BULL. AUSTRAL. MATH. SOC. VOL. 32 (1985), 375-378.

A STRENGTHENED TOPOLOGICAL CARDINAL INEQUALITY

SUN SHU-HAO AND WANG YAN-MING

A new cardinal inequality, $|K(X)| \le 2^{L^*(X) \cdot psw(X)}$, is proved in this paper. It strengthens the result of D.K. Burke and R. Hodel that $|K(X)| \le 2^{e(X) \cdot psw(X)}$.

A bound on the number of compact sets in a topological space is given by D.K. Burke and R. Hodel [1]: for every T_1 -space X , we have

 $|K(X)| \leq 2^{e(X)} \cdot psw(X)$

Here, $|K(X)| = |\{C : C \text{ is a compact subset of } X \}|$;

 $e(X) = \sup\{|D|: D \text{ is a closed discrete subspace of } X\} + \omega$; and $psw(X) = \min\{k: \text{ there exists some separating open cover } U \text{ of } X \text{ with}$ $ord(x,U) \leq k \text{ for all } x \in X\}$. (The cover U of X is separating if $\cap\{U|U:x|U\} = \{x\} \text{ for all } x \in X \text{ , and } ord(x,U) = |\{U \in U: x \in U\}| \text{ . }) \text{ For}$ this and related results, see the survey paper Hodel [4]. We generalize this result in this paper.

First, we give a definition as follows:

DEFINITION. For every topological space X, the *Lindelöf number of X, denoted by $L^*(X)$, is defined by:

 $L^{*}(X) = \min\{k : \text{for every open cover } U \text{ of } X \text{ , there exists} \\ A \subseteq X \text{ with } |A| \le k \text{ such that } \cup st(x, U) = X\} \text{ .} \\ x \in A$

Received 26 March, 1985.

Copyright Clearance Centre, Inc. Serial-fee code: 0004-9727/85 \$A2.00 + 0.00.

LEMMA 1. (Burke's Lemma, [3, Theorem 1.1])

If $\{A_{\alpha} : \alpha \in \Lambda\}$ is an indexed collection of sets in which every member has cardinality $\leq \lambda$, where $|\Lambda| > 2^{\lambda}$, and each A_{α} is a disjoint union of two subsets A'_{α} , A''_{α} , then there is a set $\Lambda' \subseteq \Lambda$ such that $|\Lambda'| > 2^{\lambda}$ and $A'_{\alpha} \cap A''_{\beta} = \emptyset$ when α , $\beta \in \Lambda'$.

The main theorem in this paper is as follows:

THEOREM. For every T_1 -space X , we have

$$|K(X)| \leq 2^{L^{\star}(X)} \cdot psw(X)$$

Proof. The first step is to show that for $x \in T_1$ we have $|X| \le 2^{L^*(X) \cdot psw(X)}$, using Burke's Lemma.

Let $L^*(X) \cdot psw(X) = \lambda$, then $psw(X) \leq \lambda$ and $L^*(X) \leq \lambda$. Thus there is an open cover \mathcal{U} of X such that $\cap \{\mathcal{U} \in \mathcal{U} : x \in \mathcal{U}\} = \{x\}$ and $\operatorname{ord}(x, \mathcal{U}) \leq \lambda$ for all $x \in X$. We first construct the sets $A_y = A_y' \cup A_y''$ such that $A'_{\mathcal{U}} \cap A''_{\mathcal{U}} = \emptyset$ and $|A'_{\mathcal{U}}| \leq \lambda$ for all $y \in X$ as subsets of X. In fact, $\{U \in \mathcal{U} : y \in U\}$ can be indexed and denoted by $\{U_{\alpha}\}_{\alpha < \lambda}$. Let $V = \{U \in \mathcal{U} \mid y \notin U\}$ and $\mathcal{U}_{\alpha} = V \cup \{U_{\alpha}\}$ for $\alpha < \lambda$. Since $L^{*}(X) \leq \lambda$, there exists some $B_{\alpha} \subset X$ such that $|B_{\alpha}| \leq \lambda$ and $\bigcup st(x, U_{\alpha}) = X$. Since $x \in B_{\alpha}$ $st(x,U_{\alpha}) \subset st(x,V) \cup U_{\alpha}$ when $x \neq y$, but $st(y,U_{\alpha}) = U_{\alpha}$, then we have $x \in B_{\alpha}$ $B(y) = \bigcup_{\alpha < \lambda} B(y) | \le \lambda \cdot \lambda = \lambda$. Then $\bigcup_{x \in B(y)} st(x, V) = x \in B(y)$ $\alpha < \lambda \ x \in B_{\alpha}$ $x \in B(y)$ we have $\bigcup st(x, V) = X - \{y\}$. Since $|\bigcup \{U \in V | x \in U\}| \le \lambda \cdot \lambda = \lambda$ and $x \in B(y)$ ord(y,U) $\leq \lambda$, we can define the set $A_{y} = A_{y} \cup A_{y}$, where and $|A_{\mathcal{U}}| \leq |A'| + |A''| \leq \lambda + \lambda = \lambda$.

Now, we have defined the sets A_y for all $y \in X$. We can obtain $|X| \leq 2^{\lambda}$, immediately. Otherwise, $|X| > 2^{\lambda}$. Let $A = \{A_x\}_{x \in X}$. Then, by Burke's Lemma, there is a subset $X' \in X$ such that $|X'| > 2^{\lambda}$ and $A'_x \cap A''_y = \emptyset$ for any x, $y \in X'$. But this is impossible, because $y \in X - \{x\} = \bigcup st(x', V)$ where $V' = \{U \in U | X \setminus U\}$, whenever $x \neq y$. However, there exists some $U \in A'_x$ such that $y \in U$ and, of course, $U \in A''_y$ so $A'_x \cap A''_y = \emptyset$, a contradiction. This contradiction shows that we must have $|X| \leq 2^{\lambda} = 2^{L^*(X) \cdot psw(X)}$.

A standard argument now establishes that $|K(X)| \leq 2^{L^*(X)} \cdot psw(X) = 2^{\lambda}$, for example see Hodel [4, proof of Theorem 9.3].

REMARK. The definition of $L^*(X)$ was first introduced by Dai MuMing [5], and an independent proof of the result $|X| \leq 2^{L^*(X) \cdot psw(X)}$ is given in [5]. But our argument is simpler than the original argument.

COROLLARY 1. (D.K. Burke and R. Hodel [1, Theorem 4.4]) For every T_1 -space X, we have

$$|K(X)| \le 2^{e(X) \cdot psw(X)}$$

Proof. It is sufficient to show $e(X) \ge L^*(X)$. In fact, for every open cover U of X, consider the maximal subset $A \subseteq X$ satisfying the following property (*).

(*): for all $x, y \in A$ if $x \neq y$ then $x \notin st(y, U)$. Clearly, $X = \bigcup st(y, U)$. Otherwise, there exists an $x_o \in X - \bigcup st(y, U)$. $y \in A$ But then $st(x_o, U) \cap A = \emptyset$ and $A \cup \{x_o\}$ satisfies the property (*), contradicting the fact that A is maximal. By definition, $L^*(X) \leq |A|$. To show that A is a closed discrete subspace of X, note A is discrete since st(a, U) is open and $\{a\} = st(a, U) \cap A$ for all $a \in A$ and A is closed since for all $x \in X - A$, there exists an $a_o \in A$ such that $x \in st(a_o, U)$ and X is a T_1 -space, so $st(a_o, U) - \{a_o\}$ is open and it is disjoint from A. By definition, we have $e(X) \geq |A| \geq L^*(X)$. EXAMPLE 1. The Niemytzki plane X is separable, so $L^*(X) = \omega_o$, but it contains a closed discrete subspace of cardinality c, and therefore $e(X) \ge c > \omega_o = L^*(X)$.

EXAMPLE 2. Let $Y = N^{\mathcal{O}}$, where N is the discrete countable space. By the Hewitt-Marczewski-Pondiczery theorem, $d(Y) = \omega_{\mathcal{O}}$, and hence $L^*(Y) = \omega_{\mathcal{O}}$. Because if $\overline{A} = X$, then $\bigcup st(x, U) = X$ for every cover U $x \in A$ of X. Engelking [2] has proved that the space contains a closed discrete subspace cardinality of c, and so $e(Y) \ge c$. Thus $e(Y) > L^*(Y)$, also.

These examples show that the theorem in this paper is a significant extension for Burke and Hodel's result [1].

COROLLARY 2. For every T_1 -space X, we have $|K(X)| \le 2^{d(X) \cdot psw(X)}$.

References

- [1] D.K. Burke and R. Hodel, "The number of compact subsets of a topological space", Proc. Amer. Math Soc. 8 (1976), 363-368.
- [2] R. Engelking, "General Topology", (Warsawa 1977), 181.
- [3] D.K. Burke, A note on R.H. Bing's example G, in Topology Conference Virginia Polytechnic Institute and State University, March (1973) (Lecture Notes in Mathematics 375 Springer-Verlag 1974), 47-52.
- [4] F.R. Hodel, "Cardinal Functions I", Handbook of Set-Theoretic Topology, ed. K. Kunen and J.E. Vaughan (North-Holland, 1984), 1-61.
- [5] Dai MuMing, "A topological space cardinal inequality involving the *Lindelöf number", Acta Mathematica Sinica, 26 (1983), 731-735.

Department of Basic Teaching, Department of Mathematics, Shanghai Institute of Mechanical Shanghai Normal University, Engineering, Shanghai, PRC. Shanghai, PRC.