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Pure Infiniteness of the Crossed Product of
an AH-Algebra by an Endomorphism

Klaus Thomsen

Abstract. It is shown that simplicity of the crossed product of a unital AH-algebra with slow dimension

growth by an endomorphism implies that the algebra is also purely infinite, provided only that the

endomorphism leaves no trace state invariant and takes the unit to a full projection.

1 Introduction

It has been shown by Deaconu [De] and Anantharaman-Delaroche [An] that the

C∗-algebra of a local homeomorphism is the crossed product by an endomorphism

of another C∗-algebra. As observed in [De] this implies that such an algebra is of-

ten infinite, and Anantharaman-Delaroche described in [An] a sufficient condition

for the algebra to be purely infinite. Recall that a simple C∗-algebra is said to be

purely infinite when all its non-zero hereditary C∗-subalgebras contain an infinite

projection. Thanks to the classification results for purely infinite simple C∗-algebras,

the crossed product description obtained by Deaconu and Anantharaman-Delaroche

implies that the simple and purely infinite C∗-algebras that arise from local homeo-

morphisms are classified by their K-theory groups, and it therefore becomes an im-

portant question to decide when the algebra of a local homeomorphism is simple and

purely infinite.

In [R1] Rørdam proved that the crossed product by a full corner endomorphism

of a simple unital C∗-algebra of real rank zero with comparability of projections

is simple and purely infinite. In particular, the crossed product of a simple unital

AF-algebra by such an endomorphism is simple and purely infinite. In the same pa-

per Rørdam also initiated the classification of purely infinite simple C∗-algebras that

was subsequently completed, mutatis mutandis, by the classification results of Kirch-

berg and Phillips mentioned above. Rørdam’s result on the crossed product by an

endomorphism has been extended and used by several other mathematicians, but in

most of these results the initial algebra, the one with the endomorphism, hereafter

called the core, is assumed to be simple and to have various other properties. The

simplicity of the crossed product, as well as its pure infiniteness, is then a conse-

quence. The work of Dykema and Rørdam in [DR] is an exception, but they assume

some rather special properties of the endomorphism that are not easy to establish.

For the application to the C∗-algebras of a local homeomorphism it is a nuisance

to have to assume simplicity of the core. When the algebra of a local homeomor-

phism is simple, the core may or may not be simple, and hence the existing results,
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706 K. Thomsen

such as the one of Rørdam, on crossed products by endomorphisms can generally

only be used by imposing additional assumptions. It is the purpose of the present

paper to obtain a result regarding the pure infiniteness of a crossed product by an

endomorphism in which simplicity is assumed of the crossed product rather than of

the core, and which is general enough to cover the C∗-algebra of a local homeomor-

phism; assuming only that it is simple. The following, which is the main result of the

paper, is such a theorem. The definition of a unital AH-algebra with slow dimension

growth will be given in the next section.

Theorem 1.1 Let A be a unital AH-algebra with slow dimension growth. Let β : A →
A be an injective endomorphism such that

(i) β(1) is a full projection in A (i.e., Aβ(1)A = A), and

(ii) there is no trace state ω of A such that ω ◦ β = ω.

If the crossed product A ×β N is simple, it is also purely infinite.

Applications of this result to the C∗-algebras of local homeomorphisms and lo-

cally injective surjections are given in [CT].

It must be observed that the crossed product A ×β N in the theorem is not the

same as the one introduced by W. Paschke and used by Rørdam in [R1] where it is

assumed that β maps onto the corner β(1)Aβ(1). In order to also cover the crossed

products by endomorphisms arising from a locally injective surjection, which may

not be open and hence not a local homeomorphism (cf. [Th1]), we use instead the

crossed product introduced by Stacey in [St]. It can be defined as the universal C∗-

algebra generated by a copy of A and an isometry v with the property that vav∗ =

β(a) ([BKR]), and hence it agrees with the one used by Dykema and Rørdam in

[DR]. In contrast to the crossed product of Paschke, it is not required that v∗Av ⊆ A.

When β maps onto β(1)Aβ(1), as is the case when the situation arises from a local

homeomorphism in [An], the two crossed products coincide.

The main strategy of the proof is due to Rørdam. In [R2] he proved that the

crossed product of a C∗-algebra A by an automorphism is (simple and) purely infinite

when A is

(1) exact, finite and separable,

(2) simple,

(3) approximately divisible,

and has no densely defined non-zero trace that is invariant under the given automor-

phism. Although this is a result about an automorphism, it has bearing on crossed

products by endomorphisms, since they can be realised as a corner in a crossed prod-

uct by an automorphism.

The last condition, about the absence of invariant traces, is of course necessary.

Conditions (1) are harmless and satisfied when the crossed product arises from one

of the locally injective surjections we have in mind. As we explained above, we aim to

move the simplicity assumption from the core to the crossed product, while approxi-

mate divisibility is a property that is hard to establish and about which we know next

to nothing when the algebra comes from a local homeomorphism and the core is not

simple. It is therefore interesting to observe that an important step in the following
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proof of Theorem 1.1 will be to show that a much weaker version of divisibility is

automatic for unital AH-algebras with slow dimension growth.

2 Tracial Almost Divisibility for AH-algebras with Slow Dimension
Growth

Let Ml denote the C∗-algebra of complex l × l-matrices. In the following a homoge-

neous C∗-algebra will be a C∗-algebra A isomorphic to a C∗-algebra of the form

eC(X,Ml)e,

where X is a compact metric space and e is a projection in C(X,Ml) such that e(x) 6= 0

for all x ∈ X. The dimension ratio r(A) of A is then defined to be the number

r(A) = max
x∈X

Dim X + 1

Rank e(x)
.

Definition 2.1 A unital C∗-algebra A is an AH-algebra when there is an increasing

sequence A1 ⊆ A2 ⊆ A3 ⊆ · · · of unital C∗-subalgebras of A such that A =
⋃

n An

and each An is a homogeneous C∗-algebra. We say that A has slow dimension growth

when there is such a sequence with the additional property that limn→∞ r(An) = 0.

There seems to be slightly varying definitions of slow dimension growth for

AH-algebras, and it should therefore be observed that with the above definition we

insist that the rank of the projections increase without bounds even when all the in-

volved topological spaces are zero-dimensional.

Let A be a C∗-algebra and a, b two positive elements of A. Recall (see, for example,

[T]) that a is Cuntz subequivalent to b when there is a sequence {zn} in A such that

a = limn→∞ znbz∗n . We write a � b when this holds. This notion extends the well-

known subequivalence in the sense of Murray–von Neumann used for projections.

In the following we denote by T(A) the convex set of trace states of a unital

C∗-algebra A. The next definition is inspired by [W, Definition 2.5(ii)].

Definition 2.2 A unital C∗-algebra A is tracially almost divisible when the following

holds. For any positive contraction h in A and any given m ∈ N there is a δ > 0 with

the property that for all ǫ > 0, there are mutually orthogonal positive contractions

h1, h2, . . . , hm in A such that

h1 + h2 + · · · + hm � h and τ (hi) ≥ δτ (h) − ǫ

for all i and all τ ∈ T(A).

As an important step towards the main result of the paper, we first prove the fol-

lowing proposition.

Proposition 2.3 Let A be a unital AH-algebra with slow dimension growth. Then A

is tracially almost divisible.
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We will actually prove a slightly stronger result; namely that the δ of Definition 2.2

can be chosen to be 1
4m

, independently of h. However, the proof of the main result

will not require this strengthening of the conclusion.

The main tools for the proof of Proposition 2.3 are methods and results of A. Toms

[T] about Cuntz subequivalence in a homogeneous C∗-algebra. When A is a unital

C∗-algebra and τ ∈ T(A), there is associated with τ a “dimension function” dτ de-

fined on positive contractions of A as

dτ (a) = lim
n→∞

τ (a
1
n ) = sup

n∈N

τ (a
1
n ).

By [T, Corollary 5.2] we have the following theorem.

Theorem 2.4 (A. Toms) Let A ≃ eC(X,Ml)e be a homogeneous C∗-algebra. Let

a, b ∈ A be positive contractions such that

dτ (a) + max
x∈X

Dim X

2 Rank e(x)
≤ dτ (b)

for all τ ∈ T(A). It follows that a � b.

Actually, the result in [T] is slightly stronger, but the above theorem suffices for

our purposes.

Lemma 2.5 Let ǫ ∈]0, 1
8
[ and m ∈ N. Let eC(X,Ml)e be a homogeneous C∗-algebra

such that Rank e(x) = M is constant and

Dim X + 1

M
<

ǫ

8m
.

It follows that for every positive contraction h ∈ eC(X,Ml)e, there are m mutually

orthogonal positive contractions h1, h2, . . . , hm in eC(X,Ml)e such that

h1 + h2 + · · · + hm � h

and

(2.1) τ (hi) ≥
1

4m
τ (h) − 2ǫ

for all i and all trace states τ ∈ T(eC(X,Ml)e).

Proof Let j ∈ N, j ≥ 2, and set d = Dim X + 1. Since d
M
< ǫ

4
, we find that

( j − 1
2
)ǫ

m
− d

2Mm
− ( j + 1

2
)ǫ

2m
>

( j − 1
2
)ǫ

m
− ǫ

8m
− ( j + 1

2
)ǫ

2m
=

( j − 7
4
)ǫ

2m
≥ ǫ

8m
.

As 1
M
< ǫ

8m
, these estimates show that there is a natural number α j such that

( j + 1
2
)ǫ

2
≤ mα j

M
<

(

j − 1

2

)

ǫ− d

2M
.
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Note that we can arrange that α j ≤ α j+1. Let J be the least natural number such that
(

J + 1
2

)

ǫ ≥ 1
2
. (The condition ǫ < 1

8
ensures that J ≥ 4.) Then

mα j

M
≤ mα J

M
≤

(

J − 1

2

)

ǫ− d

2M
< 1

for 2 ≤ j ≤ J. We can therefore choose mutually orthogonal trivial projections

p
j
1, p

j
2, . . . , p

j
m in C(X,Ml) for each 2 ≤ j ≤ J such that Rank p

j
i = α j , i =

1, 2, . . . ,m, and such that

p
j
i ≤ p

j+1
i , i = 1, 2, . . . ,m, 2 ≤ j ≤ J − 1.

Then

Rank

( m
∑

i=1

p J
i

)

+
d

2
= mα J +

d

2
≤

(

J − 1

2

)

ǫM ≤ M

2
≤ M = Rank e,

so the projection
∑m

i=1 p J
i is Murray–von Neumann equivalent to a subprojection of

e; this is a classical fact about vector bundles, but it also follows from Theorem 2.4.

Consequently we may assume that p
j
i ∈ eC(X,Ml)e for all i, j, with the reduction

that they may no longer be trivial projections. Set p0
i = p1

i = 0 for i = 1, 2, . . . ,m.

For each 0 ≤ j ≤ J−1 we choose a continuous function g j : [( j + 1
2
)ǫ, ( j + 3

2
)ǫ] →

[0, 1] such that g j(( j + 1
2
)ǫ) = 1 and g j(( j + 3

2
)ǫ) = 0. For each i = 1, 2, . . . ,m, define

a continuous function

Hi : [0, 1] × X → Ml

such that

Hi(t, x) =



















0, t ∈
[

0, 1
2
ǫ
]

,

g j(t)p
j
i (x) + (1 − g j(t))p

j+1
i (x), t ∈

[

( j + 1
2
)ǫ, ( j + 3

2
)ǫ
]

,

0 ≤ j ≤ J − 1,

p J
i (x), t ≥ ( J + 1

2
)ǫ.

Then Hi(t, x) is a positive contraction and Hi(t, x)Hi ′(t, x) = 0, i 6= i ′, for all t, x.

For each x ∈ X we consider the extremal trace state τx of eC(X,Ml)e defined as

τx( f ) = tr( f (x)), where tr is the trace state of e(x)Mle(x). For each i = 1, 2, . . . ,m,

we define h ′
i ∈ C(X,Ml) such that h ′

i (x) = Hi(τx(h), x). Note that the h ′
i ’s are mutu-

ally orthogonal positive contractions and that h ′
i ∈ eC(X,Ml)e, since

e(x)Hi(t, x)e(x) = Hi(t, x), ∀t, x.

Set

U =

{

x ∈ X : τx(h) >
(

2 +
1

2

)

ǫ
}
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and consider an x ∈ U . Then τx(h) ∈
[

( j + 1
2
)ǫ, ( j + 3

2
)ǫ
]

for some 2 ≤ j ≤ J − 1

or τx(h) ≥ ( J + 1
2
)ǫ. In the first case we find that

τx(h ′
i ) = g j

(

τx(h)
) α j

M
+
(

1 − g j

(

τx(h)
)) α j+1

M

≥ g j

(

τx(h)
) ( j + 1

2
)ǫ

2m
+
(

1 − g j

(

τx(h)
)) ( j + 3

2
)ǫ

2m
≥ τx(h)

2m
− ǫ

2m
,

while

dτx

( m
∑

i=1

h ′
i

)

≤ mα j+1

M
≤

(

j +
1

2

)

ǫ− d

2M
≤ τx(h) − d

2M
.

When τx(h) ≥ ( J + 1
2
)ǫ we find that

τx(h ′
i ) =

α J

M
≥ ( J + 1

2
)ǫ

2m
≥ 1

4m
≥ 1

4m
τx(h),

while

dτx

( m
∑

i=1

h ′
i

)

=
mα J

M
≤

(

J − 1

2

)

ǫ− d

2M
≤ τx(h) − d

2M
.

All in all we conclude that

dτx

( m
∑

i=1

h ′
i

)

≤ τx(h) − d

2M
and τx(h ′

k) ≥ 1

4m
τx(h) − ǫ

2

for all k = 1, 2, . . . ,m and all x ∈ U .

If U = ∅, we set h1 = h2 = · · · = hm = 0. Since 0 � h and 1
4m
τx(h) ≤ 2ǫ for

all x, this will prove the lemma in this case. Assume therefore that U 6= ∅. Recall

that T(eC(U ,Ml)e) is the closed convex hull of {τx : x ∈ U}. Since dτx

(
∑m

i=1 h ′
i

)

≤
τx(h) − d

2M
for all x ∈ U , and since

τ 7→ dτ

( m
∑

i=1

h ′
i |U

)

− τ (h|U ) +
d

2M

is affine and lower semi-continuous on T
(

eC(U ,Ml)e
)

, we find that

dτ

( m
∑

i=1

h ′
i |U

)

+
d

2M
≤ τ (h|U ) ≤ dτ (h|U )

for all τ ∈ T
(

eC(U ,Ml)e
)

. Since Dim U ≤ Dim X, it follows from Theorem 2.4 that

there is a sequence {zn} ∈ eC(U ,Ml)e such that

lim
n→∞

zn(x)h(x)zn(x)∗ =

m
∑

i=1

h ′
i (x)
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uniformly in x ∈ U . Set

K =

{

x ∈ X : τx(h) ≥
(

3 +
1

2

)

ǫ
}

and let ψ : X → [0, 1] be a continuous function such that ψ(x) = 1, x ∈ K, and

suppψ ⊆ U . We consider ψ as a central element of eC(X,Ml)e in the obvious way.

Now let

hi = ψh ′
i , i = 1, 2, . . . ,m,

and set z ′n = zn

√
ψ ∈ eC(X,Ml)e. Then

lim
n→∞

z ′nhz ′n
∗
=

m
∑

i=1

hi

and τx(hi) ≥ 1
4m
τx(h) − ǫ for all x ∈ K. Since 1

4m
τx(h) − 2ǫ ≤ 4ǫ

4m
− 2ǫ < 0 ≤ τx(hi)

when x /∈ K, we obtain (2.1).

Proof of Proposition 2.3 Consider a positive contraction b ∈ A. Let m ∈ N and

ǫ ∈ ]0, 1
8
[ be given. We will complete the proof by showing that there are mutually

orthogonal positive contractions b1, b2, . . . , bm in A such that b1 + b2 + · · · + bm � b

and τ (bi) ≥ 1
4m
τ (b) − 3ǫ for all i.

Since A is an AH-algebra with slow dimension growth it follows from [KR,

Lemma 2.5(ii)] that there is a unital homogeneous C∗-sub-algebra B ⊆ A and a

positive contraction a ∈ B such that r(B) < ǫ
8m

, a � b and ‖a − b‖ ≤ ǫ. Note that B

is isomorphic to a direct sum

B ≃ ⊕N
j=1e jC(X j ,Ml)e j

of homogeneous C∗-algebras such that Rank e j(x) = K j is constant on X j and

Dim X j + 1

K j

≤ r(B) <
ǫ

8m

for all j. We can therefore apply Lemma 2.5 to each summand and in this way obtain

mutually orthogonal positive contractions b1, b2, . . . , bm in B such that b1 + b2 + · · ·+
bm � a and τ (bi) ≥ 1

4m
τ (a) − 2ǫ for all τ ∈ T(B). Since 1

4m
τ (a) ≥ 1

4m (τ (b) − ǫ) ≥
1

4m
τ (b) − ǫ for all τ ∈ T(A), we are done.

3 Proof of the Main Result

In this section we prove Theorem 1.1 by an elaboration of Rørdam’s proof of [R2,

Theorem 2.1]. For this purpose we isolate the following lemmas. In the statement of

the first we use the (standard) notation M∞(B) for the union
⋃

n Mn(B). Recall that

a projection p ∈ B is full when BpB = B.
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Lemma 3.1 Let Z be a compact metric space of dimension dim Z ≤ d and let p ≤
e ∈ C(Z,Ml) be projections. Assume that there is a natural number N ∈ N such that

Rank p(z) > (N + 1)(N + 2)
[ d

2

]

for all z ∈ Z, where [d/2] is the least natural number larger or equal to d/2. It follows

that there is a projection p ′ ∈ M∞(eC(Z,Ml)e) such that

N[p ′] ≤ [p] ≤ (N + 3)[p ′]

in K0(eC(Z,Ml)e)

Proof Let Z = Z1 ⊔ Z2 ⊔ · · · ⊔ Zk be a partition of Z by clopen sets such that

Rank p is constant on each Z j . Fix j and set d j = Dim Z j . Note that d j ≤ d. Write

Rank p = l(N + 1)[d j/2] + r where l, r ∈ N and 1 ≤ r ≤ (N + 1)[d j/2]. Then

l ≥ N + 2 by assumption, and hence

(3.1) Nl
[ d j

2

]

+ l
[ d j

2

]

< Rank p ≤ Nl
[ d j

2

]

+ 2l
[ d j

2

]

on Z j . Let q j be a trivial projection on Z j of constant rank l[d j/2]. Since e|Z j
is a full

projection, q j is equivalent to a projection p ′
j in Md(eC(Z j ,Ml)e) for some d. Since

l[d j/2] ≥ d j/2, it follows from (3.1) and the theory of vector bundles (or Theorem

2.4), that N[p ′
j] ≤ [p|Z j

] ≤ (N + 3)[p ′
j] in K0(eC(Z j ,Ml)e). Set p ′

=
∑

j p ′
j .

Lemma 3.2 Let A be a unital AH-algebra with slow dimension growth and let A1 ⊆
A2 ⊆ A3 ⊆ · · · be a sequence of homogeneous C∗-sub-algebras,

An ≃ enC(Xn,Mmn
)en

such that 1 ∈ A1, A =
⋃

n An and limn→∞ r(An) = 0. Let p be a full projection in A

and let K ∈ N be given. It follows that there is an n ∈ N and a projection q ∈ An such

that q is unitarily equivalent to p in A and

Rank q(x) ≥ K(Dim Xn + 1)

for all x ∈ Xn.

Proof A standard argument shows that p is unitarily equivalent to a projection q in

Am for some m. Since p is full, we can assume, by increasing m, that q is full in Am.

There is then a k ∈ N such that Rank q(x) ≥ 1
k

Rank en(x) for all x ∈ Xn, n ≥ m.

Therefore the desired inequality will hold for all sufficiently large n thanks to the slow

dimension growth condition.

Let a, b ∈ K0(A). In the following we write a ≺ b when there is a full projection q

in Mn(A) for some n such that b − a = [q].
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Lemma 3.3 Let A be an AH-algebra with slow dimension growth. Let e, f ∈ A be

projections such that N[e] ≺ N[ f ] in K0(A) for some N ∈ N. It follows that [e] ≺ [ f ]

in K0(A) and e � f in A.

Proof It follows from Lemma 3.2 that the difference N[ f ] − N[e] is represented by

a projection p in a homogeneous C∗-algebra, containing also projections e ′ and f ′

unitarily equivalent to e and f , respectively, such that infx Rank p(x) is greater than

N + 1 times the dimension of the spectrum. Then well-known facts about vector

bundles, or Theorem 2.4, show that in this algebra e ′ is equivalent to a subprojection

e ′ ′ of f ′ such that f ′ − e ′ ′ is full. The lemma follows.

Lemma 3.4 Let B be a C∗-algebra with the property that B =
⋃

n Bn, where B1 ⊆
B2 ⊆ B3 ⊆ . . . are C∗-subalgebras of B each of which is a unital AH-algebra with slow

dimension growth. Furthermore, assume that the unit of Bn is a full projection in Bn+1

for each n. Let α be an automorphism of B such that ω ◦α 6= ω for all non-zero densely

defined lower semi-continuous traces ω on B. Assume that B ×α Z is simple. It follows

that every full projection in B is infinite in B ×α Z.

Proof We elaborate on Rørdam’s proof of [R2, Lemma 2.5]. Let e be a full projection

in B.

(a) The first step is to show that there is an element x ∈ K0(B) such that x ≥ α∗(x)

and x 6= α∗(x). As in [R2] this follows from the absence of α-invariant traces, by use

of results of Blackadar–Rørdam and Goodearl–Handelman. We refer to [R2] for the

details of the argument.

(b) Let I ⊆ B be a non-zero ideal such that α(I) ⊆ I. It follows that I = B. Indeed

J =
⋃

n≥0

α−n(I)

is an ideal in B such that α( J) = J. Since B ×α Z is simple, it follows that J = B.

In particular there is an n ∈ N and an element b ∈ I such that ‖αn(e) − b‖ =

‖e − α−n(b)‖ < 1
3
. As is well known this implies that I contains a projection equiv-

alent to αn(e). This projection is full in A, since αn(e) is, whence I = B.

In the following we extend α to Mn(B) for all n in the canonical way.

(c) Let p ∈ Mn(B) be a projection such that [p] = x − α∗(x), where x ∈ K0(B) is

the element from (a). Since

⋃

k

{

a0 pb0 + a1α(p)b1 + · · · + akαk(p)bk : ai , bi ∈ Mn(B), i = 0, 1, . . . , k
}

is a non-zero ideal I in Mn(B) such that α(I) ⊆ I, it follows from (b) that I = Mn(B)

and hence it contains a full projection. By definition of I this implies that there is

a k such that [p] + α∗[p] + α2
∗[p] + · · · + αk

∗[p] is an order-unit in K0(B). Set

y = x+α∗(x)+α2
∗(x)+· · ·+αk

∗(x). Then y−α∗(y) = [p]+α∗[p]+α2
∗[p]+· · ·+αk

∗[p].

By exchanging y for x we may therefore assume that x − α∗(x) = [p] for some full

projection p of M∞(B), i.e., α∗(x) ≺ x.
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(d) Write x = g1−g2, where g1, g2 ∈ K0(B)+. We may assume that gi ≻ 0, i = 1, 2.

There is an N ∈ N such that

3g1 + 3α∗(g2) ≺ N
(

x − α∗(x)
)

and g1 + α∗(g2) ≺ N[e].

Note that since gi ≥ 0, there are L, n ∈ N such that gi = [pi] for some projection

pi in ML(Bn). Since in fact gi ≻ 0, it follows from the assumption about the unit

of Bn being full in Bn+1 for each n, that we can assume that pi is full in ML(Bn).

It follows then from Lemma 3.2 that we can realise the projections pi , i = 1, 2, in

a homogeneous C∗-subalgebra of ML(Bn) such that the assumptions of Lemma 3.1

hold for both. In this way we get elements f1, f2 ∈ K0(B)+ such that N f j ≤ g j ≤
(N + 3) f j , j = 1, 2, and we set f = f1 − f2. Then

N[p] ≻ 3g1 + 3α∗(g2) ≥ 3N
(

f1 + α∗( f2)
)

,

which implies that [p] ≻ 3( f1 + α∗( f2)) by Lemma 3.3. It follows first that

N f = x − (g1 − N f1) + (g2 − N f2) ≥ α∗(x) + [p] − 3 f1

= Nα∗( f ) + α∗

(

(g1 − N f1) − (g2 − N f2)
)

+ [p] − 3 f1

≥ Nα∗( f ) + [p] − 3
(

f1 + α∗( f2)
)

≻ Nα∗( f ),

and then from Lemma 3.3 that

(3.2) f ≻ α∗( f ).

Since N[e] ≻ g1 + α∗(g2) ≥ N( f1 + α∗( f2)), we have also that [e] ≻ f1 + α∗( f2).

It follows then from Lemma 3.3 that there are projections p, q ∈ B such that [p] =

f1, [q] = f2 and p +α(q) ≤ e. Then [α(p)]+[q] ≺ [p]+[α(q)] by (3.2), and another

application of Lemma 3.3 implies that there is a partial isometry t ∈ M2(B) such that

t

(

α(p) 0

0 q

)

t∗ ≤
(

p + α(q) 0

0 0

)

.

Then

t

(

α(p) 0

0 0

)

=

(

v 0

0 0

)

and

t

(

0 1

1 0

)(

q 0

0 0

)

=

(

w 0

0 0

)

,

where w, v ∈ B are partial isometries such that v∗v = α(p), w∗w = q, and vα(p)v∗ +

wqw∗ < p + α(q). Let u be the canonical unitary in the multiplier algebra of B ×α Z

which implements α on B. Set s = vup + wqu∗ + (e − p − α(q)) and note that s∗s =

p +α(q) + (e− p−α(q)) = e, while ss∗ = vα(p)v∗ + wqw∗ + (e− p−α(q)) < e.
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Let 0 < ǫ < 1
2

and define f ǫ1 , f ǫ0 : [0, 1] → [0, 1] such that

f ǫ1 (t) =











0, 0 ≤ t ≤ ǫ
2

1, t ∈ [ǫ, 1]

linear, else

and f ǫ0 (t) = max{0, t − ǫ}.

Lemma 3.5 There is a δ > 0 such that for all ǫ ∈]0, 1
2
[ the following holds: When

b, b ′ are positive contractions in a C∗-algebra B such that

(3.3)
∥

∥ f ǫ1 (b) − f ǫ1 (b ′)
∥

∥ ≤ δ

and f ǫ0 (b ′)B f ǫ0 (b ′) contains a projection p, then f ǫ1 (b)B f ǫ1 (b) contains a projection that

is Murray–von Neumann equivalent to p.

Proof Let δ > 0 be so small that yBy contains a projection Murray–von Neumann

equivalent to q whenever x, y, q are positive contractions in a C∗-algebra B such that

q is a projection and ‖xyx − q‖ ≤ δ. This δ will work, because f ǫ1 (b ′)p = p, and it

follows therefore from (3.3) that ‖p f ǫ1 (b)p − p‖ ≤ δ.

Proof of Theorem 1.1 The general setup for the proof is the following. Let A∞ be

the inductive limit of the sequence

(3.4) A
β

A
β

A
β

· · ·

We can then define an automorphism α of A∞ such that α ◦ ρ∞,n = ρ∞,n ◦ β,

where ρ∞,n : A → A∞ is the canonical ∗-homomorphism from the n-th level in the

sequence (3.4) into the inductive limit algebra. In this notation the inverse of α is

defined such that α−1 ◦ ρ∞,n = ρ∞,n+1. Let e ∈ A∞ be the projection e = ρ∞,1(1),

which is a full projection of A∞ by assumption (i) and hence also a full projection of

the crossed product A∞×α Z. By a result of Stacey [St] there is an isomorphism A×β

N → e (A∞ ×α Z) e sending a ∈ A to ρ∞,1(a) and the canonical isometry v ∈ A×β N

to eue, where u is the canonical unitary in the multiplier algebra of A∞×αZ. Note that

A∞ ×α Z is stably isomorphic to A ×β N and hence simple by assumption. Thanks

to condition (i) the unit of ρ∞,k(A) is full in ρ∞,k+1(A) so that the sequence Bk =

ρ∞,k(A), k = 1, 2, . . . , will have properties required in Lemma 3.4. Furthermore, it

follows from condition ii) that there can not be any non-zero densely defined lower

semi-continuous α-invariant trace on A∞; because if there was it would have to be

non-zero on some Bk and it would then give rise to a β-invariant trace state on A.

In this way it follows from Lemma 3.4 that every full projection of A∞ is infinite in

A∞ ×α Z. In fact, the same argument shows that a full projection in Mk (A∞) is

infinite in Mk(A∞ ×α Z) for any k ∈ N.

We make now the following

Assertion 3.6 Let h ∈ A∞\{0} be a positive contraction. It follows that

h(A∞ ×α Z)h contains an infinite projection.
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Assuming that Assertion 3.6 holds, the proof of Theorem 1.1 is completed as fol-

lows. Let b ∈ (A∞ ×α Z) \{0} be a positive contraction. Let E : A∞ ×α Z → A∞ be

the canonical conditional expectation. Let ǫ > 0. As in the proof of [R2, Lemma 2.4]

we can find positive elements a, x ∈ A∞ such that ‖a‖ ≥ 1 − ǫ, ‖x‖ ≤ 1, and

‖‖E(b)‖−1xbx − a‖ ≤ ǫ. The only change we have to make to Rørdam’s argument is

to replace the lemma used by Kishomoto with [OP2, Lemma 7.1]. Some backtrack-

ing through the work of Olesen and Pedersen is needed to verify that [OP2, Lemma

7.1] applies. What is needed is to show that the simplicity of A∞ ×α Z forces all the

automorphisms αn, n ∈ Z\{0}, to be properly outer, since this is the assumption

in [OP2, Lemma 7.1]. This follows from the implication (i) ⇒ (vi) of [OP2, The-

orem 10.4], since the Connes spectrum Γ(α) is the whole circle by [OP1, Proposi-

tion 6.3].

Having the element a, set a ′
= f (a), where f : [0, 1] → [0, 1] is a continuous

function such that f (t) = 1, t ∈ [1 − 2ǫ, 1] and | f (t) − t| ≤ 2ǫ for all t ∈ [0, 1].

Then ‖a ′−a‖ ≤ 2ǫ and spectral theory gives us a positive element h ∈ A∞ such that

‖h‖ = 1 and a ′h = h. It follows now from Assertion 3.6 that h(A∞ ×α Z)h contains

an infinite projection p. Since ‖‖E(b)‖−1xbx − a ′‖ ≤ 3ǫ and a ′p = p, we find that

‖‖E(b)‖−1 pxbxp− p‖ ≤ 3ǫ. Thus, if only ǫ is small enough ‖E(b)‖−1
√

bxpx
√

b will

be close to a projection in b (A∞ ×α Z) b that is Murray–von Neumann equivalent to

p and hence infinite. This shows that A∞ ×α Z is purely infinite, as is A ×β N since it

is stably isomorphic to A∞ ×α Z (cf. [PS, Proposition 5.5]).

It remains to prove Assertion 3.6. Since A∞ =
⋃

n ρ∞,n(A), an approximation

argument based on Lemma 3.5 shows that we may assume that h ∈ ρ∞,n0
(A) for

some n0 ∈ N. Set A ′
= ρ∞,n0

(1)A∞ρ∞,n0
(1) and note that uA ′u∗ ⊆ A ′.

Deviating slightly from the notation used so far, let T(A∞) denote the set of

densely defined, lower, semi-continuous traces ω on A∞ such that ω(e) = 1. This

is a compact space in a topology described before [Th2, Lemma 3], which is the

same topology it gets through the identification of T(A∞) with the tracial state space

T(eA∞e). Since h ≤ ρ∞,n0
(1), it follows that ω 7→ ω(ukhu∗k) is continuous on

T (A∞) for all k. We claim that there is an m ∈ N such that

(3.5) ω
(

h + uhu∗ + u2hu∗2
+ u3hu∗3

+ · · · + umhu∗m) > 0

for all ω ∈ T(A∞). Indeed, if not, there is for each n ∈ N a trace ωn ∈ T(A∞) such

that ωn(h + uhu∗ + u2hu∗2 + u3hu∗3 + · · · + unhu∗n) = 0. A condensation point of

{ωn} in T(A∞) will be a densely defined, lower, semi-continuous trace ω such that

ω(unhu∗n) = 0 for all n. Then {x ∈ A∞ : ω(unx∗xu∗n) = 0∀n} is a non-zero, closed,

two-sided ideal I in A∞ such that α(I) ⊆ I. As in (b) from the proof of Lemma 3.4,

this implies that I = A∞, which is impossible, since e /∈ I. This proves the claim.

Let T(A ′) be the tracial state space of A ′. Since β(1) is full in A it follows that

ρ∞,n0
(1) is a full projection in A∞, so any ω ∈ T(A ′) is the restriction to A ′ of a

densely defined lower semi-continuous trace on A∞ (cf. [Pe, Theorem 5.2.7]). It

follows therefore from (3.5) that
∑m

j=0 ω
(

u jhu∗ j
)

> 0 for all ω ∈ T(A ′). By com-
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pactness of T(A ′), there is a δ > 0 such that

m
∑

j=0

ω(u jhu∗ j
) ≥ δ

for all ω ∈ T(A ′). Since A ≃ ρ∞,n0
(A) is tracially almost divisible by Proposi-

tion 2.3 and since ρ∞,n0
(A) is a unital C∗-subalgebra of A ′ that contains h, there is a

δ ′ > 0 with the property that for any ǫ1 > 0 there are orthogonal positive elements

h0, h1, . . . , hm in A ′ such that h0 + h1 + · · ·+ hm � h in A ′ and τ (hi) ≥ δ ′τ (h)− ǫ1 for

all i and all τ ∈ T(A ′). Let τ ′ ∈ T
(

Mm+1(A ′)
)

be the tracial state space of Mm+1(A ′).

Then τ ′
= τ ⊗ tr for some τ ∈ T(A ′), where tr is the trace state of Mm+1. It follows

that

τ ′











h0 0 . . . 0

0 uh1u∗ . . . 0
...

...
. . .

...

0 0 . . . umhmu∗m











=
1

m + 1

m
∑

j=0

τ (u jh ju
∗ j

)

≥ 1

m + 1

m
∑

j=0

(

δ ′τ
(

u jhu∗ j) − τ
(

ρ∞,n0
(β j(1))

)

ǫ1

)

≥ δδ ′

m + 1
− ǫ1

( m
∑

j=0

τ
(

ρ∞,n0

(

β j(1)
)

)

)

.

Choose ǫ1 > 0 such that

δ1 =
δδ ′

m + 1
− ǫ1 sup

ω∈T(A ′)

( m
∑

j=0

ω
(

ρ∞,n0

(

β j(1)
)

)

)

> 0.

Set

H =











h0 0 . . . 0

0 uh1u∗ . . . 0
...

...
. . .

...

0 0 . . . umhmum











and notice that τ (H) ≥ δ1 for all τ ∈ T(Mm+1(A ′)). Let ǫ0 ∈ ]0, 1
4
[ be so small that

(3.6) τ
(

f ǫ0

0 (H)
)

≥ δ1

2

for all τ ∈ T(Mm+1(A ′)). It may or may not be the case that A ′ is an AH-algebra with

slow dimension growth, but since A has these properties and since

A ′
=

⋃

k≥n0

ρ∞,n0
(1)ρ∞,k(A)ρ∞,n0

(1),
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we can pick an increasing sequence F1 ⊆ F2 ⊆ F3 ⊆ . . . of finite subsets with dense

union in A ′ and write A ′
=

⋃

l Al such that each Al is a homogeneous C∗-algebra

with ρ∞,n0
(1) ∈ Al and Fl ⊆ 1

l
Al, meaning that every element of Fl has distance less

than 1
l

to an element of Al, and such that liml→∞ r(Al) = 0. Let ǫ > 0. We can then

find nǫ ∈ N and for each l ≥ nǫ a positive contraction kl ∈ Mm+1(Al) such that

(3.7)
∥

∥ f ǫ0

1 (H) − f ǫ0

1 (kl)
∥

∥ ≤ ǫ and
∥

∥ f ǫ0

0 (H) − f ǫ0

0 (kl)
∥

∥ ≤ δ1

6
.

In particular, it follows from the last condition and (3.6) that there is an n ′
ǫ ≥ nǫ such

that

(3.8) τ
(

f ǫ0

0 (kl)
)

≥ δ1

4

for all τ ∈ T(Mm+1(Al)) and all l ≥ n ′
ǫ. (This is proved by contradiction. If

there are arbitrary large ni for which T(Mm+1(Ani
)) contains an element τni

with

τni

(

f ǫ0

0

(

kni

))

< δ1

4
, consider a state extension τ̃ni

of τni
to Mm+1(A ′). A weak* con-

densation point of {τ̃ni
} will be an element of T(Mm+1(A ′)) for which (3.6) fails.)

Consider an l ≥ n ′
ǫ. Let dτ : Mm+1(Al)

+ → R
+ denote the dimension function

corresponding to τ ∈ T (Mm+1(Al)), i.e., dτ (a) = limn→∞ τ (a
1
n ). It follows then

from (3.8) that

dτ
(

f ǫ0

0 (kl)
)

≥ δ1

4
.

Since liml→∞ r(Mm+1(Al)) = 0, it follows from well-known properties of vector bun-

dles, or from Theorem 2.4, that for all large l there is a projection pl ∈ Mm+1(Al) with

constant rank 1 over the spectrum of Al. Then dτ
(

pl

)

≤ r(Mm+1(Al)), and hence

dτ
(

f ǫ0

0 (kl)
)

≥ δ1

4
>

r(Mm+1(Al))

2
+ dτ (pl)

for all τ ∈ T(Mm+1(Al)) when l is large enough. Fix such an l. Theorem 2.4 now

gives us a sequence {xn} in Mm+1(Al) such that

lim
n→∞

xn f ǫ0

0 (kl) x∗n = pl.

Note that pl is a full projection in Mm+1(A∞). As pointed out in the beginning

of the proof pl is then an infinite projection in Mm+1(A∞ ×α Z). Note also that

‖xn

√

f ǫ0

0 (kl)‖ ≤ 2, which, combined with (3.7), implies that

∥

∥

∥xn

√

f ǫ0

0 (kl) f ǫ0

1 (H)
√

f ǫ0

0 (kl)x∗n − xn

√

f ǫ0

0 (kl) f ǫ0

1 (kl)
√

f ǫ0

0 (kl)x∗n

∥

∥

∥ ≤ 4ǫ

for all large n. Since f ǫ0

1 f ǫ0

0 = f ǫ0

0 , we conclude that

∥

∥

∥xn

√

f ǫ0

0 (kl) f ǫ0

1 (H)
√

f ǫ0

0 (kl)x∗n − pl

∥

∥

∥ ≤ 5ǫ
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for all large n. Let X ∈ Mm+1(A∞ ×α Z) be the matrix

X =











√

f ǫ0

1 (h0) 0 . . . 0

u
√

f ǫ0

1 (h1) 0 . . . 0
...

...
. . .

...

um
√

f ǫ0

1 (hm) 0 . . . 0











.

Then XX∗
= f ǫ0

1 (H), since the hi ’s are mutually orthogonal and

X∗X = diag

( m
∑

j=0

f ǫ0

1 (h j), 0, 0, . . . , 0

)

,

i.e., f ǫ0

1 (H) ∼ X∗X in the sense of [KR], which implies that f ǫ0

1 (H) � X∗X. Since
∑m

j=0 f ǫ0

1 (h j) = f ǫ0

1

(
∑m

j=0 h j

)

and
∑m

j=0 h j � h, it follows from [W, Proposition

1.11] that there is an element d0 in the hereditary C∗-subalgebra of A ′ generated by

h such that
∑m

j=0 f ǫ0

1 (h j) � d0. Thus f ǫ0

1 (H) � d ′
0, where d ′

0 = diag(d0, 0, 0, . . . , 0),

i.e., there is a sequence {zn} in Mm+1(A∞ ×α Z) such that limn znd ′
0z∗n = f ǫ0

1 (H).

Then
∥

∥

∥xn

√

f ǫ0

0 (kl)zn ′d ′
0z∗n ′

√

f ǫ0

0 (kl)x∗n − pl

∥

∥

∥ ≤ 6ǫ

when n ′ and n are sufficiently large, and it follows that

√

d ′
0z∗n ′

√

f ǫ0

0 (kl)x∗n xn

√

f ǫ0

0 (kl)z∗n ′

√

d ′
0

will be close to a projection in d ′
0Mm+1 (A∞ ×α Z) d ′

0 that is equivalent to pl. Since pl

is infinite, this gives us the desired projection, completing the proof of Assertion 3.6

and hence the proof of the theorem.
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