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Abstract. The magnetic field is effectively frozen into the ionized gas in the Sun and it is therefore 
necessary first to describe the mot ion in the convective zone. Large scale mot ion in giant cells is 
strongly affected by Coriolis forces, giving a radial shear in the angular velocity, while the interaction 
of convection and rotation leads to the equatorial acceleration. Many hydromagnetic dynamo mecha­
nisms have been proposed in the last few years. In particular, meridional fields can be generated from 
azimuthal fields owing to a preferred sense of helicity in the mot ion (u -curlu # 0, the 'a-effect'). Such 
regeneration is included in Leighton's phenomenological model , which reproduces many features 
of the solar cycle. More detailed models will have to treat the concentration of magnetic flux into 
ropes by individual convection cells. 

1. Introduction 

It is impossible to provide a comprehensive review in one short lecture and I shall 
concentrate on a few selected topics in which recent progress has been substantial. Since 
magnetic fields in the Sun are effectively frozen into the ionized gas it is necessary 
to describe the motion of this gas before the behaviour of the fields can be understood. 
Furthermore, the scale of active regions (comparable with the solar radius) indicates 
that magnetic fields penetrate deep into the convective zone. In the last few years we 
have gained a better understanding of the structure of this zone and also of the dif­
ferential rotation, which dominates the solar dynamo. I shall first discuss the velocity 
field in the convective zone and then go on to recent developments in the theory of 
hydromagnetic dynamos. 

At one time it was reasonable to doubt whether any such dynamo could work: now 
a host of possible mechanisms has appeared. At the same time, interest has been stim­
ulated by discoveries of recent reversals in the Earth's field and of magnetic fields 
in stars and pulsars. Some dynamo models have fluid dynamical significance, some 
relate to the Earth and others imitate the oscillatory behaviour that we see in the Sun. 
Many details of the solar cycle are reproduced by a pair of remarkably faithful models 
and the process is becoming more comprehensible. However, these models still 
describe smoothed mean fields, rather than the complicated patterns that Professor 
Severny has shown us, and I shall conclude with some remarks about the concentration 
of magnetic flux into ropes by individual convection cells. 

2. Motion in the Convective Zone 

Models based on mixing length theory ascribe a depth of 100000 to 200000 km to 
the convective zone (Baker and Temesvary, 1966). It is conventionally supposed that 
there is a hierarchy of eddies whose scales are characterised by a mixing length equal 
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to the local pressure or density scale height. Unless their vertical size is limited, con­
tinuity implies that all flow would be predominantly horizontal. On the other hand, 
observation shows only a limited number of preferred length scales. The diameter of 
granules is comparable with the scale height at the base of the photosphere; the for­
mation of sunspots at junctions in the chromospheric network indicates that super-
granules are associated with deep-seated convection; Bumba's (1967) suggestion of 
giant cells is supported by the pattern of magnetic fields (Bumba et al., 1969) and by 
Howard's (1971) analysis of large-scale velocity fields; and now Bumba (1971) 
suspects that there may be supergiant cells too. There are some theoretical grounds 
(Simon and Weiss, 1968) for believing that cells can extend over about three scale 
heights and therefore that there should, in addition to granules and supergranules, 
be giant cells with diameters of about 300000 km and velocities around 0.1 km s" 1 , 
lasting for periods of a month or more. The convective zone could then be divided 
into three layers, each with its own preferred scale of motion. 

All magnetic features share in the differential rotation of the Sun. Therefore it must 
be a deep-seated phenomenon and not just a superficial wind. The angular velocity Q 
is found to vary with both latitude and depth. Let us consider the radial variation 
first. The solar wind exerts a decelerating torque on the convective zone and this 
deceleration may be enhanced by turbulence (Gough and Lynden-Bell, 1968). It has 
been suggested (e.g. by Plaskett, 1966) that the Sun's interior rotates ten times faster 
than the surface, and this hypothesis is supported by measurements of the Sun's 
oblateness (Dicke, 1970). It is hard to accept the existence of so great a variation in Q 
if any magnetic field permeates the region, and harder still to see how an ambient 
field could be entirely excluded from the shear zone. If the Sun indeed has a rapidly 
rotating core it cannot affect magnetic fields observed in the photosphere. Nevertheless, 
conservation of angular momentum does impose a constraint upon motion in con­
vective cells and the importance of the Coriolis force is given by the ratio of the turn­
over time to the rotation period of the Sun. For granules this is negligible and for 
supergranules it is slight. However, for giant cells there will be a tendency to maintain 
an angular momentum independent of r (the distance from the centre of the Sun) so 
that Qozr ~2; this will be limited by turbulent or kinetic friction. Rising fluid can thus 
move azimuthally through about 90° with a consequent distortion of the cells. Recent 
observations of the Sun's rotation rate (Howard and Harvey, 1970; Wilcox and 
Howard, 1970) show that magnetic features rotate more rapidly than the surrounding 
photosphere and also that the large scale field has a shorter rotation period than sun-
spots, thereby supporting the hypothesis that dQ/dr<0. 

It is apparent that the observed equatorial acceleration must result from the effect 
of rotation upon convection in a spherical shell and various simplified models have 
been put forward to explain this. Plaskett (1959) suggested that a heliostrophic wind 
could be driven by the meridional pressure gradient resulting from cooling at the poles, 
where rotation inhibits convection. (It is only in axisymmetric systems that convection 
is suppressed at the equator (Durney, 1968, 1970).) If convection cells near the 
equator are elongated parallel to the rotation axis, the temperature difference on an 
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equipotential surface might be 30°, which would suffice to drive the differential rota­
tion (Weiss, 1965). However, there is no direct evidence for such elongation and the 
observations summarized by Caccin et al. (1970) indicate that the temperature 
difference is less than 20°, while Plaskett (1962, 1970) used measurements of limb 
darkening to find an excess temperature of 300° at the poles. 

Biermann (1958) introduced an isotropic eddy viscosity to describe the transport of 
angular momentum by convective eddies; reduced diffusion in the radial direction then 
leads to a meridional circulation with equatorward motion at the surface. That such 
a motion can produce an equatorial acceleration follows from a simple argument due 
to Kippenhahn (1964). Let (r, 0, cp) be spherical polar co-ordinates and consider the 
region rx <r<r0 of a system rotating with constant angular velocity Q. Suppose there 
is an axisymmetric meridional flow with a 0-component v(r,0) such that v<0 
(rl<r<r2) and v > 0 (r 2 < r < r0 ). Then conservation of mass implies that 

Hence, comparing the transport of angular momentum in the two regions, we find that 

Thus angular momentum is transported towards the equator and the flow can main­
tain a steady state with an equatorial acceleration. This behaviour has been demon­
strated in specific models (Kippenhahn, 1963; Kohler, 1966) and Kohler (1970) has 
shown that anisotropic viscosity leads to an equatorial acceleration for an incompres­
sible fluid in a spherical shell, constrained to rotate between free boundaries. 

Another approach draws on meteorological analogy. In the terrestrial atmosphere 
transport of angular momentum is dominated by baroclinic (Rossby) waves. These 
waves have been studied theoretically and in laboratory experiments, using a rapidly 
rotating cylindrical annulus with an imposed lateral temperature gradient (Hide, 1970). 
A symmetrical regime is unstable and growing waves develop into asymmetric eddies. 
The flow is predominantly horizontal, and is dominated by the Coriolis force and hori­
zontal pressure gradients; any unstable vertical variation in temperature must be 
small compared with the horizontal temperature difference. This baroclinic instability 
gives rise to cyclones or anticyclones in the Earth's atmosphere. Attempts have been 
made to identify baroclinic waves in the Sun, either from the proper motions of sun-
spots (Ward, 1965, 1966) or by directly measuring velocities (Plaskett, 1966), and then 
to show that these waves are responsible for the equatorial acceleration (Starr and 
Gilman, 1965; Kato, 1969; Kato and Nakagawa, 1969; Starr, 1968, has conveniently 
assembled most of the relevant papers). The essential feature of this process is that the 
acceleration is maintained not by a general meridional circulation but owing to a net 
non-linear transfer of angular momentum by non-axisymmetric eddies. The discussion 
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of this effect is most illuminating but the model cannot be applied directly to the Sun. 
The convective zone differs significantly from the Earth's atmosphere. The super-
adiabatic stratification cannot be neglected, for the transport of energy requires 
large scale vertical motions in regions where the scale height is an appreciable fraction 
of the solar radius. Observationally, Rossby waves cannot be distinguished from the 
giant cells described above and horizontal motions should not be treated independ­
ently of convection. 

These simplified models have demonstrated that an equatorial acceleration is less 
remarkable than had once been supposed. Further progress requires a proper study 
of non-linear convection in rotating systems. Busse (1970) has formulated the problem 
for convection in a Boussinesq fluid contained in a slowly rotating spherical shell. 
Different modes are described by spherical harmonics in the form 

f(r)PP (cos 9) eim<p. 

The first mode to become unstable has ra=/, corresponding to a sectorial harmonic 
with a segmented structure like an orange and a pronounced maximum at the equator. 
For a thin shell of depth h, instability sets in with 

y/2h 

thus motion occurs in rolls whose equatorial cross-section is rectangular with an aspect 
ratio of yj2. Proceeding to higher order in an expansion about the critical Rayleigh 
number, Busse shows that there is a net equatorial acceleration whose magnitude 
(after inserting suitable values for parameters) is comparable with that observed in the 
Sun. Similar results were obtained by Davies-Jones and Gilman (1970, 1971). As a 
model for giant cells they considered a thin cylindrical annulus with rectangular 
cross-section, rotating about a vertical axis and heated from below. The relevant 
equations were solved to second order. When rotation is dominant the motion tends 
to be in rolls and produces differential rotation with an equatorial acceleration. 
Durney (1970, 1971) has used a computer to tackle a more complicated model: the 
problem resembles that of Busse, with free boundaries, but non-linear terms are re­
presented in the mean field (Herring) approximation. This provides (as is necessary) a 
limited representation of non-axisymmetric flow, though there is no coupling between 
different values of m. The fields are expanded in vector spherical harmonics and trun­
cated; only three poloidal and two toroidal harmonics, each with five radial functions, 
are retained. The qualitative features of Busse's analysis are confirmed by Durney's 
results. The dominant mode has the predicted value of / and the heat flux is maximized 
when m=l; the estimated effect of fluctuating interactions is to mix angular momen­
tum and to produce an equatorial acceleration; the heat transport is a maximum at 
the equator (though the inhibition of convection at the poles is enhanced by the 
Herring approximation); and the convection pattern lags behind the rotation of the 
shell as a whole. 
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Obviously further work remains to be done but it is now possible to give a plausible 
model of the convective zone. The radiative core rotates with a constant angular 
velocity. In the convective zone, below about 15000 km convection occurs in giant (or 
possibly in supergiant) cells and dQ/dr<0. These cells are probably elongated per­
pendicular to the equator. Above this level are the supergranular cells in which the 
horizontal velocity is predominantly outward from a rising central plume. The 
Coriolis force therefore introduces a swirling flow in the opposite sense to the Sun's 
rotation (clockwise in the northern hemisphere, anti-clockwise in the southern, like 
terrestrial anticyclones) corresponding to a net radial vorticity. An equatorial accelera­
tion is present throughout but drops to zero at the base of the convection zone. We 
might speculate that the existence of longitudinal structure in the field (Bumba et al, 
1969) and of magnetic sectors with a fixed rotation period of 27 days (Wilcox and 
Ness, 1967) indicates the presence of convection in rolls parallel to the axis of rotation. 
However, preferred longitudes for solar activity might persist as a consequence of the 
dynamo process itself (Leighton, 1969) in which case it can only be inferred that the 
27 day rotation period is somehow typical of the deep convection zone. 

3. The Dynamo Problem and Models of the Solar Cycle 

Despite the presence of strong local fields, the average magnetic energy density is 
small compared with the energy of motion. It is naturally convenient to consider 
smoothed magnetic fields and to treat them kinematically. The main features of the 
dynamo that produces the solar cycle are now generally accepted (Babcock, 1961; 
Leighton, 1964; Schmidt, 1968). The process runs as follows: 

(i) At sunspot minimum there is an initial poloidal field and the toroidal field is 
small. 

(ii) Differential rotation forms a strong toroidal field, first at medium and then at 
lower latitudes. 

(iii) Some instability produces kinks in the toroidal field, which float upwards (or 
are borne up by rising supergranules) to the surface. The associated swirl produces 
tilted bipolar regions with the preceding part closer to the equator, thus generating a 
poloidal field opposite to that originally present. 

(iv) The supergranules provide an effective eddy diffusion, which may be represented 
by a random walk process, and the reversed poloidal field diffuses to the poles by the 
next sunspot minimum. 

(v) The sequence is then repeated to give the full cycle. 
More detailed investigation involves the general theory of hydromagnetic dynamos. 

Fifteen years ago there was doubt as to whether any homogeneous dynamo mechanism 
was possible (Cowling, 1953). This gloom has been dispelled: indeed, G. O. Roberts 
(1970) has recently stated that 'almost all motions' will give dynamo action. (The 
phrase is given a mathematically precise meaning and obvious symmetrical models are 
still excluded.) Thus Lortz (1968) has devised a self-exciting dynamo with helical 
symmetry, while G. O. Roberts (1971), starting with an axially symmetric velocity, has 
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produced a growing, non-axisymmetric field. The present state of dynamo theory is 
reviewed in detail by P. H. Roberts (1971) and discussed by Parker (1970a, b) in the 
context of astronomy. 

A successful dynamo must avoid the effects of Cowling's theorem. The induction 
equation has the form 

— = curl(u x B) + ,yV2B, (1) 
dt 

where B is the magnetic field, u is the velocity and rj the magnetic diffusivity. Suppose 
that B and u are axisymmetric. They can be separated into poloidal (meridional) and 
toroidal (azimuthal) parts: 

B = Bp + B ^ , u = u p 4- u ^ 

It is convenient to introduce as an independent variable the distance from the axis, 

m = r sin 0 

together with the operator 

w 
Then the (^-component of (1) becomes 

d(BJ], -\_- - „ K v 1 
a, l J + V- - o , = B , x V + riAB,. (2) 
dt\w J \w J \w J w 

In this equation the second term on the left hand side merely represents the advection 
of toroidal field by the flow. On the right hand side, the creation of toroidal flux from 
the poloidal field as a result of differential rotation compensates for ohmic dissipation. 
The poloidal field is best expressed in terms of a toroidal vector potential, 

B p = c u r i n g . 

Then (1) can be integrated to give 

d 

dt 
(mA) + up-V(mA) = r\xn A A . (3) 

In contrast with (2), Equation (3) does not allow the regeneration of poloidal flux 
from B9. Consequently Bp ultimately decays, followed by B^. Thus an axisymmetric 
field cannot be maintained (Cowling, 1934). 

A realistic dynamo model must therefore be non-axisymmetric, with an azimuthally 
averaged field B, whose poloidal part is maintained by a toroidal emf 

(4) 
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Most models incorporate two scales of motion. Averaging over q> then produces a 
simplified form of which can be used to solve (1) for the mean field B. Parker 
(1955, 1970b) argued heuristically that the rate of regeneration of the poloidal field 
in the Sun as flux tubes are brought up to the surface should be proportional to the 
toroidal field strength, so that 

and (3) becomes 

dA 1 
— + -u,-V(mA) = rB9 + tiAA. (5) 
ot m 

Dynamo action is then possible. For example, if deviations from axial symmetry are 
small and the magnetic Reynolds number Rm> 1, it is possible to expand B and u in 
powers of R„112. Then (2) and (5) hold for modified average fields Bv and A, with F 
a function of up, and dynamo action can be demonstrated (Braginsky, 1964). 

In order to maintain the magnetic field it is necessary that the system should not be 
axially symmetric and this is certainly true of the turbulent convective zone. But 
"order does not arise spontaneously out of chaos" (Cowling, 1965). For homogeneous 
isotropic turbulence the average quantities u, curlu and u -curlu are all zero. However, 
if the random turbulence lacks reflectional symmetry it will have a preferred sense of 
helicity, so that 

u - c u r l u # 0 . 

The effect of this small scale turbulent flow on the mean field B is given by a mean 
emf 

£ = a B - £ c u r l B 
with 

a = — u • curl u (6) 
and 

jS = J T U U , 

where T is the correlation time for a turbulent eddy. Then (5) is once more obtained 
in the form 

dA 1 
— +-u-V(wA) = <xB<p + (rj + p)AA. (7) 
ot w 

Thus the helicity allows regeneration of the poloidal field by the so-called 'a-effect' in 
(7). That such a dynamo operates has been shown by the Potsdam group (Steenbeck 
et al, 1966; Steenbeck and Krause, 1966,1969; Krause et al, 1971) on the assumption 
that 

V2T l2jx < rj 

(where v, I are typical velocities and length scales for the turbulent eddies) and also by 

https://doi.org/10.1017/S0074180900023226 Published online by Cambridge University Press

https://doi.org/10.1017/S0074180900023226


764 N.O.WEISS 

Moffatt (1970) on the assumption that vl/n<l. As indicated below, this theory is also 
the basis for a model of the solar cycle. 

The various models of the sun represent smoothed fields and include some form of 
eddy diffusion. The effect of a meridional circulation on a poloidal field has been 
computed by Maheswaran (1969), while Nakagawa and Swarztrauber (1969) have 
studied the generation of toroidal flux. They adopt an axisymmetric velocity that 
satisfies the equation of motion for an incompressible fluid in a spherical shell with 
boundary conditions such that dQ/dr>0. Differential rotation creates Bv from Bp in a 
zone that migrates equatorward with velocity up (Bullard, 1955) but more complicated 
flows are needed to reverse Bp (Nakagawa, 1971). 

Many features of the solar cycle are reproduced when the field is distorted by 
baroclinic waves and Gilman (1968, 1969a, b) has argued that the Sun is indeed a 
Rossby wave dynamo. He considers a simplified model with waves driven by horizontal 
temperature gradients in a small, rapidly rotating cylindrical annulus. The fields are 
represented by drastically truncated expansions but the Coriolis force does allow 
generation of reversed poloidal flux from the toroidal field, leading to an oscillatory 
dynamo. A more realistic model, with spherical symmetry, has been studied by Gordon 
(1970). Similar processes can be expected in the convective zone, where the super-
adiabatic vertical gradient is more important than temperature differences between 
the poles and the equator (Davies-Jones and Gilman, 1970). 

A successful model has been constructed in which the interaction between con­
vection and rotation is represented by the a-effect (Steenbeck and Krause, 1969; 
Krause et al, 1971). Owing to the density stratification, rising material is associated 
with an outward radial flow and thus with anticyclinic motion. Thus turbulent 
convection has a left-handed screw sense in the northern hemisphere, and right-
handed in the southern. An expression for a emerges after solving the Navier-
Stokes equation and Krause (1968) finds that (6) reduces to 

v2x2Q 
a = cos0, (8) 

H w 

where H is the density scale height. The resistivity is dominated by the eddy diffusivity 
p. The model separates the convective zone into a lower region (giant cells) with 
differential rotation such that dQ/dr<0, and an upper region (supergranules) in which 
the a-mechanism operates. With suitably chosen parameters reversals are obtained 
and a convincing butterfly diagram is produced. 

This turbulent dynamo resembles Leighton's (1969) physical model, which repro­
duces the solar cycle with extraordinary accuracy. In this model the fields are pro­
jected onto a sphere of radius r0 (by averaging radially through the convective zone) 
and then averaged over longitude to give mean fields that are functions only of the 
colatitude and time. The differential equations governing B are constructed from 
terms representing the physical effects responsible for the solar cycle. Once again, Q 
is assumed to vary in the lower convective zone. In the upper region, toroidal fields 
erupt and form poloidal fields which are in turn dispersed by a random walk process. 
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Furthermore, the eruption occurs only when \B9\ exceeds a critical value Bc. The 
essential equations are then 

SBr . C d , . , 1 d ( . n dBr\ 
-^ = FS (B 0 siny) + — sin 9 — r (9) 
^ s i n 0 ^ v * " r D s n e a e V D E J 

and, from (2), 

5 ^ . J „ dQ „ d G \ 
dt 

where 

* = sin 0 ^ B , + r0Br —j-5-C\B<p\B99 (10) 

5 = 0 ( | ^ | < B C ) 
= 1 ( | B J > * C ) 

and C, C are constants depending on properties of the convective zone. The remaining 
field component, B0, is calculated from VB=0. In (9), the first term on the right-hand 
side generates new poloidal flux. The arbitrary parameter Fis an adjustable efficiency 
factor and y is the tilt of active regions. Now this term corresponds to an emf. 

with 

r ^ F S ^ l , ( i i ) 
sin0 

cf. Equation (8), and Leighton takes siny cos0. Thus his mechanism is similar to 
the a-effect described above. (F remains finite since \BV\ <BC when 9 is small.) The 
remaining term in (9) represents the random walk process, with a decay time Ti>«22v, 
corresponding to the eddy diffusivity in (7). Similarly, Equation (10), which includes 
the effects of differential rotation in the lower region and depletion of Bv as a conse­
quence of eruption into the upper zone, resembles (2). The main features of the solar 
cycle - Sporer's law, the butterfly diagram, the poleward drift of prominence zones 
and the 22 year periodicity - can be reproduced for a variety of assumptions about 
Q(r, 9). In this paper, Leighton discusses a number of experiments in which the values 
of parameters are altered. For example, the dynamo is found to be most efficient (i.e. 
the value of F that allows a 22 yr period is least, about 0.6) when the differential ro­
tation is dominated by a radial variation such that 

dQ , 
h — = — 18 sin 9 radians v . 

dr 

This heuristic model demonstrates that the observed behaviour of the Sun's magnetic 
field is compatible with the dynamo process outlined at the beginning of this section. 
Work by others, notably the Potsdam group, shows that the model can be made more 
rigorous. Many details of these mean field dynamos remain to be investigated. In 
addition it is now necessary to seek a better understanding of the effect of individual 
convection cells in producing the flux ropes that emerge into the photosphere. 
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4. Concentration of Magnetic Fields into Flux Ropes 

Magnetic flux is mainly concentrated around the perimeter of solar convection 
cells and particularly at corners where several cells meet. For weak fields this concen­
tration is purely kinematic and the field is limited by the magnetic Reynolds number 

A steady solution of (1) with a balance between diffusion and advection is achieved 
after the initial field B 0 has been amplified locally to a magnitude 

for two or three dimensional flow respectively (Parker, 1963; Clark, 1965; Weiss, 1966; 
Clark and Johnson, 1967). In the Sun R M is so large that forces exerted by these 
fields could not be withstood. It is generally supposed that concentration proceeds 
until equipartition is achieved. Then the field is limited by dynamical effects, and, 
locally, 

Indeed, Beckers (1971) has listed this as a means of determining the field strength. 
However, there has hitherto been no more precise calculation on which this assumption 
could be based. 

The process can be studied through a simple model problem. Consider a layer of 
incompressible fluid, heated from below in the presence of an imposed vertical field 
B 0 . The linearised treatment is well understood (Chandrasekhar, 1961; Danielson, 
1961; Weiss, 1964) and non-linear solutions have recently been obtained on a com­
puter. Three regimes are found to exist, depending on the value of B0: weak fields are 
distorted kinematically and reach a maximum strength given by (12), moderate fields 
are concentrated until they are powerful enough to affect the motion, while strong 
fields hinder and ultimately suppress convection, as predicted by linear theory. Pre­
liminary results for two dimensional flow within free boundaries show a maximum 
magnetic energy density for moderate fields that is four to ten times greater than the 
kinetic energy density corresponding to the greatest horizontal velocity. The strongest 
fields may therefore be several times greater than the values derived from (13). More­
over, the computations confirm not only that overstable linear modes grow into 
finite amplitude oscillations but also that certain exponentially growing perturbations 
develop into non-linear oscillations. 

Further investigation should help to clarify the factors governing the formation of 
flux ropes and also, perhaps, to explain the transmission of energy in sunspots (Weiss, 
1969). The magnetic field in sunspot umbrae is strong enough to inhibit steady 
convection, yet the energy emitted cannot be supplied by radiative transfer. As 

BKRH2B0 or B « RMB0 (12) 

B2 

2Ji 
(13) 
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Sweet (1971) and Wilson (1969, 1971) have already pointed out, some wave process 
must be present. Savage (1969) considers that overstable modes can be excited in 
sunspots, owing to a coupling of hydromagnetic waves in the unstable region with 
gravity waves in the stably stratified layer above. 

5. Conclusion 

It is apparent that great advances have been made in our understanding of large scale 
magnetic fields in the Sun. Many suggestive models illuminate various aspects of the 
solar cycle; but details are frequently obscure and more comprehensive calculations 
have still to be completed. A proper treatment of the convective zone must include 
the effects of compressibility as well as rotation, in three dimensional spherical geo­
metry. The development of photospheric fields by flux concentration between in­
dividual granules and supergranules must be studied, as proposed by Kuklin (1971). 
And these results must be combined with the full dynamo problem in order to provide 
a proper model that can explain the complicated fields that Severny (1971) has 
described. 
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Discussion 

Sreenivasan: It is very nice to hear that you have obtained magnetic energy density an order of 
magnitude higher than kinetic energy density in your computations. 

(1) D i d you actually solve the Navier-Stokes equation with a (j x B) term on the right hand side and 
integrate 

- = V x ( u x B ) + AV2B 
dt 

to obtain your flux concentration at the edges of the cells? 
(2) If the answer to question (1) is yes, how does one physically understand your conclusion, in the 

light of equipartition arguments o f Batchelor? 
(3) What is the reaction due to the growing magnetic field doing to the velocity field? 
I have recently shown that, starting from the assumption that an initial magnetic field is force-free, 

there is only one class of velocity fields which permit the magnetic field to remain force-free in time. 
These are Beltrami fields and obey the relation: 

£ = crt; and V x r i = a i i 

where £ = (B • V)u and xy = (u • V)B and B is given by V x B = aB for incompressible flow. The compres­
sible case is more complicated. It has also been shown that these helial mot ions can amplify the mag­
netic field B, beyond the equipartition limit, provided a satisfies an inequality. In this picture, there 
is no reaction by the magnetic field since the Lorentz force is zero. The amplification limit is set by 
the dynamical stability of the configuration. 

Weiss: Yes, the time-dependent Navier-Stokes, induction and heat flow equations were solved 
simultaneously. Of course, the enhanced magnetic field tends to slow down the mot ion , particularly 
where B is strongest. But the magnetic field is only concentrated locally, at the boundaries of a cell, 
so the overall energy density, averaged over a whole cell, is not necessarily larger than the average 
kinetic energy density. Moreover, equipartition arguments, which relate magnetic fields to velocities 
or vorticity, apply to three dimensional homogeneous turbulence and the numerical experiments 
don't really reproduce this ideal configuration. 

Gilman: As far as the observational evidence from sunspot m o t i o n is concerned (in particular 
the correlation of longitude and latitude mot ion giving an equatorward transport of momentum) 
we can not tell the difference between a giant convective cell and a baroclinic or Rossby wave. 
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