t)dt =

∫ b

a
γ(t)dt +

∫ c

b
γ(t)dt (if the integrals exist).

1.2.5 Let γ : I → E be a Ck -curve (k ∈ N) and λ : E → F be continu-
ous linear for E,F locally convex. Show that λ ◦ γ is Ck such that
d�

dt � (λ ◦ γ) = λ ◦
(

d�

dt � γ
)
, 1 ≤ 
 ≤ k.

1.2.6 Endow a vector space E with a topology T generated by seminorms
as in Definition 1.5. Show that (E,T ) is a topological vector space
(and so requiring that locally convex spaces are topological vector
spaces was superfluous).

1.3 Bastiani Calculus

Bastiani calculus (also called Keller’s Ck
c -theory; Keller, 1974), introduced in

Bastiani (1964), builds a calculus around directional derivatives and their con-
tinuity. It is the basis of our investigation as this calculus works in locally
convex spaces beyond the Banach setting.

1.14 Definition Let E,F be locally convex spaces, U ⊆◦ E, f : U → F a map
and r ∈ N0 ∪ {∞}. If it exists, we define for (x,h) ∈ U × E the directional
derivative

d f (x; h) � Dh f (x) � lim
R\{0}�t→0

t−1 (
f (x + th) − f (x)

)
.
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8 Calculus in Locally Convex Spaces

We say that f is Cr if the iterated directional derivatives

dk f (x; y1, . . . , yk ) � (Dyk Dyk−1 · · · Dy1 f )(x)

exist for all k ∈ N0 such that k ≤ r , x ∈ U and y1, . . . , yk ∈ E and define
continuous maps dk f : U×Ek → F (where d0 f � f ). If f isCk for all k ∈ N0

we say that f is smooth or C∞. Note that df = d1 f and for curves c : I → E
we have c′(t) = dc(t; 1).

1.15 Remark Note that the iterated directional derivatives are only taken
with respect to the first variable (i.e. of the map x �→ df (x; v), where v is sup-
posed to be fixed). One can alternatively define iterated differentials to derivate
with respect to all variables, but this leads to the same differentiability concept
(see Glöckner, 2002 for a detailed explanation). The following observations
are easily proved from the definitions:

(a) d2 f (x; v,w) = limt→0 t−1(df (x + tw; v) − df (x; v)).
(b) dk f (x; v1, . . . ,vk ) = d

dt
�
�
�t=0

dk−1 f (x + tvk ; v1, . . . ,vk−1).

(c) f is Ck if and only if f is Ck−1 and dk−1 f is C1. Then dk f = d(dk−1 f ).

Finally, there is a version of the Schwarz theorem which states that the order
of directions v1, . . . ,vk in dk f (x; v1, . . . ,vk ) is irrelevant (see Exercise 1.3.3).

1.16 Example Let A : E → F be a continuous linear map between locally
convex spaces. Then A is C1, as we can exploit

dA(x; v) = lim
t→0

t−1(A(x + tv) − A(x)) = lim
t→0

A(v) = A(v).

In particular, since A is continuous, so is the first derivative and we see that A
is a C1-map. Computing the second derivative, we use that the first derivative
is constant in x (but not in v!) to obtain

d2A(x; v,w) =Dw (dA(x; v)) = lim
t→0

t−1(dA(x + tw; v) − dA(x; v))

= lim
t→0

t−1(A(v) − A(v)) = 0.

In conclusion A is a C2-map (obviously even a C∞-map) whose higher deriva-
tives vanish.

1.17 Lemma Let f : E ⊇ U → F be a C1-map. Then df (x; ·) is homoge-
neous, that is, d f (x; sv) = sd f (x; v) for all x ∈ U,v ∈ E and s ∈ R.

Proof As df (x; 0v) = df (x; 0) = 0 = 0df (x; v), we may assume that s � 0
and thus df (x; sv) = lim

t→0
t−1( f (x + tsv) − f (x)) = s lim

t→0
(st)−1( f (x + tsv) −

f (x)) = sd f (x; v). �
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1.3 Bastiani Calculus 9

1.18 Proposition (Mean value theorem on locally convex spaces) Let E,F
be locally convex spaces and f : U → F a C1-map on U ⊆◦ E. Then

f (y) − f (x) =
∫ 1

0
df (x + t(y − x); y − x)dt (1.1)

for all x, y ∈ U such that U contains the line segment xy := {t x + (1− t)y | t ∈
[0,1]}.

Proof Note that the curve γ : [0,1] → F, γ(t) � f (x + t(y − x)) is differen-
tiable at each t ∈ [0,1]. Its derivative is

γ′(t) = lim
s→0

s−1(γ(t + s) − γ(t)) = df (x + t(y − x), y − x),

whence γ′ is continuous (as df is) and thus a C1-curve. Apply now the Funda-
mental theorem 1.10 to γ′ to obtain (1.1). �

On a locally convex space, every point has arbitrarily small convex neigh-
bourhoods. Convex neighbourhoods contain all line segments between points
in the neighbourhood, whence Proposition 1.18 is available on these neigh-
bourhoods. As a consequence we obtain the following.

1.19 Corollary If f : U → F is a C1-map with d f ≡ 0, then f is locally
constant.

Proof For x ∈ U choose a convex neighbourhood x ∈ V ⊆ U (see Ap-
pendix A). For each y ∈ V the line segment connecting x and y is contained in
V , and so the vanishing of the derivative with (1.1) implies f (x) = f (y) and f
is constant on V . �

1.20 Proposition (Rule on partial differentials) Let E1,E2,F be locally con-
vex spaces, U ⊆◦ E1 × E2 and let f : U → F be continuous. Then f is C1 if and
only if the limits

d1 f (x, y; v1) � lim
t→0

t−1( f (x + tv1, y) − f (x, y)),

d2 f (x, y; v2) � lim
t→0

t−1( f (x, y + tv2) − f (x, y))

exist for all (x, y) ∈ U and (v1,v2) ∈ E1 × E2 and extend to continuous map-
pings di f : U × Ei → F, i = 1,2. In this case,

d f (x, y; v1,v2) = d1 f (x, y; v1) + d2 f (x, y; v2), ∀(x, y) ∈U, (v1,v2) ∈ E1 × E2.

(1.2)

Proof If f is C1 the mappings di f clearly exist and are continuous. Con-
versely, let us assume that the mappings di f exist and are continuous. For
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10 Calculus in Locally Convex Spaces

(x, y) ∈ U , (v1,v2) ∈ E × F, we fix ε > 0 such that (x, y) + t(v1,v2) ∈ U
whenever |t | < ε. Now if we fix the ith component of f we obtain a C1-
mapping (by hypothesis, the derivative is di f ). Therefore Proposition 1.18
with Lemma 1.17 yields

f ((x, y) + t(v1,v2)) − f (x, y)
t

=
f (x + tv1, y + tv2) − f (x + tv1, y)

t
+

f (x + tv1, y) − f (x, y)
t

=

∫ 1

0
d2 f (x + tv1, y + stv2; v2)ds +

∫ 1

0
d1 f (x + stv1, y; v1)ds. (1.3)

The integrals (1.3) make sense also for t = 0, whence they define maps
Ii : ]−ε,ε[→ H . Due to continuous dependence on the parameter t,4 the right-
hand side of (1.3) converges for t → 0. We deduce that the limit df exists and
satisfies (1.2) which is continuous, whence f is C1. �

The following alternative characterisation of C1-maps will turn the proof of
the chain rule into a triviality. However, we shall only sketch the proof to avoid
discussing convergence issues of the weak integral involved.

1.21 Lemma A map f : E ⊇ U → F is of class C1 if and only if there exists
a continuous mapping, the difference quotient map,

f [1] : U [1] � {(x,v, s) ∈ U × E × R | x + sv ∈ U } → F

such that f (x + sv) − f (x) = s f [1](x,v, s) for all (x,v, s) ∈ U [1].

Proof Let us assume first that f [1] exists and is continuous. Note that U [1] ⊆◦
U × E × R. Then df (x; v) = f [1](x,v,0) exists and is continuous as a partial
map of f [1]. So f is C1. Conversely, if f is C1, the map

f [1](x,v, s) �
⎧⎪
⎨

⎪

⎩

s−1( f (x + sv) − f (x)), (x,v, s) ∈ U [1], s � 0,

df (x; v), (x,v, s) ∈ U [1], s = 0

is continuous on the open set U [1] \ {(x,v, s) ∈U [1] | s = 0}. That f [1] extends
to a continuous map on all of U [1] follows from continuity of parameter-
dependent weak integrals; see Bertram et al. (2004, Proposition 7.4) for
details. �

1.22 Lemma If f : E ⊇ U → F is C1, then d f (x; ·) : E → F is a continuous
linear map for each x ∈ U.

4 We are cheating here; the continuous dependence of weak integrals on parameters has not
been established in this book. See Hamilton (1982, I Theorem 2.1.5) for a proof that carries
over to our setting.
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Proof Fix x ∈ U and note that df (x; ·) is continuous as a partial map of
the continuous df . We have already seen in Lemma 1.17 that df (x; sv) =
sd f (x; v) for all s ∈ R, and so we only have to prove additivity. Choosing
v,w ∈ E we compute

t−1( f (x + t(v + w) − f (x))

= t−1( f (x + t(v + w) − f (x + tv)) + t−1( f (x + tv) − f (x))

= f [1](x + tv,w, t) + f [1](x,v, t).

The right-hand side also makes sense for t = 0 and is continuous, whence
passing to the limit we get df (x; v + w) = df (x; v) + df (x;w). �

1.23 Proposition (Chain rule) Let f : E ⊇ U → F and g : F ⊇ W → K be
C1-maps with f (U) ⊆ W. Then g ◦ f is a C1-map with derivative given by

d(g ◦ f )(x; v) = dg( f (x); df (x,v)) (i.e.(g ◦ f )′(x) = g′( f (x)) ◦ f ′(x)).

Proof We use the notation from Lemma 1.21 and write for (x, y, t) ∈ U [1]

with t � 0,

t−1(g( f (x + ty)) − g( f (x))) = t−1
(
g

(
f (x) + t

f (x + ty) − f (x)
t

)
− g( f (x))

)

= g[1]( f (x), f [1](x, y, t), t). (1.4)

The function h : U [1] → K,h(x, y, t) � g[1]( f (x), f [1](x, y, t), t) is continuous
and extends the right-hand side of (1.4). Hence Lemma 1.21 shows that g ◦ f
is C1, with

(g ◦ f )[1](x, y, t) = g[1]( f (x), f [1](x, y, t), t) for all (x, y, t) ∈ U [1].

Thus

d(g ◦ f )(x; y) = (g ◦ f )[1](x, y,0) = g[1]( f (x), f [1](x, y,0),0)

= dg( f (x); df (x; y)). �

The chain rule is the basis to transport concepts from differential geometry
such as manifolds, tangent spaces and so on to our setting. Later chapters will
define these objects.

1.24 Lemma Let E, (Fi )i∈I be locally convex spaces and f : E ⊇U→∏
i∈IFi

a map on an open subset. Let k ∈ N0∪{∞} and set f i : pri ◦ f : U → Fi (where
pri is the ith coordinate projection). Then f is Ck if and only if every f i , i ∈ I
is Ck and

df (x; v) = (df i (x; v))i∈I , x ∈ U,v ∈ E. (1.5)
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12 Calculus in Locally Convex Spaces

Proof If f is Ck , we note that every f i = pri ◦ f is Ck by the chain rule as the
projections are continuous linear, hence smooth. Further, df i = pri ◦ df which
establishes (1.5).

For the converse, note that it suffices to assume that k ∈ N. We argue by
induction starting with k = 1. Then t−1 f (x + tv) − f (x)) = (t−1( f i (x + tv) −
f i (x))i∈I . Now the components converge to df i (x; v) for t → 0, whence the
difference quotient converges to the limit in (1.5). Since every df i is contin-
uous, df = (df i )i∈I : U × E → ∏

i∈I Fi is also continuous and f is C1. For
the induction step we notice that by induction, pri ◦ df = df i is Ck−1. By
induction, df is Ck−1 and thus f is Ck . �

A subset Y ⊆ X of a topological space X is called sequentially closed if
limn→∞ xn ∈ A for each sequence (xn )N ⊆ A which converges in X . The fol-
lowing lemma will be useful in the discussion of submanifolds in Section 1.5.

1.25 Lemma Let f : E ⊇ U → F be a continuous map from an open subset
of a locally convex space to a locally convex space, and F0 ⊆ F a sequentially
closed vector subspace such that f (U) ⊆ F0. Let k ∈ N ∪ {∞}, then f is Ck if
and only if the corestriction f |F0 : U → F0 is Ck .

Proof If f |F0 is Ck , so is f = ι ◦ f |F0 , where ι : F0 → F is the continuous
linear (hence smooth) inclusion.

Conversely, we argue by induction and assume first that f is C1. For x ∈ U
and v ∈ E, pick a sequence tn → 0 such that x + tnv ∈ U for each n ∈ N.
Then df (x; y) = limn→∞( f (x + tnv) − f (x)) ∈ F0 by sequential closedness.
Hence the limit exists in F0. Further, as a map U × E → F0, (x,v) �→ df (x; v)
is continuous. We conclude that f |F0 is C1. If f is Ck , d( f |F0 ) = (df ) | f0 is
Ck−1 by induction and hence f is Ck . �

In Example A.32 we will see that in Lemma 1.25 sequential closedness is a
necessary assumption for the validity of the statement.

Exercises

1.3.1 Check the details for Remark 1.15 (for Schwarz’ theorem see below).
1.3.2 Let E1,E2,F be locally convex spaces and β : E1 × E2 → F be

a continuous bilinear map. Show that β is C1 with first derivative
dβ(x1, x2; y1, y2) = β(x1, y2) + β(y1, x2). Compute all higher deriva-
tives of β and show that β is smooth.

1.3.3 Schwarz Theorem: If f : E ⊇ U → F is a Ck -map, and x ∈ U , prove
that dr f (x; ·) : Er → F is symmetric for all 2 ≤ r ≤ k (i.e. the order
of arguments is irrelevant to the function value).
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1.4 Bastiani versus Fréchet Calculus on Banach Spaces 13

Hint: By the Hahn–Banach theorem, it suffices to consider λ ◦ dr

f (x; ·) = dr λ ◦ f (x; ·), whence without loss of generality F = R.
Now for fixed v1, . . . ,vr , the property can be checked in the finite-
dimensional subspace generated by v1, . . . ,vr .

1.3.4 The continuous functions C([0,1],R) form a Banach space with
respect to the supremum norm ‖·‖∞ (the resulting topology is the
compact open topology).

(a) Let f : R → R be continuous and (γn )n∈N ⊆ C([0,1],R) be
a uniformly convergent sequence of functions with limit γ. Ex-
ploit that f is uniformly continuous on each ball and show
that f ◦ γn → f ◦ γ uniformly. Deduce that the pushforward
f∗ : C([0,1],R) → C([0,1],R), η �→ f ◦ η is continuous

Assume that f ∈ C1(R,R). Our aim will be to see that f∗ is then C1.

(b) Assume that the limit

df∗(γ; η) � lim
t→0

t−1( f∗(γ + tη) − f∗(γ)) (1.6)

exists. The point evaluation evx : C([0,1],R) → R, η �→ η(x) is
continuous linear for each x ∈ [0,1]. Apply evx to both sides of
(1.6) and find the only possible candidate ψ(γ,η) for df∗(γ; η).

(c) Use point evaluations to verify that

t−1( f∗(γ + tη) − f∗(γ)) =
∫ 1

0
ψ(γ + stη,η)ds.

(d) Show that ψ(γ,η) from (b) is indeed the directional derivative
df∗(γ; η).

(e) Verify that df∗ is continuous, hence f∗ is C1.

1.3.5 Let E,F,H be locally convex spaces, U ⊆◦ E,V ⊆◦ H , f : U → F a
C2-map and let g : V → U and h : V → E be C1. Prove that the differ-
ential of the C1-map φ � df ◦ (g,h) : V → F, φ(x) = df (g(x); h(x))
is given by

dφ(x; y) = d2 f (g(x); h(x),dg(x; y)) + df (g(x); dh(x; y)), (1.7)

for all x ∈ V , y ∈ H .

1.4 Bastiani versus Fréchet Calculus on Banach Spaces

On Banach spaces one usually defines differentiability in terms of the so-called
Fréchet derivative. We briefly recall the definitions that should be familiar from
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14 Calculus in Locally Convex Spaces

basic courses on calculus. While Bastiani calculus is somewhat weaker than
Fréchet calculus, the gap between those two can be quantified. We collect these
results in the present section.

1.26 Definition A map f : E ⊇ U → F from an open subset of a normed
space (E, ‖·‖E ) to a normed space (F, ‖·‖F ) is continuous Fréchet differen-
tiable (or FC1) if, for each x ∈ U , there exists a continuous linear map Ax ∈
L(E,F) such that

f (x + h) − f (x) = Ax · h + Rx (h) with lim
h→0

‖Rx (h)‖F/‖h‖E = 0

and the mapping D f : U → L(E,F), x �→ Ax is continuous (where the right-
hand side carries the operator norm). Inductively we define for k ∈ N that f is
a k-times continuous Fréchet differentiable map (or FCk -map) if it is FC1 and
D f is FCk−1. Moreover, f is (Fréchet-)smooth or FC∞ if f is an FCk map for
every k ∈ N.

The reader may wonder why the notion of Fréchet differentiability cannot
be generalised beyond the setting of normed spaces. The reason for this is that
the continuity of the derivative cannot be formulated as there is no suitable
topology on the spaces L(E,F). Indeed, there is no locally convex topology
making evaluation and composition on the spaces L(E,F) continuous. We re-
fer to Proposition A.19 for an example of this pathology in the context of dual
spaces.

From the definition, it is apparent (Exercise 1.4.2) that if f is FC1, then
D f (x)(h) = df (x; h) and thus every FC1-map is automatically C1 in the Bas-
tiani sense. However, one learns in basic calculus courses that existence of
directional derivatives is weaker than the existence of derivatives in the Fréchet
sense. The next example exhibits this.

1.27 Example (Bastiani C1 is weaker than Fréchet C1 (Milnor 1982)) Con-
sider the Banach space


1 =
⎧⎪
⎨

⎪

⎩

(xn )n∈N | xn ∈ R, for all n ∈ N, ‖(xn )‖�1 =
∑

n∈N
|xn | < ∞

⎫⎪
⎬

⎪

⎭

.

Let ϕ(u) � log(1+ u2) and ψ(u) � d
du ϕ(u) = 2u

1+u2 . We observe that |ψ(u) | ≤
1, whence |ϕ(u) | ≤ |u| and we obtain a well-defined map

f : 
1 → R, f ((xn )) �
∑

n∈N

ϕ(nxn )
n

.

Observe that | f ((xn )) | ≤ ‖(xn )‖�1 . In Exercise 1.4.3, we will show that f is
C1 with differential df ((xn ); (vn )) =

∑
n∈N vnψ(nxn ) but not Fréchet differ-

entiable.
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1.4 Bastiani versus Fréchet Calculus on Banach Spaces 15

1.28 (Bastiani vs. Fréchet calculus) While Bastiani Ck is weaker than FCk ,
Walter (2012, Appendix A.3) shows that there is only a mild loss of differentia-
bility. In particular, FC∞ = C∞. The proofs are somewhat technical induction
arguments involving the operator norm. Hence we only summarise the relation
between the calculi on Banach spaces in the following diagram (arrows denote
implications between conditions):

Ck+1 FCk Ck

dim E<∞

Exercises

1.4.1 Let (E, ‖·‖E ), (F, ‖·‖F ) be normed spaces and the space L(E,F) of
continuous linear maps be endowed with the operator norm ‖A‖op =

supx∈E\{0}
‖A(x) ‖F
‖x ‖E . Show that the evaluation map ε : L(E,F) × E →

F, ε(A, x) = A(x) is continuous.

1.4.2 Let f : U → F be an FC1-map on U ⊆◦ E, where E,F are Banach
spaces.

(a) Show that the Fréchet derivative satisfies D f (x)(h) = df (x; h)
for every x ∈ U , h ∈ E and deduce that f is C1 in the Bastiani
sense.

(b) Use induction to prove that every FCk -map is already Ck by
showing that the kth-Fréchet derivative gives rise to the kth
derivative in the Bastiani sense.

1.4.3 We fill in the details for Example 1.27. Notation is as in the example.
Prove that

(a) |ψ(u) | ≤ 1 for all u ∈ R.

(b) df ((xn ); (vn )) =
∑

n∈N vnψ(nxn ), hence continuous and thus f
is C1.

(c) ‖df ((xn ); ·)‖op equals 0 if x = 0 but is ≥ 1 if xn = 1/n for some
n ∈ N.

(d) For δn �
⎧⎪
⎨

⎪

⎩

0 if m � n,

1/n if m = n,
the expression ‖df (δn ; ·)‖op does

not converge to 0. Deduce that f is not FC1.
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16 Calculus in Locally Convex Spaces

1.5 Infinite-Dimensional Manifolds

In this section, we recall the basic notions of manifolds modelled on locally
convex spaces. Most of these definitions should be very familiar from the
finite-dimensional setting.

1.29 In this section we will write g ◦ f as a shorthand for g ◦ f | f −1 (A) :
f −1(A) → B if it helps to avoid clumsy notation.

1.30 Definition (Charts and atlas) Let M be a Hausdorff topological space.
A chart for M is a homeomorphism ϕ : Uϕ → Vϕ fromUϕ ⊆◦ M onto Vϕ ⊆◦ Eϕ ,
where Eϕ is a locally convex space. Let r ∈ N0 ∪ {∞}. A Cr -atlas for M is a
set A of charts for M satisfying the following:

(a) M =
⋃
ϕ∈A Uϕ .

(b) For all ϕ,ψ ∈ A the change of charts ϕ◦ψ−1 (which are mappings between
open subsets of locally convex spaces) are Cr .5

Two Cr -atlases A,A′ for M are equivalent if their union A∪A′ is a Cr -atlas
for M . This is an equivalence relation.

1.31 Definition A Cr manifold (M,A) is a Hausdorff topological space with
an equivalence class of Cr -atlases A. (If the equivalence class A is clear, we
simply write M .)

1.32 Remark In contrast with the finite-dimensional case, we do not require
manifolds to be paracompact or second countable (as topological spaces).

In general, the manifolds we are interested in will not be modelled on a sin-
gle locally convex space. For a C1-atlas, the locally convex spaces in which
charts take their image are necessarily isomorphic on each connected compo-
nent. However, some examples we will encounter later on have a huge number
of connected components. For each of these connected components the locally
convex model spaces will, in general, not be isomorphic.

1.33 Example Every locally convex space E is a manifold with global chart
given by the identity idE . Similarly, every U ⊆◦ E is a manifold with global
chart given by the inclusion U → E.

1.34 Example (Hilbert sphere) For a Hilbert space (H,〈·, ·〉) the unit sphere
SH � {x ∈ H | 〈x, x〉 = 1} is a C∞-manifold. To construct charts, we define
the Hilbert space Hx0 = {y ∈ H | 〈y, x0〉 = 0} ⊆ H for x0 ∈ SH . (If dim

5 Formally, if the charts do not intersect, the change of charts is the empty map ∅ → ∅ which is
Cr .
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1.5 Infinite-Dimensional Manifolds 17

H < ∞, Hx0 is a proper subspace of H , but if H is infinite-dimensional, it is
isomorphic to H; see Dobrowolski, 1995). Then define the sets Ux0 � {x ∈
SH | 〈x, x0〉 > 0} and Vx0 � {y ∈ Hx0 | 〈y, y〉 < 1}. We can now define a chart

ϕx0 : Ux0 → Vx0 , x �→ x − 〈x, x0〉x0

(its inverse is given by the formula ϕ−1
x0

(y) = y +
√

1 − 〈y, y〉x0). Applying
these formulae, we see that the change of charts map for x0, z0 ∈ SH is a
smooth map between open (possibly empty) subsets of Hilbert spaces:

ϕz0 ◦ ϕ−1
x0

(y) = (y − 〈y, z0〉z0) +
√

1 − 〈y, y〉(x0 − 〈x0, z0〉z0).

1.35 Definition Let M be a Cr-manifold and together with a sequentially
closed vector subspace Fϕ ⊆ Eϕ for each chart ϕ : Uϕ → Vϕ ⊆◦ Eϕ .
A (Cr-)submanifold of M is a subset N ⊆ M such that for each x ∈ N , there
exists a chart φ : Uφ → Vφ of M around x such that φ(Uφ ∩ N ) = Vφ ∩ Fϕ .

Then φN � φ|Vφ∩FϕUφ∩N is a chart for N , called a submanifold chart. Thanks to
Lemma 1.25, the submanifold charts form a Cr-atlas for N .

If N is a submanifold of M such that all the sequentially closed subspaces Fφ
are complemented subspaces of Eφ (see §1.7), we call N a split submanifold
of M .

1.36 Definition Let (M,A) and (N,B) be Cr manifolds. Then the product
M × N becomes a Cr-manifold using the atlas C � {φ × ψ | φ ∈ A,ψ ∈ B}.
We call the resulting Cr-manifold the (direct) product of M and N .

1.37 Definition Let r ∈ N0∪{∞} and M,N beCr-manifolds. A map f : M →
N is called Cr if f is continuous and, for every pair of charts φ,ψ, the map

ψ ◦ f ◦ φ−1 : Eφ ⊇ φ( f −1(Uψ ) ∩Uφ ) → Fψ

is a Cr-map. We write Cr (M,N ) for the set of all Cr -maps from M to N .

1.38 Remark Let f : M → N be a continuous map between Cr -manifolds.
Assume that for some charts (Uϕ , ϕ) and (Uψ ,ψ) the composition ϕ ◦ f ◦ ψ
is Cr ,r ∈ N ∪ {∞}. Then for any other pair of charts (Uκ , κ) and (Uλ , λ) with
f (Uλ ∩Uψ ) ⊆ Uϕ ∩Uκ we have on Uλ ∩Uψ that

κ ◦ f ◦ λ−1 |λ (Uλ∩Uψ ) = (κ ◦ ϕ−1) ◦ (ϕ ◦ f ◦ ψ−1) ◦ (ψ ◦ λ−1),

where the mapping in the middle is Cr by assumption and the other mappings
are change of charts (which are Cr by M,N being Cr -manifolds). Hence κ ◦
f ◦ λ−1 |λ (Uλ∩Uψ ) is also Cr by the chain rule, Proposition 1.23. This argument
is called ‘insertion of charts’ and we leave it from now on to the reader. With
the insertion of charts argument, it is easy to see that:
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18 Calculus in Locally Convex Spaces

(a) It suffices to test the Cr -property with respect to any atlas of M
and N .

(b) If f : M → N and g : N → L are Cr -maps, so is g ◦ f : M → L.
(c) Using Lemma 1.24: If M,N1,N2 are Cr -manifolds and f i : M → Ni , i =

1,2 are mappings. Then f � ( f1, f2) : M → N1 × N2 is Cr if and only if
f1, f2 are Cr .

1.39 Lemma Let N be a (Cr -)submanifold of the Cr-manifold M. Then
the inclusion ι : N → M is Cr . Further, f : P → N is Cr if and only if
ι ◦ f is Cr .

Proof Thanks to Remark 1.38, it suffices to check the Cr -property of ι in
charts that cover N . Thus we may choose charts (φ,Uφ ) of M that induce
submanifold charts φN as in Definition 1.35. But then φ ◦ ι ◦ φ−1

N is the in-
clusion map Vφ : F → V which is Cr (as restriction of a continuous linear
map).

If f is Cr , so is ι ◦ f by Remark 1.38. Conversely, let ι ◦ f be a Cr -map
and φ, φN as before and ψ a chart for P. Then φ ◦ ι ◦ f ◦ ψ−1 : ψ(Uψ ∩
f −1(Uφ )) → E is Cr with values in the sequentially closed subspace F and
thus (φ ◦ ι ◦ f ◦ ψ) |F = φN ◦ f ◦ ψ−1 is Cr by Lemma 1.25. We conclude that
f is Cr . �

Exercises

1.5.1 Let f : M → N be a Cr -map between Cr-manifolds. Show that the
graph( f ) � {(m, f (m)) | m ∈ M } is a split submanifold of M × N .
Hint: Use the description of the graph to construct submanifold charts
by hand.

1.5.2 Verify the details of Example 1.34: Check that the charts make sense
as mappings fromUx0 to Vx0 . Show that the change of charts ϕx0 ◦ϕ−1

z0

is smooth for all x0, z0 ∈ SH such that Ux0 ∩Uz0 � ∅.
1.5.3 Let M be a manifold and U ⊆◦ M . Let A be an atlas of M .

EndowU with the subspace topology and show thatAU � {φ|U∩Uφ |
(φ,Uφ ) ∈ A} is a manifold atlas for U turning it into a submanifold
of M .

1.5.4 Check that the set C in Definition 1.36 is a Cr-atlas for the product
manifold.

1.5.5 Show that a compact manifold must be modelled on a finite-
dimensional space.
Hint: Proposition A.3.
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1.6 Tangent Spaces and the Tangent Bundle 19

1.6 Tangent Spaces and the Tangent Bundle

1.40 Definition Let M be a Cr -manifold (r ≥ 1) and p ∈ M . We say that a
C1-curve γ passes through p if γ(0) = p. For two such curves γ,η we define
the relation

γ ∼ η ⇔ (φ ◦ γ)′(0) = (φ ◦ η)′(0) (1.8)

for some chart φ of M around p. By the chain rule, (1.8) holds for every chart
around p and defines an equivalence relation on the set of all curves passing
through p. The equivalence class [γ] is called the (geometric) tangent vector
(of M at p). Define the (geometric) tangent space of M at p as the set TpM of
all geometric tangent vectors at p.

We recall now that the tangent space at a point can be turned into a locally
convex space isomorphic to the modelling space at that point.

1.41 Lemma (a) Let φ be a chart of M around p, set pφ � φ(p). Then

hφ : Eφ → TpM, hφ (y) � [t �→ φ−1(pφ + ty)]

is a bijection with inverse h−1
φ : TpM → Eφ , [γ] �→ (φ ◦ γ)′(0).

(b) For all charts φ,ψ around p, we have h−1
ψ ◦ hφ = d(ψ ◦ φ−1)(pφ ; ·) which

is an automorphism of the topological vector space E.
(c) TpM admits a unique locally convex space structure such that hφ is an

isomorphism of locally convex spaces for some (and hence all) charts φ of
M around p.

Proof (a) Note that hφ and h−1
φ are well defined and h−1

φ is injective. For

y ∈ Eφ , h−1
φ ◦ hφ (y)) = d

dt
�
�
�t=0

φ(φ−1(pφ + ty)) = y. Thus h−1
φ is surjective

and the inverse of hφ .
(b) Compute for y ∈ E: hψ ◦ h−1

φ (y) = d
dt

�
�
�t=0

ψ(φ−1(pφ + ty)) = d(ψ ◦
φ−1)(pφ ; ·).

(c) This follows directly from the definition of the vector space structure. �

1.42 Let U ⊆◦ E, E a locally convex space and f : U → F a C1-map. We
define the mapping

T f : U × E → F × F, (x,v) �→ ( f (x),df (x; v))

and call this mapping the tangent map of f . Note that the chain rule, Proposi-
tion 1.23, can now be written as T ( f ◦ g) = T f ◦ Tg.

1.43 Definition (Tangent bundle) Let (M,A) be a Cr -manifold with r ≥ 1.
We call TM �

⋃
p∈M TpM the tangent bundle of M . Then πM : TM → M ,
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20 Calculus in Locally Convex Spaces

TpM � v �→ p is called the bundle projection. We equip TM with the final
topology with respect to the family (Tφ−1)φ∈A of mappings

Tφ−1 : Vφ × Eφ → TM, (x,v) �→ [t �→ φ−1(x + ty)] ∈ Tφ−1 (x)M.

Note that TUφ = π−1
M (Uφ ) is open in TU for all φ ∈ A, and

Tφ � (Tφ−1)−1 : TUφ → Vφ × E

is a homeomorphism. Moreover, B � {Tφ | φ ∈ A} is a Cr−1-atlas for TM .
Thus TM becomes a Cr−1-manifold and πM : TM → M a Cr−1-map.

1.44 Lemma We check the details in Definition 1.43. Let ϕ,ψ ∈ A:

(a) We have T (ψ ◦ φ−1) ◦ Tφ = Tψ.
(b) TUϕ is open in TM and Tϕ : TUϕ → Vϕ × Eϕ is a homeomorphism.
(c) B = {Tφ | φ ∈ A} is a Cr−1-atlas, if M is Hausdorff, so is TM.
(d) πM is a Cr−1-map.
(e) TM induces on each tangent space TpM its natural topology.

Proof (a) This follows from Lemma 1.41(b); we leave the details to the
reader.

(b) If ϕ,ψ ∈ A, we have (Tψ−1)−1(TUϕ) = Tψ(TUϕ ∩TUψ ) = ψ(Uϕ ∩Uψ )×
Eψ ⊆◦ Vψ × Eψ . By the definition of the final topology, TUϕ is open in TM .

By definition of the final topology Tϕ−1 is continuous, and so Tϕ is
open for every ϕ ∈ A. For continuity, pick U ⊆◦ Vϕ × Eϕ and let ψ ∈ A.
Now W � U ∩ ϕ(Uϕ ∩Uψ ) × Eϕ ⊆◦ Vϕ × Eϕ , whence a quick computation
shows

(Tψ−1)−1((Tϕ)−1(U)) = T (ψ ◦ ϕ−1)(W ) ⊆◦ Vψ × Eψ

as T (ψ ◦ ϕ−1) is a homeomorphism between open subsets of Vϕ × Eϕ
and Vψ × Eψ . We deduce that (Tϕ)−1(U) is open in TM , and so Tϕ is
continuous.

(c) By (b) each Tφ is a homeomorphism from an open subset of TM onto an
open subset of Eφ × Eφ , whence it is a chart. Clearly, the TUϕ cover TM
and by (a) the transition maps are T (ψ ◦ ϕ−1) = (ψ ◦ ϕ−1,d(ψ ◦ ϕ−1))
whence Cr−1. The Hausdorff property is left as Exercise 1.6.1.

(d) In every chart we have ϕ ◦ πM = pr1 ◦ Tϕ, where pr1 : Vϕ × Eϕ → Vϕ is
the canonical projection. As the charts conjugate πM to a smooth map, it
is of class Cr−1.

(e) By the definition of the vector topology in Lemma 1.41 (c) this follows
from (b). �
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1.45 Remark In finite-dimensional differential geometry (and on Banach
manifolds), one often introduces the dual bundle or cotangent bundle

T∗M � L(TM,R) �
⋃

x∈M
(TxM)′ =

⋃

x∈M
L(TxM,R),

where (TxM)′ � L(TxM,R) is the space of continuous linear mappings
TxM → R (with the operator norm topology if TxM is Banach; see Klingen-
berg, 1995 or Lang, 1999, III.1 for the bundle structure). In our setting, there
is, in general, no canonical manifold structure which turns T∗M into a vector
bundle.

This poses a problem for theories employing the dual bundle, for example,
symplectic geometry, and also differential forms cannot be defined as sections
of the dual bundle. However, in the case of differential forms, one can circum-
vent this problem and obtain a theory similar to finite-dimensional differential
forms without the dual bundle. We briefly discuss this in Appendix E.

We will now introduce tangent mappings of differentiable mappings be-
tween manifolds (see Definition 1.42 for the case of an open subset of a locally
convex space).

1.46 Definition (Tangent maps) Let f : M → N be a Cr -map between Cr-
manifolds for r ≥ 1. Define the mappings

Tp f : TpM → Tf (p)N, [γ] �→ [ f ◦ γ], p ∈ M.

Then we define the tangent map T f : TM → TN , TpM � [γ] �→ Tp f ([γ]).
Note that by construction πN ◦ T f = f ◦ πM . Moreover, for each pair of
charts ψ of N and φ of M such that f (Uφ ) ⊆ Uψ , the following diagram is
commutative:

TUφ TUψ

Vφ × Eφ Vψ × Fψ .

Tφ

T f |
TUψ
TUφ

Tψ

T (ψ◦ f ◦φ−1)

Hence the tangent map T f is a Cr−1-map if f is a Cr -map.

1.47 Lemma (Chain rule on manifolds) Let M,N,L be Cr -manifolds and
f : M → N, g : N → L be Cr-maps with r ≥ 1. Then T (g ◦ f ) = Tg ◦ T f .

Note that we can of course iterate the tangent construction and form
the higher tangent manifolds T kM� (T (T (· · · (T︸��������︷︷��������︸

k times

M) · · · ) if M is a

C�-manifold and k ≤ 
. Similarly one defines higher tangent maps
T k f � (T (T (· · · (T︸��������︷︷��������︸

k times

f ) · · · ).
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22 Calculus in Locally Convex Spaces

For later use, we set a notation for derivatives of manifold valued curves.

1.48 Definition Let M be a manifold and c : J → M be a C1-map from some
interval J ⊆ R. Then we identify Tt J = R and define the mapping

ċ : J → TM, t �→ Tc(t,1).

Note that ċ is the manifold version of the curve differential c′, in particular, if
(U, ϕ) is a chart of M , we have for each t ∈ c−1(U) the relation Tϕ (ċ(t)) =
(ϕ ◦ c, (ϕ ◦ c)′).

Exercises

1.6.1 Verify the details in Definition 1.46 and supply a proof for Lemma
1.47. Show, in particular, that

(a) T f is well defined and defines a Cr−1-map with the claimed
properties.

(b) Check that for M = U an open subset of a locally convex space,
both definitions of tangent mappings coincide.

(c) The manifold TM is a Hausdorff topological space.
Hint: Consider two cases for v,w ∈ TM: πM (v) = πM (w) and
πM (v) � πM (w).

1.6.2 Show inductively, that

(a) If E is a locally convex space andU ⊆◦ E, thenT kU � U×E2k−1.
(b) For U ⊆◦ E,V ⊆◦ F in locally convex spaces, we have

dk f (x; v1, . . . ,vk ) = pr2k
(
T k f (x,w1, . . . ,w2k−1

)
,

where pr2k is the projection onto the 2k th component and w2i+1=

vi+1 for 0 ≤ i ≤ k − 1 and wi = 0 else.

1.6.3 Establish a manifold version of the rule on partial differentials Propo-
sition 1.20, that is, show that: If f : M1 × M2 → N is a C1-map
(between C1-manifolds) and pi : M1 × M2 → Mi are the canonical
projections, then for p = (x, y) ∈ M1 × M2,

Tp f (v) = Tx f (·, y)(Tp1(v)) + Ty f (x, ·)(Tp2(v)).

Identifying T (M1 × M2) with TM1 × TM2 and v = (vx ,vy ), this for-
mula becomes

Tp f = Tx f (·, y)(vx ) + Ty f (x, ·)(vy ).
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1.7 Elements of Differential Geometry: Submersions
and Immersions

Immersions and submersions are among the first tools students encounter in
courses on differential geometry when asked to construct (sub-)manifolds. They
can still serve this purpose in infinite dimensions if one chooses one’s defini-
tions carefully. In this section, we follow Hamilton (1982, Section 4.4)6 and
the discussion requires the concept of complemented subspaces of a locally
convex space (see Appendix A.3).

1.49 Definition Let M,N be smooth manifolds and φ : M → N smooth. We
say that φ is

(a) an immersion if for every x ∈ M there are manifold charts κ,ψ around x
and φ(x) such that Fψ � Eκ × H (as locally convex spaces; see
Appendix A.3), the local representative of φ in these charts is the
inclusion Eκ → Eκ × H � Fψ ,

(b) an embedding if f is an immersion and a topological embedding (i.e. a
homeomorphism onto its image),

(c) a submersion if for every x ∈ M there are manifold charts κ,ψ around x
and φ(x) such that Eκ � Fψ × H and the local representative of φ in these
charts is the projection Eκ � Fψ × H → Fψ .

1.50 Lemma If f : M → N is an immersion, then for every x ∈ M there is
an open neighbourhood Wx such that f |Wx is an embedding.

Proof Pick immersion charts around x and f (x), that is, charts (U, ϕ), x ∈ U
and (W,ψ) such that f (x) ∈ W and ψ ◦ f ◦ ϕ−1 = j, where j : Eϕ → Eψ �
Eϕ × F is the inclusion of the complemented subspace Eϕ of Eψ . Note that j
is a topological embedding onto its image, whence f |Uϕ = ψ−1 ◦ j ◦ ϕ is a
topological embedding (and thus an embedding). �

There are several alternative characterisations of submersions and immer-
sions known in the finite-dimensional setting. Many of these turn out to be
weaker in our setting.

1.51 Lemma A smooth map f : M → N is a submersion if and only if for
each x ∈ M there are (U, ϕ) of M and (V,ψ) of N with x ∈ U and f (U) ⊆ V
such that ψ ◦ f ◦ ϕ−1 = π |ϕ (U ) for a continuous linear map π with continuous
linear right inverse σ (i.e. π ◦ σ = id).

6 The smoothness assumption conveniently shortens the exposition but can of course be
replaced by finite orders of differentiability; see Glöckner (2016).
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24 Calculus in Locally Convex Spaces

Proof If f is a submersion and x ∈ M , we can pick submersion charts around
x, that is, charts ϕ : Uϕ → UF ×UH ⊆ F × H � E with UF ⊆◦ F and UH ⊆◦ E
and ψ : Vψ → UF such that ψ ◦ f ◦ ϕ−1(x, y) = x, for all (x, y) ∈ UF × UH .
Obviously, the projection is continuous linear with right inverse given by the
inclusion F → F × H � E.

Let us conversely assume that around x ∈ M there are charts such that ψ ◦
f ◦ϕ−1 = π |ϕ (U ) holds for a continuous linear map π : E → F with continuous
right inverse σ : F → E. Then π |σ (F )σ(F) → F is an isomorphism of locally
convex spaces with inverse σ. We obtain a new chart ν � σ ◦ ψ of N . Now
κ � σ◦π : E → E is continuous linear and satisfies κ◦ κ = κ. We deduce from
Lemma A.21 that σ(F) is a complemented subspace of E and can identify
E � σ(F) × ker(π) such that κ becomes the projection onto σ(F). Shrinking
U and V if necessary we may assume ϕ(U) = A × B and ν(V ) = A for open
sets A ⊆◦ σ(F) and B ⊆◦ kerπ. Then

ν ◦ f ◦ ϕ−1 = σ ◦ ψ ◦ f ◦ ϕ−1 = σ ◦ π |A×B = κ |A×B . �

1.52 Remark The alternative characterisation of submersions from Lemma
1.51 implies (see Exercise 1.7.5) that a submersion admits local smooth sec-
tions. If the manifolds M and N are Banach manifolds (i.e. modelled on
Banach spaces), the inverse function theorem implies that the existence of local
smooth sections is even equivalent to being a submersion (see Margalef-Roig
and Domínguez, 1992, Proposition 4.1.13).

Finally, we mention that if the submersion ϕ is surjective, we obtain the
following result: a map f : N → L is Cr if and only if f ◦ ϕ is a Cr -map for
r ∈ N0 ∪ {∞} (see Exercise 1.7.6).

In finite-dimensional differential geometry, the above definitions are usu-
ally not the definitions of submersions/immersions but one deduces them from
‘easier conditions’ involving the tangent mappings, such as the following.

1.53 Definition Let M,N be smooth manifolds and φ : M → N smooth. We
say that φ is

(a) infinitesimally injective (or surjective) if the tangent map Txφ : TxM →
Tφ(x)N is injective (or surjective, respectively) for every x ∈ M ,

(b) a naïve immersion if for every x ∈M the tangent mapTxφ : TxM→Tφ(x)N
is a topological embedding onto a complemented subspace of Tφ(x)N ,

(c) a naïve submersion if for every x ∈ M the map Txφ : TxM → Tφ(x)N has
a continuous linear right inverse.

In infinite dimensions, none of the naïve, infinitesimal versions or the prop-
erties from Definition 1.49 are equivalent as the following (counter-)examples
show.
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1.54 (Infinitesimal properties are weaker than naïve properties) Consider
the Banach space c0 of all (real) sequences converging to 0 as a subspace of
the Banach space 
∞ of all bounded real sequences. We obtain a short exact
sequence7 of Banach spaces

0 c0 
∞ 
∞/c0 0.i q

(1.9)
As i and q are continuous linear we have Txi(y) = di(x, y) = i(y) and
Txq(y) = q(y), whence i is infinitesimally injective and q is infinitesimally
surjective. Since c0 is not complemented, Example A.23, i is not a naïve im-
mersion. This implies that (1.9) does not split, that is, q does not admit a con-
tinuous linear right inverse and thus cannot be a naïve submersion.

A submersion as in Definition 1.49 turns out to be an open map (Glöckner,
2016, Lemma 1.7). In finite-dimensional differential geometry, this is a conse-
quence of the inverse function theorem (when applied to a naïve submersion).
Going beyond Banach manifolds, the submersion property is stronger than the
naïve notion.

1.55 (Naïve submersions need not be submersions) Consider the space A �
C(R,R) of continuous functions from the reals to the reals. The pointwise oper-
ations and the compact open topology (see Appendix B.2) turn A into a locally
convex space (by Lemma B.7, one can even show that it is a Fréchet space).
Then the map expA : A → A, f �→ e f is continuous by Lemma B.8. Recall
that the point evaluations evx ( f ) � f (x) are continuous linear on A, whence
we can use them to find a candidate for the derivative of expA. Then the finite-
dimensional chain rule yields the only candidate for the derivative of expA to
be d expA( f ; g)(x) = g(x) · expA( f )(x). Computing in the seminorms, one
can show that indeed d expA( f ; g) = g · expA( f ) and by induction expA is
smooth. Moreover, at the constant zero function 0 we have d expA(0; ·) = idA,
so expA is a naïve submersion. However, expA takes values in C(R, ]0,∞[)
which do not contain a neighbourhood of expA(0) = 1. Thus expA cannot be a
submersion (as all submersions are open mappings by Glöckner (2016, Lemma
1.7).

7 In the category of locally convex spaces, a sequence

0 −→ A
i−→ B

q
−→ C −→ 0

of continuous linear maps is exact if it satisfies both of the following conditions:
(a) algebraically exact, that is, images of maps coincide with kernels of the next map;
(b) topologically exact, that is, i and q are open mappings onto their images.
If A, B and C are Fréchet (or Banach) spaces, topological exactness follows from algebraic
exactness by virtue of the open mapping theorem (Rudin, 1991, I. 2.11); for general locally
convex spaces this is not the case.
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26 Calculus in Locally Convex Spaces

This example also shows that the Inverse Function Theorem fails in this case
(Eells, 1966); see also Appendix A.5.

However, as Glöckner (2016) shows, the following relations do hold.

1.56 (Submersions, immersions vs. the naïve and infinitesimal concepts) Con-
sider a map φ : M → N between manifolds modelled on locally convex spaces.
Then:

Immersion naïve immersion infinitesimally injective

Submersion naïve submersion infinitesimally surjective

M Banach manifold dim M < ∞

N Banach manifold dim N < ∞

M Hilbert manifold and N Banach manifold

The reason one really would like the strong notions of submersions and
immersions is that these notions are strong enough to carry over the usual state-
ments on submersions and immersions to the setting of infinite-dimensional
manifolds. For example, one can prove several useful statements on split sub-
manifolds. Again we refer to Glöckner (2016) for more general results on sub-
mersions and immersions in infinite dimensions.

1.57 Definition Let f : M → N be smooth and S ⊆ N be a split submanifold.
Then f is transversal over S if for each m ∈ f −1(S) and submanifold chart
ψ : V → V1 × V2 with ψ( f (m)) = (0,0) and ψ(S) ⊆ V1 × {0}, there exists an
open m-neighbourhood U with f (U) ⊆ V and

U V V1 × V2 V2
f ψ pr2 (1.10)

is a submersion.

Note that due to the fact that compositions of submersions are again submer-
sions (see Exercise 1.7.1), if f is a submersion, (1.10) is always a submersion.

1.58 Proposition Let φ : M → N be a smooth map. If S ⊆ N is a split sub-
manifold8 of N such that f is transversal over S, then φ−1(S) is a submanifold
of M.

8 A more involved proof works for every submanifold (not only for split ones), see Glöckner
(2016, Theorem C).
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Proof The map (1.10) is a submersion. Shrinking U,V2, there are charts
ϕ : U → U1 × U2 and κ : V2 → U2 such that ϕ(m) = (0,0) and κ(0) = 0
and the following commutes:

U V V1 × V2 V2

U1 ×U2 U2.

f

ϕ

ψ pr2

κ

pr2

Now we will prove that ϕ is a submanifold chart for f −1(S), that is, ϕ(U ∩
f −1(S)) = ϕ(U) ∩ (U1 × {0}). To see this, note that since ψ is a submanifold
chart, we have for x ∈ U that f (x) ∈ S if and only if pr2(ψ( f (x))) = 0.
Now the commutativity of the diagram shows that this is the case if and only
if ϕ(x) ∈ pr−1

2 (0) = U1 × {0}. �

1.59 Corollary If f : M → N is a submersion, f −1(n) is a split submanifold
for n ∈ N.

1.60 Lemma Let f : M → P and g : N → P be smooth maps and g be a
submersion. Then the fibre product M×PN � {(m,n) ∈ M×N | f (m) = g(p)}
is a split submanifold of M × N and the projection pr1 : M ×P N → M is a
submersion.

Proof Let (m,n) ∈ M ×P N and pick submersion charts ψ : Uψ → Vψ ⊆◦ EN ,
κ : Uκ → Vκ ⊆◦ EP for g with n ∈ Uψ . Recall that for the submersion charts
κ ◦ g ◦ ψ−1 = π for a continuous projection π : EN = EP × F → EP (where
F is the subspace complement) and we may assume that Vψ = Vκ × Ṽ . Finally,
we pick a chart (Uϕ , ϕ) of M such that m ∈ Uϕ and f (Uϕ ) ⊆ Uκ . Hence we
obtain a commutative diagram

Uψ Vψ Vκ × Ṽ

Uϕ Uκ Vκ .

ψ

g
π prVκ

f κ

Denote by prṼ the projection onto Ṽ . Then we construct a smooth map for
(m,n) ∈ Uϕ ×Uψ via

δ(m,n) � (ϕ(m), (prVκ (ψ(n)) − κ( f (m)),prṼ (ψ(n)))) ∈Vϕ × ((Vκ −Vκ ) × Ṽ ).

This mapping is smoothly invertible with inverse given by

δ−1(x, (y, z)) = (ϕ−1(x),ψ−1(y + κ( f (ϕ−1(x))), z)).
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We leave it again as an exercise to work out that the domain of the inverse is
open. Note that due to the commutative diagram we see that (m,n) ∈ M ×P N
if and only if (m,n) maps under δ to EM × {0} × F which is a complemented
subspace of EM × EP ×F � EM × EN . Thus M ×P N is a split submanifold of
M × N . Since the projection pr1 : M × N → N is smooth, so is its restriction
to M ×P N by Lemma 1.39. As pr1 : M ×P N → M is conjugated by δ and ϕ
to the projection prVκ , it is a submersion. �

Finally, there is a close connection between embeddings and split submani-
folds.

1.61 Lemma Let f : M → N be smooth. The following conditions are
equivalent:

(a) f is an embedding.
(b) f (M) is a split submanifold of N and f | f (M ) : M → f (M) is a diffeomor-

phism.

Proof Let E,F be the modelling spaces of M and N , respectively.

(a) ⇒ (b): By assumption, f is a topological embedding and a smooth
immersion. Consider y ∈ f (M) and x ∈ M with f (x) = y and pick
charts ϕx : Ux → Vx ⊆ E and ϕy : Uy → Vy ⊆ F such that x ∈ Ux ,
f (Ux ) ⊆ Uy and ϕy ◦ f ◦ ϕ−1

x = j |Vx for a linear topological embedding
j : E → F onto a complemented subspace j (E) × H = F. Since j (Vx ) is rel-
atively open, we may adjust choices such that j (Vx ) = Vy ∩ j (E). A quick
computation then shows that ϕy restricts to a submanifold chart and f (M)
becomes a split submanifold of N . Moreover, in the (sub)manifold charts we
have j |Vy∩ j (E)

Vx
= ϕy | f (M )∩Uy ◦ f ◦ϕ−1

x and this map is a diffeomorphism. Thus

f | f (M ) : M → f (M) is a local diffeomorphism and a homeomorphism, hence
a diffeomorphism.

(b) ⇒ (a) Let ι : f (M) → N be the inclusion map. Since f | f (M ) is a dif-
feomorphism, ι ◦ f | f (M ) is a topological embedding. Since f (M) is a split
submanifold, there is an isomorphism α : E → α(E) ⊆ F of locally convex
spaces such that α(E) is complemented in F. Pick charts ϕx : Ux → Vx and
ϕ f (x) : Uf (x) → Vf (x) with x ∈ Ux and f (Ux ) ⊆ Uf (x) . We may assume that
Vf (x) = P × Q for P ⊆◦ α(E) and ϕ f (x) (Ux ∩ f (M)) = Vf (x) ∩ α(E) =
P. Set now W � α−1(P). Then it is easy to see that θ � (ϕ f (x) ◦ f ◦
ϕ−1
x )−1 ◦α |W : W → Vx makes sense and is a smooth diffeomorphism, whence

θ−1 ◦ϕx : Ux → W is a chart for M . By construction, ϕ f (x) ◦ f ◦ (θ−1 ◦ϕx )−1 =

α |W is a linear topological embedding onto α(E). This shows that f is an
immersion. �
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1.7.1 Exercises

1.7.1 Show that if f : M → N and g : N → L are submersions, so is
g ◦ f : M → L.
Hint: The submersion property is local. Try constructing small enough
neighbourhoods around m ∈ U ⊆ M, f (m) ∈ V ⊆ N and g( f (m)) ∈
W ⊆ L and charts such that:

U V W

F × X F � Y × Z Y.

f g

prF prY

1.7.2 Let f : M → N and g : K → L be submersions (immersions). Show
that then f × g : M × K → N × L, (m, k) �→ ( f (m),g(k)) is also a
submersion (immersion).

1.7.3 Let p : M → N be a submersion and n ∈ N . From Corollary 1.59
we obtain a submanifold P � p−1(n). Show that for x ∈ P one can
identify the tangent space of the submanifold as TxP = kerTxp =
{v ∈ TxM | Txp(v) = 0}.

1.7.4 Let (H,〈·, ·〉) be a Hilbert space. Prove that ψ : H \ {0} → R, x �→
〈x, x〉 is a submersion and deduce that the Hilbert sphere SH =ψ−1(1)
is a submanifold of H . Then show that TxSH = {v ∈ H | 〈v, x〉 = 0}
for all x ∈ SH (that is, the tangent space is the orthogonal complement
to the base point x).

1.7.5 Let ϕ : M → N be a smooth submersion. Show that ϕ admits smooth
local sections, that is, for every x ∈ M there is ϕ(x) ∈ U ⊆◦ N and a
smooth map σ : U → M with σ(ϕ(x)) = x and ϕ ◦σ = idU . Deduce
then that ϕ is an open map.
Hint: Use the characterisation from Remark 1.52.
Remark: If M,N are Banach manifolds, the existence of local sec-
tions is equivalent to ϕ being a submersion; see Margalef-Roig and
Domínguez (1992, Proposition 4.1.13).

1.7.6 Let ϕ : M→ N be a smooth surjective submersion. Show that
f : N→ L is Cr if and only if f ◦ ϕ is Cr for r ∈ N0 ∪ {∞}.
Hint: Use Exercise 1.7.5.

1.7.7 Show that if f : M → N and g : N → L are immersions (embed-
dings), so is g ◦ f .

1.7.8 Work out the details omitted in the proof of Lemma 1.61.
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