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(EXTRA)ORDINARY EQUIVALENCES WITH THE
ASCENDING/DESCENDING SEQUENCE PRINCIPLE

MARTA FIORI-CARONES , ALBERTO MARCONE , PAUL SHAFER , AND GIOVANNI SOLDÀ

Abstract. We analyze the axiomatic strength of the following theorem due to Rival and Sands [28]
in the style of reverse mathematics. Every infinite partial order P of finite width contains an infinite chain
C such that every element of P is either comparable with no element of C or with infinitely many elements
of C. Our main results are the following. The Rival–Sands theorem for infinite partial orders of arbitrary
finite width is equivalent to IΣ0

2 + ADS over RCA0. For each fixed k ≥ 3, the Rival–Sands theorem for
infinite partial orders of width ≤k is equivalent to ADS over RCA0. The Rival–Sands theorem for infinite
partial orders that are decomposable into the union of two chains is equivalent to SADS over RCA0. Here
RCA0 denotes the recursive comprehension axiomatic system, IΣ0

2 denotes the Σ0
2 induction scheme, ADS

denotes the ascending/descending sequence principle, and SADS denotes the stable ascending/descending
sequence principle. To the best of our knowledge, these versions of the Rival–Sands theorem for partial
orders are the first examples of theorems from the general mathematics literature whose strength is exactly
characterized by IΣ0

2 + ADS, by ADS, and by SADS. Furthermore, we give a new purely combinatorial
result by extending the Rival–Sands theorem to infinite partial orders that do not have infinite antichains,
and we show that this extension is equivalent to arithmetical comprehension over RCA0.

§1. Introduction. One of the major initiatives in reverse mathematics is the logical
analysis of theorems of countable combinatorics, with special attention to Ramsey’s
theorem for pairs and its consequences [5, 7–9, 16, 21–23, 27, 29, 31]. We continue
this tradition by analyzing the second of two theorems from On the adjacency
of vertices to the vertices of an infinite subgraph by Rival and Sands [28]. To the
best of our knowledge, this analysis yields the first examples of theorems from
the general mathematics literature whose strength is exactly characterized by the
ascending/descending sequence principle.

Both of the Rival–Sands theorems are inspired by Ramsey’s theorem for pairs and
two colors. The first theorem is a hybrid inside/outside version of Ramsey’s theorem
for pairs. Thinking in terms of graphs, Ramsey’s theorem for pairs produces an
infinite set of vertices H that is either a clique or an independent set in a given
countable graph. However, Ramsey’s theorem provides no information concerning
the relationship between the vertices inside H and the vertices outside H. The Rival–
Sands theorem for graphs balances this situation by producing an infinite set of
vertices H that is not necessarily a clique or an independent set, but for which there
is information concerning the relationship between the vertices inside H and the
vertices outside H.
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(EXTRA)ORDINARY EQUIVALENCES WITH THE ASCENDING/DESCENDING 263

Rival–Sands theorem for graphs [28]. Every infinite graph G contains an
infinite subset H such that every vertex of G is adjacent to precisely none, one, or
infinitely many vertices of H.

Rival and Sands note that the three options “none,” “one,” and “infinitely many”
in their theorem are all necessary. They ask for a class of graphs for which the
“one” option may be removed, and they show that this is possible for the class of
comparability graphs of infinite partial orders of finite width (i.e., infinite partial
orders for which there is a fixed finite upper bound on the size of the antichains).
We call the resulting theorem the Rival–Sands theorem for partial orders.

Rival–Sands theorem for partial orders [28]. Every infinite partial order P
of finite width contains an infinite chain C such that every element of P is either
comparable with no element of C or with infinitely many elements of C.

Furthermore, Rival and Sands show that in the case of countable partial orders,
the “infinitely many” option may be strengthened to “cofinitely many.”

The Rival–Sands theorems do not appear to be immediate consequences of any
version of Ramsey’s theorem, and neither Rival–Sands theorem appears to be an
immediate consequence of the other. Rival and Sands give direct proofs of both
theorems that do not invoke any other Ramsey-theoretic statement. Interestingly,
their proof of the Rival–Sands theorem for partial orders makes essential use of
Π1

1-CA0 by iterating a maximal chain principle that is equivalent to Π1
1-CA0 over

RCA0. We discuss this in detail in Section 8.
In [11], Fiori-Carones, Shafer, and Soldà analyze the axiomatic and compu-

tational strength of the Rival–Sands theorem for graphs in the style of reverse
mathematics and Weihrauch analysis. In reverse mathematics, the Rival–Sands
theorem for graphs is equivalent to ACA0 over RCA0. Thus the Rival–Sands theorem
for graphs is indirectly equivalent to Ramsey’s theorem for triples (which is also
equivalent to ACA0; see [30]), but it does not follow from Ramsey’s theorem for
pairs (which is strictly weaker thanACA0 [29]). However, the authors of [11] together
with Hirst and Lempp show that a weakened inside-only version of the Rival–Sands
theorem for graphs is indeed equivalent to Ramsey’s theorem for pairs and two
colors. In terms of the Weihrauch degrees, the main result of [11] is that the Rival–
Sands theorem for graphs is strongly Weihrauch-equivalent to the double-jump
of weak König’s lemma. To the best of the authors’ knowledge, the Rival–Sands
theorem for graphs is the first theorem from the general mathematics literature
exhibiting exactly this strength. Furthermore, combining the aforementioned
equivalence with a result of Brattka and Rakotoniaina [4] yields that the Rival–
Sands theorem for graphs is Weihrauch-equivalent to the parallelization of Ramsey’s
theorem for pairs and two colors. Thus the uniform computational strength of
the Rival–Sands theorem for graphs is exactly characterized by the ability to
simultaneously solve countably many instances of Ramsey’s theorem for pairs in
parallel.

In this work, we characterize the axiomatic strength of the Rival–Sands theorem
for partial orders in terms of the ascending/descending sequence principle, which
states that an infinite linear order contains either an infinite ascending sequence
or an infinite descending sequence. Our primary focus is the Rival–Sands theorem
for partial orders as stated above, but we also consider the version with “cofinitely
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many” in place of “infinitely many.” The main results are the following, which are
summarized in Theorem 6.6.

• The Rival–Sands theorem for infinite partial orders of arbitrary finite width
is equivalent to the ascending/descending sequence principle plus the Σ0

2
induction scheme over RCA0.

• For each fixed standard k ≥ 3, the Rival–Sands theorem for infinite partial
orders of width ≤k is equivalent to the ascending/descending sequence
principle over RCA0.

• The Rival–Sands theorem for infinite partial orders that are decomposable
into the union of two chains is equivalent to the stable ascending/descending
sequence principle over RCA0.

• The Rival–Sands theorem with “cofinitely many” in place of “infinitely many”
for infinite partial orders of width≤2 is equivalent to the ascending/descending
sequence principle over RCA0 plus the Σ0

2 induction scheme.

Furthermore, in Theorems 7.2 and 7.3, we give a new purely combinatorial result
by extending the Rival–Sands theorem to all countably infinite partial orders that do
not have infinite antichains. This is non-trivial, as a partial order may have arbitrarily
large finite antichains, and therefore not have finite width, yet still have no infinite
antichain. In Theorem 7.8, we also show that the extension of the Rival–Sands
theorem to countably infinite partial orders without infinite antichains is equivalent
to ACA0 over RCA0.

Computational aspects of linear and partial orders have long been studied.
In reverse mathematics, the ascending/descending sequence principle is a weak
consequence of Ramsey’s theorem for pairs that was first isolated and studied by
Hirschfeldt and Shore [16]. There are a few classical statements that are readily
equivalent to this principle over RCA0, such as the statement “Every countable
sequence of real numbers contains a monotone subsequence” (see [20, Remark
6.8]), but thus far the principle’s primary use has been as an important technical
benchmark. To the best of our knowledge, Theorem 6.6 provides the first examples
from the modern mathematical literature of theorems that are equivalent to
the ascending/descending sequence principle, the ascending/descending sequence
principle plus Σ0

2 induction, and to the stable ascending/descending sequence
principle. This explains our title. It is extraordinary to find theorems from the
ordinary literature that are equivalent to the ascending/descending sequence
principle.

It follows from our analysis that the Rival–Sands theorem for partial orders
without infinite antichains is equivalent to the Rival–Sands theorem for graphs,
whereas the Rival–Sands theorem for partial orders of finite width is strictly weaker.
The relationship between the Rival–Sands theorem for partial orders and Ramsey’s
theorem for pairs is more curious. Ramsey’s theorem for pairs and two colors suffices
to prove the Rival–Sands theorem for partial orders of width k for any fixed k, but
not for partial orders of arbitrary finite width. However, Ramsey’s theorem for
pairs and arbitrarily many colors does suffice to prove the Rival–Sands theorem
for partial orders of arbitrary finite width. This is a matter of induction. Ramsey’s
theorem for pairs and two colors does not prove the Σ0

2 induction scheme [9], but
Ramsey’s theorem for pairs and arbitrarily many colors does [17]. All together, the

https://doi.org/10.1017/jsl.2022.92 Published online by Cambridge University Press

https://doi.org/10.1017/jsl.2022.92


(EXTRA)ORDINARY EQUIVALENCES WITH THE ASCENDING/DESCENDING 265

Rival–Sands theorem for partial orders of arbitrary finite width is strictly weaker
than Ramsey’s theorem for pairs and arbitrarily many colors; the Rival–Sands
theorem for partial orders of arbitrary finite width is not provable from Ramsey’s
theorem for pairs and two colors; and the Rival–Sands theorem for partial orders
of a fixed finite width k is strictly weaker than Ramsey’s theorem for pairs and two
colors.

This article is organized as follows. Section 2 gives an overview of the relevant
reverse mathematics background. Section 3 formalizes several versions of the Rival–
Sands theorem for partial orders and discusses principles concerning chains in
partial orders, most notably Kierstead’s effective analog of Dilworth’s theorem [18].
Section 4 presents our first proofs of the Rival–Sands theorem for partial orders.
These proofs are not axiomatically optimal, but they are easy to understand, and
they introduce ideas that we later effectivize in order to give proofs in weaker
systems. Section 5 provides the forward directions of the equivalences mentioned
above. Section 6 provides the reversals. Section 7 provides our extension of the
Rival–Sands theorem to infinite partial orders without infinite antichains as well as
a proof that this extension is equivalent to ACA0. All the proofs of the Rival–Sands
theorem for partial orders and its variants given in Sections 4–7 are new. In Section 8,
we discuss the original proof by Rival and Sands, and we analyze several principles
asserting that partial orders contain various sorts of maximal chains.

§2. Reverse mathematics background. We give a brief review of RCA0, WKL0,
ACA0, Π1

1-CA0, Ramsey’s theorem for pairs, its combinatorial consequences, and the
first-order schemes. For further details, we refer the reader to Simpson’s standard
reference [30] and to Hirschfeldt’s monograph [15].

We work in the two-sorted language of second-order arithmetic 0, 1, <, +, ×, ∈,
where variables x, y, z, etc. typically range over the first sort, thought of as natural
numbers, and variables X, Y, Z, etc. typically range over the second sort, thought
of as sets of natural numbers. As usual, the symbol N denotes the first-order part of
whatever structure is under consideration.

The axioms of the base system RCA0 (for recursive comprehension axiom) are as
follows:

• A first-order sentence expressing that (N; 0, 1, <,+,×) forms a discretely
ordered commutative semi-ring with identity.

• The Σ0
1 induction scheme (denoted IΣ0

1), which consists of the universal closures
(by both first- and second-order quantifiers) of all formulas of the form(

ϕ(0) ∧ ∀n (ϕ(n) → ϕ(n + 1))
)
→ ∀n ϕ(n),

where ϕ is Σ0
1.

• The Δ0
1 comprehension scheme, which consists of the universal closures (by both

first- and second-order quantifiers) of all formulas of the form

∀n
(
ϕ(n) ↔ �(n)

)
→ ∃X ∀n

(
n ∈ X ↔ ϕ(n)

)
,

where ϕ is Σ0
1, � is Π0

1, and X is not free in ϕ.

The “0” in “RCA0” refers to the restriction of the induction scheme to Σ0
1 formulas.

RCA0 suffices to implement the usual bijective encodings of pairs of numbers, finite
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sequences of numbers, finite sets of numbers, and so on. See [30, Section II.2] for
details on how this is done. For example, we may encode a function f : N → N
by its graph {〈m, n〉 : f(m) = n}. We may also encode the set N<N of all finite
sequences of natural numbers and the set 2<N of all finite binary sequences. For
�, � ∈ N<N and f : N → N, let |�| denote the length of �; let � � � denote that � is
an initial segment of �: |�| ≤ |�| ∧ ∀n < |�| (�(n) = �(n)); and let � � f denote
that � is an initial segment of f : ∀n < |�| (�(n) = f(n)). For �, � ∈ N<N, let ���
denote the concatenation of � and �. When � = 〈n〉 is a sequence of length 1,
we usually write ��n instead of ��〈n〉. For f : N → N, � ∈ N<N, and n ∈ N, let
f�n = 〈f(0), f(1), ... , f(n – 1)〉 denote the initial segment of f of length n; and if
n ≤ |�|, let ��n = 〈�(0), ... , �(n – 1)〉 denote the initial segment of � of length n.

RCA0 also suffices to develop the basic theory of oracle Turing machines (see,
for example, [30, Section VII.1]). We view such machines as defining Turing
functionals, and we write Φ(A) for the result of applying the functional Φ to
the set A. We also write Φ(A)(n) for the value of Φ(A) on input n, if it is
defined. We may relativize a Turing functional Φ to a set X, write ΦX to denote
the relativized functional, and write ΦX (A) for Φ(X ⊕ A), where X ⊕ A = {2n :
n ∈ X} ∪ {2n + 1 : n ∈ A} as usual. The ΦX (A) notation is intended to convey
that X is fixed but A may vary. We may also iterate a sequence Φ0, ... ,Φk–1 of
Turing functionals. For a set A, we say that the iteration Φk–1(Φk–2(···Φ0(A) ··· ))
is total if Φi(Φi–1(···Φ0(A) ··· ))(n) is defined for every i < k and every n. This
may be expressed by asserting that for every n, there is a sequence 〈�0, ... , �k〉 of
elements of N<N, each of length at least n, such that �0 � A and ∀i < k ∀m <
|�i+1|

(
Φi(�i)(m) halts within |�i | steps and �i+1(m) = Φi(�i)(m)

)
.

Define a tree to be a setT ⊆ N<N that is closed under initial segments: ∀� ∀� ((� ∈
T ∧ � � �) → � ∈ T ). Say that an f : N → N is a infinite path through a tree T
if every initial segment of f is in T : ∀n (f�n ∈ T ). A tree with no infinite path is
called well-founded, and a tree with an infinite path is called ill-founded. Finally, a
tree T ⊆ N<N is called finitely branching if for every � ∈ T there are only finitely
many n with ��n ∈ T . A tree T ⊆ 2<N is necessarily finitely branching. All of these
definitions can be made in RCA0. The axioms of WKL0 (for weak König’s lemma)
are those of RCA0, plus the statement that every infinite tree T ⊆ 2<N has an infinite
path.

The axioms of ACA0 (for arithmetical comprehension axiom) are of those of RCA0,
plus the arithmetical comprehension scheme, which consists of the universal closures
of all formulas of the form

∃X ∀n
(
n ∈ X ↔ ϕ(n)

)
,

where ϕ is an arithmetical formula in which X is not free. To show that some
statement ϕ implies ACA0 over RCA0, a common strategy is to use RCA0 + ϕ to
show that the ranges of injections exist as sets and appeal to the following well-
known lemma.

Lemma 2.1 [30, Lemma III.1.3]. The following are equivalent over RCA0.

(1) ACA0.
(2) If f : N → N is an injection, then there is a set X such that ∀n (n ∈ X ↔

∃s (f(s) = n)).
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Unlike its weak version, the full version of König’s lemma, which states that every
infinite finitely branching tree T ⊆ N<N has an infinite path, is equivalent to ACA0

over RCA0 (see [30, Theorem III.7.2]).
The axioms of Π1

1-CA0 (for Π1
1 comprehension axiom) are those of RCA0, plus the

Π1
1 comprehension scheme, which consists of the universal closures of all formulas

of the form

∃X ∀n
(
n ∈ X ↔ ϕ(n)

)
,

where ϕ is a Π1
1 formula in which X is not free. To show that some statement ϕ

implies Π1
1-CA0 over RCA0, a useful tool is to use RCA0 + ϕ to show that every ill-

founded tree has a leftmost path. For functions f, g : N → N, say that g is to the left
of f if ∃n

(
g(n) < f(n) ∧ ∀i < n (g(i) = f(i))

)
. The leftmost path principle (LPP)

states that for every ill-founded tree T ⊆ N<N, there is an infinite path f through T
such that no infinite path through T is to the left of f.

Theorem 2.2 [24, Theorem 6.5]. The following are equivalent over RCA0.

(1) Π1
1-CA0.

(2) LPP.

A huge amount of research in reverse mathematics is devoted to understanding
the strength of Ramsey’s theorem for pairs and its consequences. For a set X ⊆ N,
let [X ]2 denote the set of two-element subsets of X, which may be encoded as
[X ]2 = {〈x, y〉 : x, y ∈ X ∧ x < y}. A function c : [N]2 → k is called a k-coloring
of pairs, and an infinite set H ⊆ N is called homogeneous for a k-coloring of pairs
c if c is constant on [H ]2. Furthermore, a k-coloring of pairs c is called stable if
lims c(n, s) exists for every n. Ramsey’s theorem for pairs and k colors (RT2

k) states
that for every k-coloring of pairs c, there is a set that is homogeneous for c. Stable
Ramsey’s theorem for pairs and k colors (SRT2

k) is the restriction of RT2
k to stable

k-colorings of pairs c. RT2
<∞ abbreviates ∀k RT2

k and SRT2
<∞ abbreviates ∀k SRT2

k .
Likewise, a function c : N → k is called a k-coloring of singletons, and an infinite
H ⊆ N is called homogeneous for a k-coloring of singletons c if c is constant on H.
Ramsey’s theorem for singletons and k colors (RT1

k) states that for every k-coloring
of singletons c, there is a set that is homogeneous for c. RT1

<∞ abbreviates ∀k RT1
k ,

which we think of as expressing the infinite pigeonhole principle. RCA0 proves RT1
k

for each fixed standard k, but it does not prove RT1
<∞.

Of the many combinatorial consequences ofRT2
2, we are primarily concerned with

the ascending/descending sequence principle (ADS), stating that every countably
infinite linear order has either an infinite ascending sequence or an infinite
descending sequence, as well as its stable version SADS. To be precise, let (L,<L) be
a linear order. A set S ⊆ L is an ascending sequence if ∀x, y ∈ S (x < y → x <L y),
and it is a descending sequence if ∀x, y ∈ S (x < y → y <L x). The principle ADS
then states that for every infinite linear order (L,<L), there is an infiniteS ⊆ L that is
either an ascending sequence or a descending sequence. Often it is more convenient to
phrase ADS by stating that for every infinite linear order (L,<L), there is an infinite
sequence 〈xn : n ∈ N〉 of elements of L such that either x0 <L x1 <L x2 <L ··· or
x0 >L x1 >L x2 >L ··· . RCA0 proves that the two phrasings of ADS are equivalent
because it proves that any sequence x0, x1, x2, ... of distinct elements of N can
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ACA0

RT2
2

SRT2
2

CAC

ADS

SADS

RT1
<∞

WKL0

RCA0

Figure 1. Selected principles and systems and their implications and non-
implications overRCA0. An arrow indicates that the source principle/system implies
the target principle/system over RCA0. No further arrows may be added, except
those that may be inferred via transitivity. No arrows reverse. Proofs of these
implications and separations may be found in [6, 8, 16, 17, 21, 22, 26, 29, 30].

be thinned to an <-increasing subsequence xi0 < xi1 < xi2 < ··· where the set
{xin : n ∈ N} exists. Call a linear order (L,<L) stable if every element either has
only finitely many predecessors or has only finitely many successors. SADS is the
restriction of ADS to infinite stable linear orders. Closely related to ADS is the
chain/antichain principle (CAC), which states that every infinite partial order has
either an infinite chain or an infinite antichain. Figure 1 summarizes the relationships
among several of the systems and principles mentioned thus far.

Finally, we recall the induction schemes and their cousins, to which we collectively
refer as the first-order schemes.

• The induction axiom for ϕ is the universal closure of the formula(
ϕ(0) ∧ ∀n (ϕ(n) → ϕ(n + 1))

)
→ ∀n ϕ(n).

• The least element principle for ϕ is the universal closure of the formula

∃n ϕ(n) → ∃n
(
ϕ(n) ∧ ∀m < n ¬ϕ(m)

)
.

• The bounded comprehension axiom for ϕ is the universal closure of the formula

∀b ∃X ∀n
(
n ∈ X ↔ (n < b ∧ ϕ(n))

)
,

where X is not free in ϕ.
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• The bounding (or collection) axiom for ϕ is the universal closure of the formula

∀a
(
∀n < a ∃m ϕ(n,m) → ∃b ∀n < a ∃m < b ϕ(n,m)

)
,

where a and b are not free in ϕ.

For a class of formulas Γ, the Γ induction scheme (IΓ) consists of the induction
axioms for all ϕ ∈ Γ, the Γ least element principle consists of the least element
principles for allϕ ∈ Γ, the bounded Γ comprehension scheme consists of the bounded
comprehension axioms for allϕ ∈ Γ, and the Γ bounding scheme (BΓ) consists of the
bounding axioms for all ϕ ∈ Γ. For example, BΣ0

2 consists of the bounding axioms
for all Σ0

2 formulas. Beyond RCA0, we are mostly interested in BΣ0
2 and IΣ0

2. The
following list summarizes the relationships between the systems and principles of
Figure 1 and the first-order schemes.

• ACA0 proves the induction axiom, least element principle, bounded compre-
hension axiom, and bounding axiom for every arithmetical formula.

• In addition to IΣ0
1, RCA0 proves IΠ0

1, the Σ0
1 least element principle, the Π0

1 least
element principle, the bounded Σ0

1 comprehension scheme, the bounded Π0
1

comprehension scheme, and BΣ0
1 (see [14, Section I.2] and [30], Section II.3).

• Neither RCA0 nor WKL0 proves BΣ0
2 (see [30, Sections IX.1 and IX.2]).

• RCA0 proves that BΠ0
1, BΣ0

2, and RT1
<∞ are equivalent; that IΣ0

2, IΠ0
2, the

Σ0
2 least element principle, the Π0

2 least element principle, the bounded Σ0
2

comprehension scheme, and the bounded Π0
2 comprehension scheme are all

equivalent; and that IΣ0
2 implies BΣ0

2 (see [14, Section I.2], [17], and [30, Section
II.3]).

• SADS and all the systems and principles above it in Figure 1 imply BΣ0
2 over

RCA0.
• RCA0 + RT2

2 does not prove IΣ0
2 [9].

We emphasize that BΣ0
2 and RT1

<∞ are equivalent over RCA0 because we use this
equivalence often and without special mention.

§3. From one principle to many. We begin studying the Rival–Sands theorem for
partial orders from the perspective of reverse mathematics. Typically we use � to
denote the order-type of (N, <), use �∗ to denote the order-type of its reverse,
and use � to denote the order-type �∗ + � of the integers. In some places we may
write <N, ≤N, etc. instead of <, ≤, etc. to help disambiguate several orders under
discussion.

Definition 3.1. Let (P,<P) be a partial order.

• Elements p, q ∈ P are comparable (written p ≶P q) if either p ≤P q or q ≤P p.
If p and q are not comparable, then they are incomparable (written p |P q).

• A chain in P is a set C ⊆ P of pairwise comparable elements.
• An antichain in P is a set X ⊆ P of pairwise incomparable elements.
• P has width ≤k if every antichain in P has at most k elements. P has width k if

it has width ≤k but not width ≤k – 1. P has finite width if P has width ≤k for
some k.
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• P has height ≤k if every chain in P has at most k elements. P has height k if it
has height ≤k but not height ≤k – 1. P has finite height if P has height ≤k for
some k.

We use the homogeneous terminology from Ramsey’s theorem to describe chains
that are as in the conclusion to the Rival–Sands theorem for partial orders.

Definition 3.2. Let (P,<P) be a partial order. An infinite chain C ⊆ P is:

• (0,∞)-homogeneous for P if every p ∈ P is either comparable with no element
of C or is comparable with infinitely many elements of C;

• (0, cof)-homogeneous for P if every p ∈ P is either comparable with no element
of C or is comparable with cofinitely many elements of C.

Every infinite subset of a (0, cof)-homogeneous chain in a partial order is also
(0, cof)-homogeneous, but an infinite subset of a (0,∞)-homogeneous chain need
not be (0,∞)-homogeneous. Rival and Sands observed that if C is a chain of order-
type � in a partial order (P,<P), then C is automatically (0,∞)-homogeneous for
P. To wit, if p ∈ P is comparable with some q ∈ C , then either p ≤P q and hence
p is below infinitely many elements of C, or p ≥P q and hence p is above infinitely
many elements of C. Similarly, if C is a (0,∞)-homogeneous chain of order-type
either � or �∗, then C is automatically (0, cof)-homogeneous. For example, if C
has order-type � and p ∈ P is comparable with infinitely many elements of C, then
either p is above all elements of C, or p is below some element of C and therefore
below cofinitely many elements of C.

We also apply the (0,∞)-homogeneous and (0, cof)-homogeneous terminology to
sequences. An infinite sequence 〈xn : n ∈ N〉 of distinct elements in a partial order
(P,<P) is (0,∞)-homogeneous if every p ∈ P is either comparable with xn for no
n or is comparable with xn for infinitely many n; and it is (0, cof)-homogeneous if
every p ∈ P is either comparable with xn for no n or is comparable with xn for
cofinitely many n. As with chains of order-type � and �∗, an infinite sequence
that is (0,∞)-homogeneous and either ascending or descending is automatically
(0, cof)-homogeneous, and therefore all of its infinite subsequences are (0, cof)-
homogeneous as well.

We introduce several formulations of the Rival–Sands theorem for partial orders.

Definition 3.3.

• RSpok is the statement “Every infinite partial order of width ≤k has a (0,∞)-
homogeneous chain.”

• RSpo<∞ abbreviates ∀k RSpok .
• (0, cof)-RSpok is the statement “Every infinite partial order of width ≤k has a

(0, cof)-homogeneous chain.”
• (0, cof)-RSpo<∞ abbreviates ∀k (0, cof)-RSpok .

Immediately, RCA0 � ∀k
(
(0, cof)-RSpok → RSpok

)
and therefore RCA0 �

(0, cof)-RSpo<∞ → RSpo<∞. Also, Proposition 6.5 shows that for every k ≥ 2,
(0, cof)-RSpok is equivalent to the statement “Every infinite partial order of width
≤k has a (0,∞)-homogeneous chain of order-type either � or �∗.”

When working with partial orders of finite width, it often helps to decompose the
partial order into a finite union of chains.
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Definition 3.4. A k-chain decomposition of a partial order (P,<P) is a
collection of k chains C0, C1, ... , Ck–1 ⊆ P where P =

⋃
i<k Ci . If P has a k-chain

decomposition, then it is called k-chain decomposable.

We emphasize that if a partial order P is assumed to be k-chain decomposable,
then P comes along with a k-chain decomposition. Of course, we may always assume
that the chains of a chain decomposition are pairwise disjoint.

Recall now Dilworth’s theorem, which in this terminology states that for every k,
every partial order of width ≤k is k-chain decomposable. Hirst [17] shows that
Dilworth’s theorem for countable partial orders is equivalent toWKL0 overRCA0. He
also shows that Dilworth’s theorem remains equivalent toWKL0 even when restricted
to partial orders of width 2. It follows that there is a recursive partial order of width
2 that cannot be decomposed into 2 recursive chains. Thus Dilworth’s theorem is not
available when working in RCA0 + IΣ0

2 + ADS because RCA0 + IΣ0
2 + ADS � WKL0.

However, for our purposes it is not necessary to decompose a partial order of finite
width into the optimal number of chains—any decomposition into finitely many
chains will do. Thus we replace Dilworth’s theorem by Kierstead’s effective analog,
which states that every recursive partial order of width ≤k can be decomposed into
at most (5k – 1)/4 recursive chains [18]. Nowadays much better sub-exponential
bounds are known for the number of recursive chains into which a recursive partial
order of finite width can be decomposed [3].

Let (P,<P) be a partial order of width ≤k. Kierstead’s proof is phrased as an
induction on k. By unwinding the induction, the proof can be viewed as an on-line
algorithm computing a sequence of partial orders (P,<P) = (P0, <P0), (P1, <P1 ),
... , (Pk–2, <Pk–2), where Pi has width ≤k – i for each i ≤ k – 2, together with a
(5k–i – 1)/4-chain decomposition of (Pi ,<Pi ) for each i ≤ k – 2. Kierstead himself
comments along these lines following the proof of [18, Theorem 1.10]. With this
view, it is possible to verify that Kierstead’s theorem is provable in RCA0.

Theorem 3.5 (essentially Kierstead [18]). RCA0 proves the statement “For every
k, every partial order of width ≤k is (5k – 1)/4-chain decomposable.”

For notational ease, we work with 5k-chain decompositions in place of
(5k – 1)/4-chain decompositions. Again, for our purposes, any primitive recursive
bound suffices.

For completeness, we mention that there is a dual version of Dilworth’s theorem,
due to Mirsky, which states that every partial order of height≤k can be decomposed
into a union of k antichains. Hirst proved that Mirsky’s theorem for countable partial
orders is equivalent to WKL0 over RCA0 [17]. There is also an effective analog of
Mirsky’s theorem in the spirit of Theorem 3.5 [19].

We now formalize versions of RSpo with the assumption “width ≤k” replaced by
“k-chain decomposable.”

Definition 3.6.

• RSpoCDk is the statement “Every infinite k-chain decomposable partial order
has a (0,∞)-homogeneous chain.”

• RSpoCD<∞ abbreviates ∀k RSpoCDk .
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• (0, cof)-RSpoCDk is the statement “Every infinite k-chain decomposable partial
order has a (0, cof)-homogeneous chain.”

• (0, cof)-RSpoCD<∞ abbreviates ∀k (0, cof)-RSpoCDk .

We have that RCA0 � ∀k
(
(RSpoCD5k → RSpok) ∧ (RSpok → RSpoCDk )

)
and

analogously for the (0, cof)-homogeneous versions by Theorem 3.5 and the fact
that k-chain decomposable partial orders have width ≤k. It follows that RCA0 �
RSpo<∞ ↔ RSpoCD<∞ and that RCA0 � (0, cof)-RSpo<∞ ↔ (0, cof)-RSpoCD<∞.
Additionally, WKL0 � ∀k (RSpok ↔ RSpoCDk ) and analogously for the (0, cof)-
homogeneous versions because WKL0 proves Dilworth’s theorem.

We conclude this section with a few other useful applications of Theorem 3.5. If
(P,<P) is an infinite partial order of width ≤k, then CAC implies that P contains
an infinite chain because P does not contain an infinite antichain. However, we may
argue more effectively by instead applying Theorem 3.5 to P to obtain a 5k-chain
decomposition of P and then by applying the pigeonhole principle to conclude that
one of these chains must be infinite. Dually, CAC implies that an infinite partial
order of height ≤k contains an infinite antichain, and this fact can be effectivized
as well. We show that these special cases of CAC are provable in RCA0 for each fixed
k and are equivalent to BΣ0

2 over RCA0 for arbitrary k.

Definition 3.7.

• CCk is the statement “Every infinite partial order of width ≤k has an infinite
chain.”

• CC<∞ abbreviates ∀k CCk .
• CAk is the statement “Every infinite partial order of height ≤k has an infinite

antichain.”
• CA<∞ abbreviates ∀k CAk .

Proposition 3.8.

(1) For each fixed standard k, RCA0 � CCk, and RCA0 � CAk .
(2) CC<∞, CA<∞, and BΣ0

2 are pairwise equivalent over RCA0.

Proof. For RCA0 � CCk , let (P,<P) be an infinite partial order of width ≤k. By
Theorem 3.5, P has a 5k-chain decomposition, and at least one of these chains is
infinite by RT1

5k . Thus P has an infinite chain. The proof that RCA0 + BΣ0
2 � CC<∞

is the same, except we must use RT1
<∞ instead of RT1

5k because now k is not fixed in
advance.

For RCA0 � CAk , we give a direct proof instead of appealing to an effective analog
of Mirsky’s theorem. Let (P,<P) be an infinite partial order of height ≤k. Define
a coloring c : P → k2 by c(p) = 〈x, y〉, where x is the greatest size of a <P-chain
in {q <N p : q <P p} and y is the greatest size of a <P-chain in {q <N p : p <P q}.
Both x and y are less than k because P has height ≤k. By RT1

k2 , let H ⊆ P be an
infinite set that is homogeneous for c. We claim that H is an antichain. Suppose for
a contradiction that a, b ∈ H and a <P b. If a <N b and q0 <P q1 <P ··· <P qn–1

is a chain in {q <N a : q <P a}, then q0 <P q1 <P ··· <P qn–1 <P a is a chain in
{q <N b : q <P b}. This means that if x is the maximum size of a chain in {q <N a :
q <P a}, then the maximum size of a chain in {q <N b : q <P b} is at least x + 1.
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So c(a) �= c(b), contradicting that H is homogeneous. Similar reasoning shows that
if b <N a, then c(a) �= c(b) as well. Therefore H is an infinite antichain in P. The
proof that RCA0 + BΣ0

2 � CA<∞ is the same, except we must use RT1
<∞ instead of

RT1
k2 because now k is not fixed in advance.

For RCA0 + CC<∞ � BΣ0
2, let c : N → k be a k-coloring, and define a partial

order (P,<P) with P = N by setting p <P q if and only if p <N q and c(p) = c(q).
The partial order P has width ≤k, so by CC<∞ it has an infinite chain H. By the
definition of <P , H must be homogeneous for c. Therefore RT1

<∞ holds.
ForRCA0 + CA<∞ � BΣ0

2, let c : N → k be a k-coloring, and define a partial order
(P,<P) with P = N by setting p <P q if and only if c(p) < c(q). The partial order
P has height ≤k, so by CA<∞ it has an infinite antichain H. By the definition of
<P , H must be homogeneous for c. Therefore RT1

<∞ holds. �

We now show that ADS is equivalent to the statement “Every infinite partial
order of finite width contains either an infinite ascending sequence or an infinite
descending sequence.”

Proposition 3.9. The following are equivalent over RCA0.

(1) ADS.
(2) Every infinite partial order of finite width contains either an infinite ascending

sequence or an infinite descending sequence.
(3) For each fixed standard k ≥ 1, the statement “Every infinite partial order of

width≤k contains either an infinite ascending sequence or an infinite descending
sequence.”

Proof. For (1) ⇒ (2), let (P,<P) be an infinite partial order of width ≤k for
some k. Using the fact that RCA0 + ADS � BΣ0

2, we may appeal to Proposition 3.8
item (2) and apply CC<∞ to P to obtain an infinite chain C in P. Now apply ADS
to C to obtain either an infinite ascending sequence in C or an infinite descending
sequence in C.

The implications (2) ⇒ (3) and (3) ⇒ (1) are immediate because every partial
order of width ≤k has finite width, and every infinite linear order is an infinite
partial order of width 1. �

§4. First proofs of RSpo<∞ and (0, cof)-RSpo<∞. We give a proof of RSpo<∞ in
ACA0 and a proof of (0, cof)-RSpo<∞ in Π1

1-CA0. The proofs are not axiomatically
optimal, but they can be presented in ordinary mathematical language—meaning
without reference to relative computability, technical uses of restricted induction,
etc.—and are straightforward to formalize. The ACA0 proof in particular strikes a
good balance between axiomatic simplicity and conceptual simplicity. It is based on
Dilworth’s theorem, the fact that chains of order-type � are automatically (0,∞)-
homogeneous, and the observation that a linear order containing no suborder of
type � can be partitioned into a well-founded part and a reverse well-founded part.
This last observation requires the full strength of ACA0, as shown by Lemma 4.5.
This section also serves to introduce key concepts that will be refined in the next
section to prove RSpo<∞ in RCA0 + IΣ0

2 + ADS.
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Definition 4.1. Let (P,<P) be a partial order, and let X,Y ⊆ P.

• Write X <P Y if every element of X is strictly below every element of Y :
∀x ∈ X ∀y ∈ Y (x <P y). In the case of singletons, write x <P Y andX <P y
in place of {x} <P Y and X <P {y}.

• WriteX ≤∀∃ Y if every element of X is below some element of Y : ∀x ∈ X ∃y ∈
Y (x ≤P y).

• Write X |P Y if every element of X is incomparable with every element of Y :
∀x ∈ X ∀y ∈ Y (x |P y). In the case of singletons, write x |P Y in place of
{x} |P Y .

We also extend the notation of Definition 4.1 to sequences. For example, if
A = 〈an : n ∈ N〉 and B = 〈bn : n ∈ N〉 are sequences in a partial order (P,<P),
then we write A ≤∀∃ B if ∀n ∃m (an ≤P bm).

Definition 4.2. Let (P,<P) be a partial order, and let X ⊆ P.

• Let X↓ = {p ∈ P : ∃x ∈ X (p ≤P x)} and X↑ = {p ∈ P : ∃x ∈ X (p ≥P
x)} denote the downward and upward closures of X in P, respectively. These
sets may be formed in ACA0.

• In the case of singletons X = {x}, write x↓ and x↑ in place of {x}↓ and {x}↑.
These sets may be formed in RCA0.

• Call X well-founded if it contains no infinite descending sequence. Otherwise
call X ill-founded. Likewise, call X reverse well-founded if it contains no infinite
ascending sequence. Otherwise call X reverse ill-founded.

For a partial order (P,<P) and non-empty subsets X,Y,Z ⊆ P, RCA0 suffices
to show that X <P Y <P Z implies X <P Z and that X ≤∀∃ Y ≤∀∃ Z implies
X ≤∀∃ Z. Also, notice that X ≤∀∃ Y simply means that X ⊆ Y↓, but beware that
forming the set Y↓ requires ACA0 in general.

As mentioned above, we show that partitioning a linear order with no suborder of
type � into a well-founded part and a reverse well-founded part is equivalent toACA0

over RCA0. More generally, we show that isolating the well-founded part of a partial
order that contains no infinite antichain and no suborder of type � is equivalent to
ACA0 over RCA0. Finding the well-founded part of such a partial order is used to
extend RSpo<∞ to infinite partial orders without infinite antichains in Section 7.
The reversal exploits the tool of true and false numbers of an injection f : N → N.

Definition 4.3. Let f : N → N be an injection. An n ∈ N is a true number if
∀k > n (f(n) < f(k)), and otherwise n is a false number. Additionally, an n ∈ N
is true at stage m if ∀k (n < k ≤ m → f(n) < f(k)), and otherwise n is false at
stage m.

The idea of true numbers appears to have originated with Dekker [10], who called
them minimal. True numbers are important because the range of f is recursive in
the join of f with any infinite set of true numbers. In fact, if n is a true number,
then one can determine ran(f) up to f(n) by simply evaluating f on inputs 0, ... , n.
In reverse mathematics, true numbers facilitate reversals to ACA0. To prove that
some statement ϕ implies ACA0 over RCA0, one strategy is to let f : N → N be an
injection, use ϕ to produce an infinite set S of true numbers, use f and S to compute
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ran(f), and then apply Lemma 2.1. For example, this strategy is used in [12, 13, 25]
in the form of the following well-known construction.

Construction 4.4. Let f : N → N be an injection. Define a linear order (L,<L)
where L = {�n : n ∈ N} and for each n < m the following hold:

(1) �n <L �m if f(k) < f(n) for some k with n < k ≤ m (i.e., n is false at stage
m), and

(2) �m <L �n if f(n) < f(k) for all k with n < k ≤ m (i.e., n is true at stage m).

This construction can be carried out in RCA0.

Given an injection f : N → N, Construction 4.4 produces a stable linear order
either of type � + �∗ (if f has infinitely many false numbers) or of type k + �∗ for
some finite k (otherwise). RCA0 proves that n is true if and only if n is in the �∗-part
of L. Therefore, RCA0 proves that if there is an infinite subset of the �∗-part of L,
or, equivalently, if there is an infinite descending sequence in L, then the range of f
exists. For further details, see the proofs of [25, Lemma 4.2] and [13, Theorem 4.5].

Lemma 4.5. The following are equivalent over RCA0.

(1) ACA0.
(2) For every partial order (P,<P), if P has no infinite antichain and no suborder

of type � , then there is a set W ⊆ P such that ∀p ∈ P (p ∈W ↔ p↓ is
well-founded ).

(3) Every linear order (L,<L) with no suborder of type � can be partitioned as
L =W ∪R, where
• W <L R,
• W is well-founded, and
• R is reverse well-founded.

Proof. For (1) ⇒ (2), let (P,<P) be a partial order with no infinite antichain
and no suborder of type � . For the purposes of this proof, call a descending sequence
p0 >P p1 >P ··· >P pn in P discrete if for all i < n there is no element of P strictly
between pi and pi+1. Define a sequence of trees 〈Tp : p ∈ P〉, where for each p ∈ P,
Tp consists of the finite discrete descending sequences starting at p. That is, for each
p ∈ P, Tp consists of the � ∈ P<N such that

(|�| > 0 → �(0) = p)

∧ ∀i < |�| – 1
(
�(i + 1) <P �(i) ∧ ¬∃x ∈ P

(
�(i + 1) <P x <P �(i)

))
.

Let W = {p ∈ P : Tp is finite}. We show that p ∈W if and only if p↓ is well-
founded.

First, consider a p ∈ P where Tp is infinite. Given any � ∈ Tp, the set {q ∈ P :
��q ∈ Tp} is an antichain on account of the discreteness condition on the elements
of Tp and therefore is finite because P has no infinite antichain. Thus T is an infinite
finitely branching tree, and therefore T has an infinite path f by König’s lemma.
This path provides an infinite descending sequence in P below p, so p↓ is ill-founded.

Conversely, consider a p ∈ P where Tp is finite. Suppose for a contradiction
that p↓ is ill-founded, and let p = q0 >P q1 >P q2 >P ··· be an infinite descending
sequence below P. Notice that � = 〈p〉 is in Tp and satisfies �(0) >P q1. Let � ∈ Tp
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be a non-empty sequence of maximum length for which there is an n such that
�(|�| – 1) >P qn. Such a � exists because Tp is finite. Now define an infinite
ascending sequenceA = 〈ai : i ∈ N〉 with �(|�| – 1) >P ai ≥P qn for all i as follows.
Let a0 = qn. Given ai , let ai+1 be the <-least element of P with �(|�| – 1) >P
ai+1 >P ai . Such an ai+1 exists because otherwise we would have ��ai ∈ Tp and
ai >P qn+1, which contradicts that � has maximum length. We now have that
{ai : i ∈ N} ∪ {qi : i > n} is a chain in P of order-type � , which is a contradiction.
Thus p↓ is well-founded, as desired.

For (2) ⇒ (3), let (L,<L) be a linear order with no suborder of type � . Then L
has no infinite antichain, so by item (2) there is a set W containing exactly the p ∈ P
for which p↓ is well-founded. Clearly W is downward-closed. LetR = L \W . Then
L =W ∪R and W <L R. We show that R is reverse well-founded. First, observe
that R has no least element. If r were the least element of R, then r↓ would be well-
founded because every p <L r would be in W and W is well-founded. This would
imply that r ∈W , which is a contradiction. Thus either R = ∅, in which case R is
reverse well-founded, or R is non-empty and has no minimum element, in which
case we can define an infinite descending sequence 〈dn : n ∈ N〉 that is coinitial in
R. If R also has an infinite ascending sequence B = 〈bn : n ∈ N〉, then b0 >L dn0 for
some n0, in which case {dn : n > n0} ∪ B is a contradictory suborder of L of type � .
Thus R is reverse well-founded.

For (3) ⇒ (1), let f : N → N be an injection. We show that the true numbers for
f form a set. This implies that the range of f exists as a set, which implies ACA0 by
Lemma 2.1.

If f has only finitely many false numbers, then the set of all false numbers exists
by bounded Σ0

1 comprehension, in which case the set of true numbers also exists.
Suppose instead that f has infinitely many false numbers. Let (L,<L) be the linear

order defined as in Construction 4.4 for f. Recall that in this case L = {�n : n ∈ N}
is a linear order of type � + �∗, where, for each n, �n is in the �-part if n is false
and �n is in the �∗-part if n is true. We define a new linear order (S,<S) from L by
replacing each element in the�∗-part of L by an infinite descending sequence and by
replacing each element in the �-part of L by a finite descending sequence. This way,
RCA0 suffices to verify that elements in the �∗-part of L give rise to elements in the
ill-founded part of S and that elements in the�-part of L give rise to elements in the
well-founded part of S. To do this, let S = {sn,m : n,m ∈ N and n is true at stage m}
(note that if m ≤ n, then n is true at stage m), and define

sn0,m0 <S sn1,m1 ⇔ (�n0 <L �n1 ) ∨ (�n0 = �n1 ∧ m0 >N m1).

Observe that if n0 is false and n1 is true, then �n0 <L �n1 , so sn0,m0 <S sn1,m1 for every
m0 and m1. Thus no infinite ascending sequence in S can contain an element sn,m
where n is true, and no infinite descending sequence in S can contain an element sn,m
where n is false. It follows that S cannot contain a suborder of type � because such
a suborder would have to contain some element sn,m, and sn,m is either in no infinite
ascending sequence or in no infinite descending sequence. We may therefore apply
item (3) to S and obtain a partition S =W ∪R whereW <L R, W is well-founded,
and R is reverse well-founded. We claim that sn,0 ∈ R if and only if n is true. If n
is true, then sn,m ∈ S for every m, and sn,0 >S sn,1 >S ··· is an infinite descending
sequence in S. Thus sn,0 cannot be in W as then W would be ill-founded. So sn,0 ∈ R.
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Conversely, if n is false, then, using the assumption that there are infinitely many
false numbers, we can define an infinite ascending sequence �n = �k0 <L �k1 <L ···
in L as follows. Set k0 = n. Given ki , search for the first pair 〈k,m〉 where �ki <L �k
and k is false at stage m, and set ki+1 = k. We then have the corresponding infinite
ascending sequence sn,0 = sk0,0 <S sk1,0 <S ··· in S. Thus sn,0 cannot be in R as
then R would not be reverse well-founded. Therefore {n : sn,0 ∈ R} is the set of true
numbers for f, which completes the proof. �

By taking complements and/or reversing the partial order, the statement “p↓ is
well-founded” may be replaced by any of “p↓ is ill-founded,” “p↑ is reverse well-
founded,” and “p↑ is reverse ill-founded” in Lemma 4.5 item (2) and the lemma
remains true.

The proof that ACA0 implies Lemma 4.5 item (2) is uniform with respect to the
partial order. That is, ACA0 proves that if P0, P1, P2, ... is a sequence of partial
orders without infinite antichains or suborders of type � , then there is a sequence
of setsW0,W1,W2, ... where, for each i,Wi consists of exactly the p ∈ Pi such that
p↓ is well-founded. The proof that ACA0 implies Lemma 4.5 item (3) is similarly
uniform. In fact, to conclude Lemma 4.5 item (3) for a finite sequence of linear orders
L0, L1, ... , Ln–1, as we shall need in Theorem 4.9, one application of Lemma 4.5 item
(2) suffices. Given linear orders L0, L1, ... , Ln–1 without suborders of type � , let P
be the partial order consisting of the disjoint union of the linear orders Li for i < n.
Then P has no infinite antichain and no suborder of type � , so by Lemma 4.5 item
(2), there is a set W consisting of exactly the p ∈ P such that p↓ is well-founded.
Then letWi = Li ∩W and Ri = Li \W for each i < n.

If an infinite ascending sequenceA = 〈an : n ∈ N〉 in a partial order (P,<P) is not
(0,∞)-homogeneous, then there is ap ∈ P that is comparable with some elements of
P, but only finitely many. As A is an ascending sequence, this means that there is an n0

such that p >P an0 , but ∀n > n0 (p |P an). We think of such a p as a counterexample
to A being (0,∞)-homogeneous. Indeed, p is also a counterexample to 〈an : n ≥ n0〉
being (0,∞)-homogeneous.

Definition 4.6. Let (P,<P) be a partial order, and let A = 〈an : n ∈ N〉 be an
ascending sequence in P. Then A≥n0 denotes the ascending sequence 〈an : n ≥ n0〉.
Sequences of the form A≥n0 are called tails of A, which can be formed in RCA0.

Definition 4.7. Let (P,<P) be a partial order, and let A = 〈an : n ∈ N〉 be an
infinite ascending sequence in P. A p ∈ P is called a counterexample to A if there is
an n such that p >P an and p |P A≥n+1. An infinite ascending sequence B = 〈b� :
� ∈ N〉 is called a counterexample sequence for A if B contains counterexamples to
infinitely many tails of A: ∀m ∃n > m ∃� (b� >P an ∧ b� |P A≥n+1).

Notice that if B is a counterexample sequence for an infinite ascending sequence
A in some partial order (P,<P), then A ≤∀∃ B , but B �∀∃ A.

Suppose that A is an infinite ascending sequence in a partial order (P,<P) where
no tail of A is (0,∞)-homogeneous. Then for every n, there is a counterexample p
to A≥n. If P has finite width, then we can make a counterexample sequence out of
such counterexamples.

Lemma 4.8. The following is provable in ACA0. Let (P,<P) be an infinite partial
order with k-chain decomposition C0, ... , Ck–1. Let A = 〈an : n ∈ N〉 be an infinite
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ascending sequence in Ci for some i < k, and assume that no tail of A is (0,∞)-
homogeneous. Then there is an infinite ascending sequence B = 〈bn : n ∈ N〉 in Cj for
some j < k that is a counterexample sequence for A.

Proof. We assume that no tail of A is (0,∞)-homogeneous, so every tail of A
has a counterexample p. For each n, let pn be the<-least counterexample to the tail
A≥n. By RT1

<∞, there are a j < k and an infinite X ⊆ N such that pn ∈ Cj for all
n ∈ X . Now, for every n ∈ X , we have thatpn <P pm for all sufficiently largem ∈ X .
To see this, let n ∈ X . As pn is a counterexample to A≥n, there is an s ≥ n such that
pn >P as and pn |P A≥s+1. Let m ∈ X be such that m > s + 1, and consider pm.
The chain Cj contains both pn and pm, so pn ≶P pm. As pm is a counterexample to
A≥m, there is a t ≥ m such that pm >P at . Thus we cannot have pm ≤P pn because
this would yield as+1 <P at <P pm ≤P pn, contradicting that pn |P as+1. Note here
that s + 1 < m ≤ t, so as+1 <P at because A is an ascending sequence. Thus it must
be that pn <P pm. We may then define the desired counterexample sequence B as
follows. Let n0 be the<-least element of X. Given n� , let n�+1 be the<-least element
of X with n� < n�+1 and pn� <P pn�+1 . Finally, take b� = pn� for each �. �

We are now prepared to give a proof of RSpo<∞ in ACA0.

Theorem 4.9. ACA0 � RSpo<∞.

Proof. It suffices to show that ACA0 � RSpoCD<∞ because RSpo<∞ and RSpoCD<∞
are equivalent over RCA0 as explained in Section 3. In fact, here we may use that
WKL0 � ∀k (RSpok ↔ RSpoCDk ), which is simpler than appealing to Theorem 3.5.

Let (P,<P) be an infinite partial order with k-chain decompositionC0, ... , Ck–1 for
some k. Assume for a contradiction that P does not contain a (0,∞)-homogeneous
chain. Then P contains no chain of order-type � because such a chain is automatically
(0,∞)-homogeneous. In particular, noCi for i < k contains a chain of order-type � ,
so each Ci may be viewed as a linear order with no suborder of type � . As discussed
above, the (1) ⇒ (3) direction of Lemma 4.5 generalizes to simultaneously handle
any sequence of linear orders without suborders of type � . Apply this to the chains
C0, ... , Ck–1 to partition Ci for each i < k into Ci =Wi ∪Ri , whereWi <P Ri ,Wi
is well-founded, and Ri is reverse well-founded.

By RT1
<∞, either Wi is infinite for some i < k or Ri is infinite for some i < k.

Without loss of generality, we may assume that someWi is infinite because otherwise
we could work with the reversed partial order (P,>P) instead. Relabel the chains
C0, ... , Ck–1 so that the infinite chainsWi are exactlyW0, ... ,Wu–1 for some u with
0 < u ≤ k. For each i < u, let Ŵi = {p ∈Wi : ∀n ∃q > n (q >P p ∧ q ∈Wi)} be
the elements ofWi with infinitely many successors inWi . The setWi \ Ŵi is finite
for each i < u because if Wi \ Ŵi were infinite, then it would be a chain in Wi
of order-type �∗, which contradicts that Wi is well-founded. It follows that Ŵi is
infinite, well-founded, and has no maximum element for each i < u. Therefore, for
each i < u we can define an infinite ascending sequenceAi in Ŵi that is cofinal in Ŵi .

We assume that P does not contain a (0,∞)-homogeneous chain, so no tail of Ai
is (0,∞)-homogeneous for any i < u. The argument of Lemma 4.8 generalizes to
simultaneously handle any sequence of infinite ascending sequences. Apply this to
the sequences A0, ... , Au–1 to obtain infinite ascending sequences B0, ... , Bu–1 and a
function h : u → k such that for each i < u, Bi is a counterexample sequence to Ai

https://doi.org/10.1017/jsl.2022.92 Published online by Cambridge University Press

https://doi.org/10.1017/jsl.2022.92


(EXTRA)ORDINARY EQUIVALENCES WITH THE ASCENDING/DESCENDING 279

that is contained in chainCh(i). Notice that Bi ∩Rh(i) = ∅ for each i < u because Bi
is an ascending sequence and Rh(i) is reverse well-founded. Thus Bi ⊆Wh(i), which
means thatWh(i) is infinite and therefore that h(i) < u. Thus h is in fact a function
h : u → u. Furthermore,Bi ⊆ Ŵh(i) because every element ofBi has infinitely many
successors inWh(i).

Now observe that Bi ≤∀∃ Ah(i) for each i < u because Bi ⊆ Ŵh(i) and Ah(i) is
cofinal in Ŵh(i). Additionally, Ah(i) ≤∀∃ Bh(i) for each i < u because Bh(i) is a
counterexample sequence for Ah(i). Therefore Bi ≤∀∃ Ah(i) ≤∀∃ Bh(i), so Bi ≤∀∃
Bh(i) for each i < u by transitivity. Let hn denote the nth iterate of h, where
h0(i) = i and hn+1(i) = h(hn(i)) for each i < u. By induction, we obtain that
Bhm(i) ≤∀∃ Bhn(i) for all i < u whenever m ≤ n. By the pigeonhole principle, there
are m < n ≤ u with hm(0) = hn(0). We then have that

Bhm+1(0) ≤∀∃ Bhn(0) = Bhm(0) ≤∀∃ Ahm+1(0)

and therefore that Bhm+1(0) ≤∀∃ Ahm+1(0) by transitivity. This contradicts that
Bhm+1(0) is a counterexample sequence for Ahm+1(0), which completes the proof. �

If we want a (0, cof)-homogeneous chain rather than a (0,∞)-homogeneous chain
in a given partial order (P,<P) of finite width, then we may no longer assume that
P contains no suborder of type � , and we may no longer apply Lemma 4.5 item
(3) to partition each chain Ci into well-founded and reverse well-founded parts.
Instead, we may directly define the reverse ill-founded part of each Ci and then
proceed as before. This pushes the complexity up to Π1

1-CA0 because defining the
set of reverse ill-founded elements in a linear order requires Π1

1-CA0 in general, as
shown in Theorem 8.3.

Theorem 4.10. Π1
1-CA0 � (0, cof)-RSpo<∞.

Proof. It suffices to show that Π1
1-CA0 � (0, cof)-RSpoCD<∞ because (0, cof)-

RSpo<∞ and (0, cof)-RSpoCD<∞ are equivalent as explained in Section 3.
Let (P,<P) be an infinite partial order with k-chain decompositionC0, ... , Ck–1 for

some k. ApplyRT1
<∞ to conclude thatCi is infinite for some i < k, and applyADS to

Ci to conclude that Ci contains either an infinite ascending sequence or an infinite
descending sequence. By reversing the partial order if necessary, we may assume
that Ci contains an infinite ascending sequence. We show that P contains a (0,∞)-
homogeneous chain of order-type �, which is necessarily (0, cof)-homogeneous as
discussed following Definition 3.2. Thus assume for a contradiction that P does not
contain a (0,∞)-homogeneous chain of order-type �.

Use Π1
1-CA0 (and the fact that the Σ1

1 sets are the complements of the Π1
1

sets) to simultaneously define for each i < k the subset Wi = {p ∈ Ci : p↑ ∩
Ci is reverse ill-founded} of Ci consisting of the elements of Ci that have infinite
ascending sequences above them in Ci . At least one Wi is non-empty because
at least one Ci contains an infinite ascending sequence. Now proceed as in the
proof of Theorem 4.9, except notice that now the setsWi are not necessarily well-
founded. What matters is that Wi has no maximum element and that Ci \Wi is
reverse well-founded for each i < k. Relabel the chains C0, ... , Ck–1 so that the
non-empty Wi are exactly W0, ... ,Wu–1 for some u with 0 < u ≤ k. Each Wi for
i < u is non-empty and has no maximum element. Therefore, for each i < u we can
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define an infinite ascending sequence Ai in Wi that is cofinal in Wi . No tail of Ai
is (0,∞)-homogeneous for any i < u by the assumption that P does not contain a
(0,∞)-homogeneous chain of order-type �. As in the proof of Theorem 4.9, apply
Lemma 4.8 to the sequences A0, ... , Au–1 to obtain infinite ascending sequences
B0, ... , Bu–1 and a function h : u → k such that for each i < u,Bi is a counterexample
sequence to Ai that is contained in chain Ch(i). The sequence Bi is contained in
Wh(i) for each i < u by the definition of Wh(i). Thus Wh(i) is infinite for each
i < u, so h(i) < u for each i < u. Therefore h is a function h : u → u. As in the
proof of Theorem 4.9, there are m < n ≤ u with hm(0) = hn(0), which yields that
Bhm+1(0) ≤∀∃ Ahm+1(0), which contradicts thatBhm+1(0) is a counterexample sequence
for Ahm+1(0). Ultimately, we contradicted the assumption that P does not contain
a (0,∞)-homogeneous chain of order-type �. Thus P does contain a (0,∞)-
homogeneous chain of order-type �, and such a chain is (0, cof)-homogeneous. �

§5. Proofs of RSpo<∞, RSpok , and (0, cof)-RSpoCD2 in RCA0 + IΣ0
2 + ADS and

below. The goal of this section is to show the following:

• RCA0 + IΣ0
2 + ADS � RSpo<∞ (Theorem 5.5).

• RCA0 + ADS � RSpok for each fixed k (Theorem 5.6).
• RCA0 + SADS � RSpoCD2 (Theorem 5.9).
• RCA0 + IΣ0

2 + ADS � (0, cof)-RSpo2 (Theorem 5.11).

The main tools used in the proof of RSpo<∞ in ACA0 from Theorem 4.9 are the
counterexamples and counterexample sequences of Definition 4.7. Let A = 〈an :
n ∈ N〉 be an infinite ascending sequence in a partial order (P,<P) such that no tail
of A is (0,∞)-homogeneous. Given ap ∈ P, p being a counterexample to a given tail
of A is a Π0

1 property, thus when working strictly below ACA0 we may not necessarily
be able to produce a counterexample sequence for A as in Lemma 4.8. However,
given an am, we can effectively search for an an and a p ∈ P with p ≥P am and
p |P an. This search procedure can be used to produce ladders for A according to the
following definition. These ladders play the role of the counterexample sequences.

Definition 5.1. Let (P,<P) be a partial order, and let S = 〈sn : n ∈ N〉 be an
infinite sequence in P. An infinite ascending sequence B = 〈bn : n ∈ N〉 is called a
ladder for S if ∀n (sn ≤P bn).

In Definition 5.1, the sequence S is not required to be ascending, but in practice
it usually is. Notice also that if A is an infinite ascending sequence in a partial order
(P,<P), then A is a ladder for itself.

Let (P,<P) be a partial order that has been decomposed into k chains as P =
C0 ∪ ··· ∪ Ck–1, and let �P denote �P = P ⊕<P ⊕ C0 ⊕ ··· ⊕ Ck–1. Suppose that A
is an infinite ascending sequence that is contained in some chain Cj . To produce
a (0,∞)-homogeneous chain for P, we look for ladders for A in the chains Ci
with i �= j. To do this, we define a Turing functional FindLadder

�P : PN × k → PN

relative to �P, where FindLadder
�P(A, i) attempts to compute a ladder for A inCi . We

then use IΣ0
2 in the form of bounded Π0

2 comprehension to determine the i < k with

i �= j for which FindLadder
�P(A, i) is total. If FindLadder

�P(A, i) is total, we then
want to find ladders for it in the chainsC� with � �= i and continue this process either
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until finding enough ladders to knit together into a (0,∞)-homogeneous chain or
until realizing that there are so few ladders that a tail of one of them must already
be (0,∞)-homogeneous. In fact, we consider all the iterations of FindLadder

�P that
we may eventually need up front and apply bounded Π0

2 comprehension only once.
Lemma 5.2 says that if (P,<P) is a partial order decomposed into chains

C0, ... , Ck–1 and A is an infinite ascending sequence in P with no (0,∞)-
homogeneous tail, then it is possible to search for a ladder for A in some Ci .

Lemma 5.2. The following is provable in RCA0 + BΣ0
2. Let (P,<P) be an infinite

partial order with k-chain decomposition C0, ... , Ck–1, and let A = 〈an : n ∈ N〉 be an
infinite ascending sequence in P. If no tail of A is (0,∞)-homogeneous, then there is
an i < k such that

∀m ∃n ∃p ∈ Ci (p ≥P am ∧ p |P an).

Proof. Suppose that no tail A≥m of A is (0,∞)-homogeneous. Then for every
m, there is a counterexample p to the tail A≥m. This implies that

∀m ∃n ∃p ∈ P (p ≥P am ∧ p |P an).

Thus we may define a function f : N → k as follows. Given m, search for an n and
a p with p ≥P am and p |P an, find the i < k with p ∈ Ci , and output f(m) = i . By
RT1
<∞, there is an i < k such that f(m) = i for infinitely many m. This i satisfies

the conclusion of the lemma. �

Again let (P,<P) be a partial order with k-chain decomposition C0, ... , Ck–1.
Lemma 5.3 shows how to search for a ladder for a given infinite sequence A within a
target chainCi . It may be thought of as a weaker, yet effective, version of Lemma 4.8.

Lemma 5.3. The following is provable in RCA0. Let (P,<P) be a partial order with
k-chain decomposition C0, ... , Ck–1. Let �P denote �P = P ⊕<P ⊕ C0 ⊕ ··· ⊕ Ck–1.
Then there is a Turing functional FindLadder

�P : PN × k → PN relative to �P with
the following properties for every infinite sequence A = 〈an : n ∈ N〉 in P and every
i < k.

(1) If

∀m ∃n ∃p ∈ Ci
(
p ≥P am ∧ p |P an

)
,

then FindLadder
�P(A, i) is total.

(2) If FindLadder
�P(A, i) is total, then it computes a ladder for A in Ci .

Proof. Let A = 〈an : n ∈ N〉 be an infinite sequence in P, and let i < k.

Compute FindLadder
�P(A, i)(0) by searching for an n and a p0 ∈ Ci with p0 ≥P a0

and p0 |P an. If p0 is found, then output FindLadder
�P(A, i)(0) = p0. Compute

FindLadder
�P(A, i)(m + 1) by first computing pm = FindLadder

�P(A, i)(m). Then
search for an n and a pm+1 ∈ Ci with pm+1 >P pm, pm+1 ≥P am+1, and pm+1 |P an.
If pm+1 is found, then output FindLadder

�P(A, i)(m + 1) = pm+1.
Item (2) follows immediately from the definition of FindLadder

�P . If A = 〈an :

n ∈ N〉 is an infinite sequence in P, if i < k, and if FindLadder
�P(A, i) is total, then it
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must be that FindLadder
�P(A, i)(m) ∈ Ci , that am ≤P FindLadder

�P(A, i)(m), and
that FindLadder

�P(A, i)(m) <P FindLadder
�P(A, i)(m + 1) for every m.

For item (1), let A = 〈an : n ∈ N〉 be an infinite sequence in P, let i < k, and
suppose that for every m there are an n and a p ∈ Ci with p ≥P am and p |P an.
We use IΣ0

1 to show that FindLadder
�P(A, i) is total. By assumption, there are an n

and a p0 ∈ Ci with p0 ≥P a0 and p0 |P an. Thus FindLadder
�P(A, i)(0) is defined.

Inductively assume that pm = FindLadder
�P(A, i)(m) is defined. Then there is an �

such that pm |P a� . By assumption, there are an s and a p ∈ Ci with

p ≥P am+1 and p |P as
and also a t and a q ∈ Ci with

q ≥P a� and q |P at.
The elements p and q are both in the chain Ci , so they are comparable. By taking
pm+1 = max<P{p, q} and n as either s or t as appropriate, we obtain an n and a
pm+1 ∈ Ci with

pm+1 ≥P am+1 and pm+1 ≥P a� and pm+1 |P an.
Again, pm+1 and pm are both in the chain Ci , so they are comparable. However,
we cannot have that pm+1 ≤P pm because this would imply that a� ≤P pm+1 ≤P
pm, which contradicts that pm |P a� . Therefore pm <P pm+1. Thus there are
an n and a pm+1 ∈ Ci with pm+1 >P pm, pm+1 ≥P am+1, and pm+1 |P an. So

FindLadder
�P(A, i)(m + 1) is defined. �

The following lemma concerning finite labeled trees helps organize the proof of
RSpo<∞ in RCA0 + IΣ0

2 + ADS. Recall that for a finite rooted tree T, the height of a
vertex is the length of the path from the vertex to the root, the height of the tree is
the maximum height of a vertex in T, and level k of T consists of all the vertices of
T that have height k. (We warn the reader that the height of a tree as defined here
is one less than the height of the tree according to Definition 3.1 when considering
the tree as a partial order. For example, the one-element tree consisting of only the
root has height 0 as a tree but height 1 as a partial order.) For a rooted tree T, let �
denote the associated tree-order on T, where � � � if � is on the (unique) path from
the root to �. Let ≺ denote the strict version of �.

Lemma 5.4. The following is provable in RCA0. Let k ≥ 2, and let T be a finite
rooted tree with the following properties.

• T has height k.
• Every leaf of T is at level k.
• The vertices of T are labeled by a function � : T → k in such a way that if � ∈ T is

not a leaf and �0, ... , �n–1 are the children of �, then �(�0), ... , �(�n–1) are distinct
elements of k \ {�(�)}.

Then there is a � ∈ T that is not a leaf such that for every child � of � there is an 	 � �
with �(	) = �(�).

Proof. Proceed by Π0
1 induction on k ≥ 2. For the base case k = 2, the only

possibility for T is a path of length 2 consisting of the root r, r’s child �, and �’s child
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	, where �(r) �= �(�) and �(�) �= �(	). As k = 2, it must be that �(r) = �(	), so we
may take � = r.

Now suppose that the lemma holds for k. Consider a tree T of height k + 1 where
every leaf is at level k + 1, and consider also a labeling � : T → k + 1 that labels T
according to the hypothesis of the lemma. Let r be the root, and let �0, ... , �n–1 be r’s
children. If for every �i there is an 	 � �i with �(	) = �(r), then we may take � = r.
Otherwise, there is a �i such that no 	 � �i has �(	) = �(r). LetS = {	 ∈ T : 	 � �i}
be the complete subtree of T above �i rooted at �i . Then S has height k, and every
leaf of S is at level k of S. Moreover, S is labeled by �, which only uses labels from the
set (k + 1) \ {�(r)}. Fix a bijectionf : (k + 1) \ {�(r)} → k, and define the labeling
�̂ : S → k by �̂ = f ◦ �. By the induction hypothesis applied to S and �̂, there is a
� ∈ S that is not a leaf such that for every child � of � in S there is an 	 � � in S
with �̂(	) = �̂(�). This � also satisfies the conclusion of the lemma for T because S
is the complete subtree of T above �i : for every child � of � in T, there is an 	 � � in
T with �̂(	) = �̂(�) and hence with �(	) = �(�). �

Theorem 5.5. RCA0 + IΣ0
2 + ADS � RSpo<∞.

Proof. It suffices to show that RCA0 + IΣ0
2 + ADS � RSpoCD<∞ because RSpo<∞

and RSpoCD<∞ are equivalent over RCA0 as explained in Section 3. Thus let (P,<P)
be an infinite partial order with k-chain decomposition C0, ... , Ck–1 for some k. We
may assume that k ≥ 2 because if P is a chain, then P itself is (0,∞)-homogeneous.

Some Ci is infinite by RT1
<∞ and therefore contains either an infinite ascending

sequence or an infinite descending sequence by ADS. By relabeling the chains
and by reversing the partial order if necessary, we may assume that there
is an infinite ascending sequence A = 〈an : n ∈ N〉 contained in chain C0. Let
�P = P ⊕<P ⊕ C0 ⊕ ··· ⊕ Ck–1, and let FindLadder

�P : PN × k → PN be the Turing
functional relative to �P from Lemma 5.3.

Let R = (k – 1)≤k be the complete (k – 1)-ary tree of height k. Assign a label
�(�) ∈ {0, ... , k – 1} to each � ∈ R as follows. First, label the root ∅ ∈ Rwith �(∅) =
0. Now suppose that � ∈ R is not a leaf and has been labeled �(�). Index the k – 1
children of � as 〈�i : i ∈ k \ {�(�)}〉, and label �(�i) = i for each i ∈ k \ {�(�)}.

For a � ∈ N<N with |�| ≥ 1, let �– = ��(|�| – 1) denote � with the last term cut

off. For � ∈ R, let FindLadder
�P,� denote the iteration of FindLadder

�P given by

FindLadder
�P,∅(A) = A,

FindLadder
�P,�(A) = FindLadder

�P(FindLadder
�P,�–

(A), �(�)), if |�| ≥ 1.

So if � ∈ R has |�| ≥ 1, then FindLadder
�P,�(A) is

FindLadder
�P(···FindLadder

�P(FindLadder
�P(A, �(��1)), �(��2)

)
··· , �(�)

)
.

Now use IΣ0
2 in the form of bounded Π0

2 comprehension to form the subtree
T ⊆ R given by

T =
{
� ∈ R : FindLadder

�P,�(A) is total
}
.
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Notice that if � is in T, then FindLadder
�P,�(A) computes an infinite ascending

sequence in C�(�) by Lemma 5.3 item (2) and the fact that A is an infinite ascending
sequence in C0 = C�(∅).

There are now two cases. The first case is that T has a leaf � at some level <k.
Let 〈�i : i ∈ k \ {�(�)}〉 again denote the indexing of �’s children in R. As � is in

T, FindLadder
�P,�(A) computes the infinite ascending sequence B = 〈bn : n ∈ N〉

in C�(�) given by bn = FindLadder
�P,�(A)(n) for all n. If no tail of B is (0,∞)-

homogeneous, then by Lemma 5.2 there is an i < k such that

∀m ∃n ∃p ∈ Ci
(
p ≥P bm ∧ p |P bn

)
.

It cannot be that i = �(�), so there must be such an i ∈ k \ {�(�)}. Thus, by
Lemma 5.3 item (1),

FindLadder
�P,�i(A) = FindLadder

�P(FindLadder
�P,�(A), �(�i )) = FindLadder

�P(B, i)

is total. This means that �i ∈ T , which contradicts that � is a leaf of T. Therefore
some tail of B is indeed (0,∞)-homogeneous. We may thin this tail so that its range
exists as a set, thereby producing a (0,∞)-homogeneous chain in P.

The second case is that every leaf of T is at level k. Then T and � satisfy the
hypotheses of Lemma 5.4. Let � be as in the conclusion of Lemma 5.4 for T and �.
For each child � of � in T, let 	� ∈ T be such that 	� � � and �(	�) = �(�). As � ∈ T ,
FindLadder

�P,�(A) computes the infinite ascending sequence X = 〈xn : n ∈ N〉 in

C�(�) given by xn = FindLadder
�P,�(A)(n) for all n. Likewise, FindLadder

�P,	� (A)
also computes an infinite ascending sequence in C�(	� ) = C�(�) for each child � of �
in T. Define the infinite sequence Y = 〈yn : n ∈ N〉 by setting

yn = max<P
{

FindLadder
�P,	� (A)(n) : � is a child of � in T

}
for each n. Then Y is an infinite ascending sequence in C�(�) that is cofinal in the

union of the sequences computed by the FindLadder
�P,	� (A) for the children � of �

in T.

Claim 1. Let � be a child of � in T. Then every p ∈ C�(�) is either above every
element of X or below some element of Y (and hence below almost every element of Y).

Proof of Claim. We have that FindLadder
�P,�(A) computes the infinite ascend-

ing sequence X and that

FindLadder
�P,�(A) = FindLadder

�P(FindLadder
�P,�(A), �(�))

= FindLadder
�P(X, �(�))

is total, so FindLadder
�P,�(A) computes a ladder Z for X in C�(�). Consider any

p ∈ C�(�) and its location with respect to the elements of Z. If p is above every
element of Z, then p is above every element of X because Z is a ladder for X.
Suppose instead that p is below some element FindLadder

�P,�(A)(n) of Z. Consider
now the path � = α0 ≺ α1 ≺ ··· ≺ αm–1 = 	� from � to 	� in T. For each i < m,
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FindLadder
�P,αi (A) is total because αi ∈ T . Thus FindLadder

�P,αi+1 (A) computes a
ladder for FindLadder

�P,αi (A) for each i < m – 1. Therefore,

p ≤P FindLadder
�P,�(A)(n) ≤P FindLadder

�P,α1(A)(n) ≤P ···

≤P FindLadder
�P,αm–2 (A)(n) ≤P FindLadder

�P,	� (A)(n) ≤P yn.
So p is below an element of Y. �

Claim 2. There is an m such that whenever i ∈ k \
(
{�(�)} ∪ {�(�) :

� is a child of � in T}
)

and p ∈ Ci , then either p is comparable with almost every
element of X≥m, or p is incomparable with every element of X≥m.

Proof of Claim. Let I denote the finite set

I = k \
(
{�(�)} ∪ {�(�) : � is a child of � in T}

)
,

let i ∈ I , let � be the child of � in R with �(�) = i , and notice that � /∈ T . We have
that FindLadder

�P,�(A) computes the infinite ascending sequence X, so

FindLadder
�P,�(A) = FindLadder

�P(FindLadder
�P,�(A), �(�))

= FindLadder
�P(X, �(�))

must not be total because otherwise � would be in T. Therefore by Lemma 5.3
item (1),

∃m ∀n ∀p ∈ Ci
(
p �P xm ∨ p ≶P xn

)
.

By applying BΣ0
2, we obtain a fixed m such that ∀i ∈ I ∀n ∀p ∈ Ci (p �P xm ∨

p ≶P xn). We show that this m satisfies the claim.
Let p ∈ Ci for an i ∈ I . If p is below an element of X≥m, then p is below almost

every element ofX≥m becauseX≥m is an ascending sequence. If p is above an element
of X≥m, then p ≥P xm, in which case p is comparable with every element of X≥m.
So if p is comparable with some element of X≥m, then p is comparable with almost
every element of X≥m. That is, either p is comparable with almost every element of
X≥m, or p is incomparable with every element of X≥m. �

We can now assemble a (0,∞)-homogeneous chain B from X and Y. Let m be as
in Claim 2. Thin the infinite ascending sequences X≥m and Y to infinite ascending
sequences X̂≥m and Ŷ whose ranges exist as sets. Notice that X̂≥m ∪ Ŷ is a chain
because X̂≥m and Ŷ are both contained in the chain C�(�). If Ŷ ≤∀∃ X̂≥m, then take
B = X̂≥m. Otherwise there is an n such that yn is above every element of X̂≥m. In
this case, take B = X̂≥m ∪ Ŷ≥n. We show that B is (0,∞)-homogeneous.

Consider any p ∈ P. If p ∈ C�(�), then p is comparable with every element of B
because B ⊆ C�(�). Suppose that p ∈ Ci for an i ∈ {�(�) : � is a child of � in T}.
By Claim 1, either p is above every element of X or below almost every element of Y.
In either case, p is comparable with infinitely many elements of B. Finally, suppose
that p ∈ Ci for an i ∈ k \

(
{�(�)} ∪ {�(�) : � is a child of � in T}

)
. By Claim 2,

either p is comparable with almost every element of X≥m, or p is incomparable
with every element of X≥m. If p is comparable with almost every element of X≥m,
then p is comparable with infinitely many elements of B. Suppose instead that
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p is incomparable with every element of X≥m. If we took B = X̂≥m, then p is
incomparable with every element of B. Suppose that we took B = X̂≥m ∪ Ŷ≥n. If
p is incomparable with every element of Ŷ≥n, then p is incomparable with every
element of B. If p is below an element of Ŷ≥n, then p is below almost every element
of Ŷ≥n and therefore is comparable with infinity many elements of B. If p is above an
element of Ŷ≥n, then p is above every element of X̂≥m and therefore is comparable
with infinitely many elements of B. This completes the proof that B is (0,∞)-
homogeneous for P. �

Theorem 5.6. For each fixed standard k, RCA0 + ADS � RSpok .

Proof. The proof is essentially the same as that of Theorem 5.5. In the
proof of Theorem 5.5, the sole use of IΣ0

2 is the application of bounded Π0
2

comprehension to form the subtree T =
{
� ∈ R : FindLadder

�P(A, �) is total
}

of
the tree R = (k – 1)≤k . In the case where k is fixed and standard, R and its
elements have fixed standard codes, so we may instead form T by a giant case
analysis, using excluded middle for the predicates

(
FindLadder

�P(A, �) is total
)
∨(

FindLadder
�P(A, �) is not total

)
for the � ∈ R. The proof then continues exactly as

in that of Theorem 5.5. The proof of Theorem 5.5 does make use of BΣ0
2 in addition

to the aforementioned use of IΣ0
2, but the relevant instances of BΣ0

2 are provable
in RCA0 when k is fixed and standard (plus BΣ0

2 is available here anyway because
RCA0 + ADS � BΣ0

2 as explained in Section 2). �

When working under the assumption that the partial order (P,<P) contains an
infinite ascending sequence, the proof of Theorem 5.5 produces either a chain of
order-type � (when taking B = X̂≥m) or a chain of order-type � + � (when taking
B = X̂≥m ∪ Ŷ≥n). Therefore, RCA0 + IΣ0

2 + ADS in fact proves that every infinite
partial order of finite width contains a (0,∞)-homogeneous chain of order-type �,
� + �, �∗, or �∗ + �∗. Likewise, for each fixed standard k, RCA0 + ADS proves
that every infinite partial order of width ≤k contains a (0,∞)-homogeneous chain
of order-type �, � + �, �∗, or �∗ + �∗.

In the particular case of RSpoCD2 , we may weaken ADS to SADS and show that
RCA0 + SADS � RSpoCD2 . To do this, we make use of a strict version of SRT2

k where
we assume not only that the coloring c : [N]2 → k is stable, but that there is a fixed
bound n such that for every x there are at most n many y > x where c(x, y) �=
c(x, y + 1).

Definition 5.7.

• A k-coloring of pairs c : [N]2 → k is n-stable if, for every x, |{y > x : c(x, y) �=
c(x, y + 1)}| ≤ n.

• n-stable SRT2
k is the restriction of RT2

k to n-stable k-colorings of pairs c.
• n-stable SRT2

<∞ denotes ∀k (n-stable SRT2
k).

Proposition 5.8.

(1) For each fixed standard n and k, RCA0 � n-stable SRT2
k .

(2) For each fixed standard n, BΣ0
2 and n-stable SRT2

<∞ are equivalent over RCA0.
(3) IΣ0

2 and ∀n (n-stable SRT2
<∞) are equivalent over RCA0.
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Proof. For item (1), let c : [N]2 → k be an n-stable k-coloring of pairs. Let
ϕ(x, i, c) be the Σ0

1 formula expressing that there is a sequence x < y0 < y1 < ··· <
yi–1 of length i where ∀j < i (c(x, yj) �= c(x, yj + 1)). Note that ϕ(x, 0, c) holds
for every x. By repeated applications of excluded middle, there is a maximum i ≤ n
such that ϕ(x, i, c) holds for infinitely many x. By the maximality of i, there is a
bound b such that if x > b and j > i , then¬ϕ(x, j, c). RCA0 suffices to formalize the
well-known fact that every infinite recursively enumerable set contains an infinite
recursive subset. That is, for every Σ0

1 formula �(x) (possibly with parameters),
RCA0 proves that if �(x) holds for infinitely many x, then there is an infinite set X
such that ∀x (x ∈ X → �(x)). Applying this to the Σ0

1 formula (x > b) ∧ ϕ(x, i, c),
we obtain an infinite set X such that ∀x (x ∈ X → (x > b) ∧ ϕ(x, i, c)). Then for
every x ∈ X , there are exactly i many elements y > x with c(x, y) �= c(x, y + 1).
So for every x ∈ X , there is a unique sequence x < yx0 < ··· < yxi–1 where ∀j <
i (c(x, yxj ) �= c(x, yxj + 1)). It follows that c(x, y) = c(x, yxi–1 + 1) for all x ∈ X
and y > yxi–1. Define a k-coloring of singletonsf : X → k byf(x) = c(x, yxi–1 + 1).
ApplyRT1

k to f to obtain a setG ⊆ X that is homogeneous for f for some color � < k.
Now define an infinite setH = {xs : s ∈ N} ⊆ G with x0 < x1 < x2 < ··· by letting
each xs be the least element of G with xs ≥ max{yx0

i–1, y
x1
i–1, ... , y

xs–1
i–1 } + 1. Then H

is homogeneous for c. If s < t, then xt ≥ yxsi–1 + 1, so c(xs , xt) = c(xs , y
xs
i–1 + 1) =

f(xs) = �.
For the forward direction of item (2), we may use the same proof as for item (1),

except now k is arbitrary so we must use RT1
<∞ in place of RT1

k . For the reversal, it is
easy to see that RCA0 + 0-stable SRT2

<∞ � RT1
<∞. Let f : N → k be a k-coloring of

singletons for some k, and define c : [N]2 → k by c(x, y) = f(x). Then c is a 0-stable
k-coloring of pairs, and every H that is homogeneous for c is also homogeneous
for f.

For the forward direction of item (3), we may use the same proof as for item
(2), except now n is also arbitrary, so we must use IΣ0

2 in the form of the Π0
2 least

element principle (see Section 2) to obtain i. To do this, apply the Π0
2 least element

principle to obtain the least j such that ∀s ∃x > s ϕ(x, n – j, c). Then i = n – j is
the greatest i ≤ n such that ϕ(x, i, c) holds for infinitely many x. For the reversal,
we show that RCA0 + ∀n (n-stable SRT2

<∞) proves the Π0
2 least element principle.

Let ∀x ∃y �(m,x, y) be a Π0
2 formula, possibly with undisplayed parameters, where

� is Σ0
0. Let k be such that ∀x ∃y �(k, x, y). We want to find the least i such that

∀x ∃y �(i, x, y). Define a (k + 2)-coloring of pairs c : [N]2 → k + 2 by

c(s, t) =

{
i, if i ≤ k is least such that ∀x ≤ s ∃y ≤ t �(i, x, y),
k + 1, if ∀i ≤ k ∃x ≤ s ∀y ≤ t ¬�(i, x, y).

The coloring c is (k + 2)-stable because, for fixed s, if s < t0 < t1, then c(s, t0) ≥
c(s, t1). By ∀n (n-stable SRT2

<∞), let H be a set that is homogeneous for c with
color i. Then i is least such that ∀x ∃y �(i, x, y). To see this, we first show
that if j ≤ k and ∀x ∃y �(j, x, y), then i ≤ j. Let s ∈ H , and, by BΣ0

0 and
the assumption ∀x ∃y �(j, x, y), let t ∈ H be large enough so that t > s and
∀x ≤ s ∃y ≤ t �(j, x, y). Then i = c(s, t) ≤ j, so i ≤ j. It follows that i ≤ k by
the assumption ∀x ∃y �(k, x, y). Now we show that ∀x ∃y �(i, x, y). Consider any
x0, and let s, t ∈ H be such that x0 < s < t. Then c(s, t) = i and i ≤ k, so i is
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least such that ∀x ≤ s ∃y ≤ t �(i, x, y). In particular, ∃y �(i, x0, y) becausex0 < s .
Therefore ∀x ∃y �(i, x, y). Thus i is least such that ∀x ∃y �(i, x, y). �

Our proof of RSpoCD2 in RCA0 + SADS only uses the principle 2-stable SRT2
3

from Proposition 5.8 item (1). We include items (2) and (3) for completeness. For
fixed standard k ≥ 2, one might also consider the principle ∀n (n-stable SRT2

k).
That RCA0 + IΣ0

2 � ∀n (n-stable SRT2
k) follows from Proposition 5.8 item (3),

but there cannot be a reversal because RCA0 + SRT2
k � ∀n (n-stable SRT2

k), but
RCA0 + SRT2

k � IΣ0
2 (see Section 2). We did not determine if RCA0 + BΣ0

2 �
∀n (n-stable SRT2

k).

Theorem 5.9. RCA0 + SADS � RSpoCD2 .

Proof. By inspecting the proofs of Theorems 5.5 and 5.6, we see that the only use
of ADS is to produce either an infinite ascending sequence or an infinite descending
sequence in the partial order. That is, RCA0 proves the following for each fixed
standard k.

(�) Let (P,<P) be an infinite k-chain decomposable partial order that contains
either an infinite ascending sequence or an infinite descending sequence. Then
P contains a (0,∞)-homogeneous chain.

Let (P,<P) be an infinite partial order with 2-chain decomposition C0, C1. The
plan of the proof is to either produce a (0,∞)-homogeneous chain outright or
to apply SADS to obtain an infinite ascending sequence or an infinite descending
sequence in P, in which case we may produce a (0,∞)-homogeneous chain in P by
applying (�). Notice that we may make free use of BΣ0

2 becauseRCA0 + SADS � BΣ0
2

as explained in Section 2.
The partial order P is infinite, so at least one of C0 and C1 is infinite. Assume that

C0 is infinite for the sake of argument.

Claim 1. Suppose that there are an infiniteD0 ⊆ C0 and a finiteD1 ⊆ C1 such that
D0 |P (C1 \D1). Then P contains a (0,∞)-homogeneous chain.

Proof of Claim. Suppose that D1 = {q0, ... , qn–1}, and define a 2n-coloring
f : D0 → 2n by f(p) = 〈b0, ... , bn–1〉, where, for each i < n, bi = 0 if p |P qi and
bi = 1 if p ≶P qi . Apply RT1

<∞ to f to obtain an infinite set H ⊆ D0 that is
homogeneous for f. Then H is a (0,∞)-homogeneous chain for P. H is a chain
because H ⊆ D0 ⊆ C0 and C0 is a chain. Consider a q ∈ P. If q ∈ C0, then q
is comparable with every element of H because H ⊆ C0 and C0 is a chain. If
q ∈ C1 \D1, then q is incomparable with every element of D0 by assumption and
therefore is incomparable with every element of H becauseH ⊆ D0. If q ∈ D1, then
q = qi for some i < n, so by the homogeneity of H, either q is comparable with every
element of H or q is incomparable with every element of H. �

If C1 is finite, then we may apply Claim 1 with D0 = C0 and D1 = C1 to obtain
a (0,∞)-homogeneous chain for P. Thus we may assume that C0 and C1 are both
infinite. Let 〈pn : n ∈ N〉 be a bijective enumeration of C0, and let 〈qn : n ∈ N〉 be
a bijective enumeration of C1. The goal is now to work into a situation where the
following claim applies.

Claim 2. Suppose that there is an infinite H ⊆ N and an injection f : H → N
where ∀n ∈ H

(
pn ≶P qf(n)

)
. Then P contains a (0,∞)-homogeneous chain.
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Proof of Claim. We may assume that the range of f exists as a set by shrinking
H if necessary.

For this argument, for a p ∈ C0, let p↑ = {x ∈ C0 : x ≥P p} and p↓ = {x ∈ C0 :
x ≤P p} denote the upward and downward closures of p in C0. Similarly, for a
q ∈ C1, let q↑ and q↓ denote the upward and downward closures of q in C1.

Let X = {n ∈ H : pn <P qf(n)}, and let Y = {n ∈ H : pn >P qf(n)}. Then
H = X ∪ Y , so at least one of X and Y is infinite. The two cases are symmetric,
so suppose that X is infinite for the sake of argument. Let L = {pn : n ∈ X}. Then
L ⊆ C0 and C0 is a chain, so L is an infinite linear order. If L is also stable, then
it has either an infinite ascending sequence or an infinite descending sequence by
SADS. Thus P has either an infinite ascending sequence or an infinite descending
sequence, so P has a (0,∞)-homogeneous chain by (�).

If L is not stable, then let n ∈ X be such that pn↑ ∩ L and pn↓ ∩ L are both
infinite. Suppose that there is anm ∈ X where pn ≤P pm and qf(m)↑ is infinite. Then
pn ≤P pm <P qf(m), so C = pn↓ ∪ qf(m)↑ is an infinite chain in P. Furthermore,
C is (0,∞)-homogeneous because it has infinite intersection with both C0 and C1.
Finally, suppose instead that qf(m)↑ is finite whenever m ∈ X and pn ≤P pm. Then
the set {qf(m) : m ∈ X ∧ pm ≥P pn} ⊆ C1 is an infinite chain because pn↑ ∩ L is
infinite, but it has no least element. We may therefore define an infinite descending
sequence in {qf(m) : m ∈ X ∧ pm ≥P pn}. Thus P has an infinite descending
sequence, so it has a (0,∞)-homogeneous chain by (�). �

To finish the proof, define a coloring c : [N]2 → 3 as follows:

c(n,m) =

⎧⎪⎨⎪⎩
0, if ∀i ≤ m (pn |P qi),
1, if ∃i (n < i ≤ m ∧ pn ≶P qi),
2, if ∃i (i ≤ n ∧ pn ≶P qi) ∧ ∀i (n < i ≤ m → pn |P qi).

For every n, the color of c(n,m) changes at most twice. This can be seen by
considering the value of c(n, n + 1) and making the following observations:

• If c(n,m0) = 0 for some m0 > n, then c(n,m) �= 2 for all m ≥ m0.
• If c(n,m0) = 1 for some m0 > n, then c(n,m) = 1 for all m ≥ m0.
• If c(n,m0) = 2 for some m0 > n, then c(n,m) �= 0 for all m ≥ m0.

Apply 2-stable SRT2
3, which is provable in RCA0 by Proposition 5.8 item (1), to c

to obtain a set H that is homogeneous for c, and consider the color for which H is
homogeneous.

Suppose that H is 0-homogeneous. Let C = {pn : n ∈ H}. Then C ⊆ C0 is an
infinite chain, and thus every element of C0 is comparable with every element of C.
Furthermore, every element of C1 is incomparable with every element of C because
H is 0-homogeneous. So C is a (0,∞)-homogeneous chain for P.

Suppose that H is 1-homogeneous. Define a function f : H → N by f(n) = i ,
where i is <-least with i > n and pn ≶P qi . Such an i exists by the 1-homogeneity
of H. The function f is injective because if n and m are members of H with n < m,
then f(n) ≤ m and f(m) > m. Thus H and f satisfy the hypothesis of Claim 2, so
P contains a (0,∞)-homogeneous chain.

Finally, suppose that H is 2-homogeneous. First, suppose that there is a
bound m0 such that ∀n ∈ H ∀i ≥ m0 (pn |P qi). In this case, D0 = {pn : n ∈ H}
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and D1 = {q0, ... , qm0–1} satisfy the hypothesis of Claim 1, so P contains a
(0,∞)-homogeneous chain. If there is no such bound m0, then ∀m0 ∃n ∈ H ∃i ≥
m0 (pn ≶P qi). However, given m0, there cannot be a witnessing n ∈ H and i ≥ m0

with n < m0. If there were, then we could choose an m ∈ H with m > i , in which
case we would have n,m ∈ H , n < i < m, and pn ≶P qi . We would then have that
c(n,m) = 1, which contradicts that H is 2-homogeneous. Therefore, the situation
is that ∀m ∃n ≥ m ∃i ≥ m (n ∈ H ∧ pn ≶P qi). We can thus define an infinite
subset H0 = {n0, n1, n2, ... } of H and an injection f : H0 → N as follows. Given
n0 < n1 < ··· < n�–1 andf(n0), f(n1), ... , f(n�–1), search for the first pair 〈n, i〉with
n and i both greater than max<{n0, ... , n�–1, f(n0), ... , f(n�–1)}, with n ∈ H , and
with pn ≶P qi ; put n� = n; and put f(n�) = i . ThenH0 and f satisfy the hypothesis
of Claim 2, so P contains a (0,∞)-homogeneous chain. �

Finally, we show that (0, cof)-RSpo2 is provable in RCA0 + IΣ0
2 + ADS. To do this,

we first adapt Lemma 5.3 for use with partial orders of width ≤2.

Lemma 5.10. The following is provable in RCA0. Let (P,<P) be a partial order
of width ≤2, and let �P denote �P = P ⊕<P . Then there is a Turing functional
FindLadder

�P : PN → PN relative to �P with the following properties for every infinite
sequence A = 〈an : n ∈ N〉 in P.

(1) If A is an infinite ascending sequence in P and

∀m ∃n > m ∃p ∈ P
(
p ≥P am ∧ p |P an

)
,

then FindLadder
�P(A) is total.

(2) If FindLadder
�P(A) is total, then it computes a ladder for A in P such that

∀m ∃n > m
(
FindLadder

�P(A)(m) |P an
)
.

Proof. Let A = 〈an : n ∈ N〉 be an infinite sequence in P. Compute

FindLadder
�P(A)(0) by searching for an n > 0 and a p0 ∈ P with p0 ≥P a0 and

p0 |P an. If p0 is found, then output FindLadder
�P(A)(0) = p0. To compute

FindLadder
�P(A)(m + 1), first compute pm = FindLadder

�P(A)(m). Then search
for an n > m + 1 and a pm+1 ∈ P withpm+1 >P pm,pm+1 ≥P am+1, andpm+1 |P an.
If pm+1 is found, then output FindLadder

�P(A)(m + 1) = pm+1.
Item (2) follows immediately from the definition of FindLadder

�P . If A = 〈an :

n ∈ N〉 is an infinite sequence in P and if FindLadder
�P(A) is total, then for every

m it must be that FindLadder
�P(A)(m) ∈ P, that am ≤P FindLadder

�P(A)(m), that
FindLadder

�P(A)(m) <P FindLadder
�P(A)(m + 1), and that there is an n > m such

that FindLadder
�P(A)(m) |P an.

For item (1), let A = 〈an : n ∈ N〉 be an infinite ascending sequence in P, and
suppose that for every m there are an n > m and a p ∈ P with p ≥P am and p |P an.
We use IΣ0

1 to show that FindLadder
�P(A) is total. By assumption, there are an n > 0

and a p0 ∈ P with p0 ≥P a0 and p0 |P an. Thus FindLadder
�P(A)(0) is defined.

Inductively assume that pm = FindLadder
�P(A)(m) is defined. Then pm ≥P am, and
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there is an � > m such that pm |P a� . By assumption, there are an s > � and an
x ∈ P with

x ≥P a� and x |P as .

Notice that am+1 ≤P a� ≤P as because m + 1 ≤ � ≤ s and A is an ascending
sequence. The element pm is comparable either with x or with as because x |P as
and P has width ≤2. Also, x �P pm because otherwise we would have the
contradiction a� ≤P x ≤P pm. Similarly, as �P pm because otherwise we would
have the contradiction a� ≤P as ≤P pm. Therefore either x >P pm or as >P pm.

If x >P pm, then x satisfies x >P pm, x ≥P a� ≥P am+1, and x |P as . That is, there
are an n > m + 1 and apm+1 ∈ P withpm+1 >P pm,pm+1 ≥P am+1, andpm+1 |P an.
So FindLadder

�P(A)(m + 1) is defined.
Otherwise as >P pm. In this case, again by assumption there are a t > s and a

y ∈ P with

y ≥P as and y |P at.

This y satisfies y ≥P as >P pm, y ≥P as ≥P am+1, and y |P at . That is, there are an
n > m + 1 and a pm+1 ∈ P with pm+1 >P pm, pm+1 ≥P am+1, and pm+1 |P an. So

FindLadder
�P(A)(m + 1) is defined. �

Theorem 5.11. RCA0 + IΣ0
2 + ADS � (0, cof)-RSpo2.

Proof. Let (P,<P) be an infinite partial order of width ≤2. RCA0 � CC2 by
Proposition 3.8, so we may apply CC2 to P to obtain an infinite chain C. Apply
ADS to C to obtain either an infinite ascending sequence or an infinite descending
sequence in C. By reversing P if necessary, we may assume that P contains an infinite
ascending sequence A = 〈an : n ∈ N〉.

Let �P = P ⊕<P , and let FindLadder
�P : PN → PN be the Turing functional

relative to �P from Lemma 5.10. Let FindLadder
�P,i denote the ith iteration of

FindLadder
�P,i given by

FindLadder
�P,0(A) = A,

FindLadder
�P,i+1(A) = FindLadder

�P(FindLadder
�P,i(A)).

There are two cases: either FindLadder
�P,i(A) is partial for some i, or

FindLadder
�P,i(A) is total for all i.

First suppose that FindLadder
�P,i(A) is partial for some i. Then, by IΣ0

2 in the form

of the Σ0
2 least element principle, there is a least i such that FindLadder

�P,i(A) is par-

tial. As FindLadder
�P,0(A) is total, it must be that i > 0 and that FindLadder

�P,i–1(A)
is total. Then FindLadder

�P,i–1(A) computes an infinite ascending sequence in
P because either i – 1 = 0, in which case FindLadder

�P,i–1(A) is A; or i – 1 > 0,
in which case FindLadder

�P,i–1(A) = FindLadder
�P(FindLadder

�P,i–2(A)) computes
an infinite ascending sequence by Lemma 5.10 item (2). Let B = 〈bn : n ∈ N〉
denote the infinite ascending sequence computed by FindLadder

�P,i–1(A), where
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bn = FindLadder
�P,i–1(A)(n) for each n. We claim that some tail of B is (0,∞)-

homogeneous. If not, then every tail of B has a counterexample, which implies
that

∀m ∃n > m ∃p ∈ P
(
p ≥P bm ∧ p |P bn

)
.

Therefore,

FindLadder
�P,i(A) = FindLadder

�P(FindLadder
�P,i–1(A)) = FindLadder

�P(B)

is total by Lemma 5.10 item (1). This contradicts that FindLadder
�P,i(A) is

partial. Therefore some tail B≥n of B is (0,∞)-homogeneous. Ascending (0,∞)-
homogeneous sequences are necessarily (0, cof)-homogeneous, and infinite subsets
of (0, cof)-homogeneous chains are necessarily (0, cof)-homogeneous as well. Thus
we may thin B≥n to an infinite sequence whose range exists as a set and thereby
obtain a (0, cof)-homogeneous chain for P.

Now suppose that FindLadder
�P,i(A) is total for all i. Then the sequence

(FindLadder
�P,i(A) : i ∈ N) is uniformly computable. Let Ai = 〈ain : n ∈ N〉

denote the infinite sequence computed by FindLadder
�P,i(A), where ain =

FindLadder
�P,i(A)(n) for all i and n. For every i, Ai is an infinite ascending

sequence in P andAi+1 is a ladder forAi by the fact thatA0 = A, by the assumption
that every FindLadder

�P,i(A) is total, and by Lemma 5.10 item (2). We have that for
every i0, i1, n0, n1, if i0 ≤ i1 and n0 ≤ n1, then ai0n0 ≤P ai1n1 . This is because

a
i0
n0 ≤P ai0n1 ≤P ai0+1

n1 ≤P ai0+2
n1 ≤P ··· ≤P ai1n1 .

The inequality ai0n0 ≤P ai0n1 is because Ai0 is an ascending sequence. The inequalities

a
i0
n1 ≤P ai0+1

n1 ≤P ··· ≤P ai1n1 are because Ai+1 is a ladder for Ai for each i.
Additionally, if n0 < n1, then the inequality ai0n0 <P a

i0
n1 is strict and therefore the

inequality ai0n0 <P a
i1
n1 is strict as well.

Define an infinite sequence B = 〈bi : i ∈ N〉 by bi = aii for each i. The sequence
B is ascending in P because aii <P a

i+1
i+1 for each i. The ascending sequence B is

also (0, cof)-homogeneous. To see this, consider a p ∈ P such that p �P bi for
all i. We show that p ≥P bi for all i. Given i, there is an n > i + 1 with ai+1

i+1 |P ain
by Lemma 5.10 item (2). The element p is comparable either with bi+1 = ai+1

i+1
or with ain because P has width ≤ 2. We have that p �P bi+1 by assumption and
that p �P ain because p ≤P ain yields the contradiction p ≤P ain ≤P ann = bn. Thus
either p ≥P bi+1 ≥P bi or p ≥P ain ≥P aii = bi . Therefore p ≥P bi , as desired. Thus
every p ∈ P is either below some element of B, in which case it is below almost every
element of B because B is an ascending sequence; or is above all elements of B. So B is
a (0, cof)-homogeneous ascending sequence. As above, we may thin B to an infinite
sequence whose range exists as a set and thereby obtain a (0, cof)-homogeneous
chain for P. �

Unfortunately, the method of Theorem 5.11 does not appear to readily generalize
even to 3-chain decomposable partial orders.
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§6. Reversals and equivalences. We supply the following reversals:

• RCA0 + RSpoCD3 � ADS (Lemma 6.1).
• RCA0 + RSpoCD2 � SADS (Lemma 6.2).
• RCA0 + RSpoCD<∞ � IΣ0

2 (Lemma 6.3).
• RCA0 + (0, cof)-RSpoCD2 � ADS (Lemma 6.4).

Theorem 6.6 then combines these reversals with the results of the previous section
in order to characterize the axiomatic strength of several versions of the Rival–Sands
theorem for partial orders. We also present a few questions.

Lemma 6.1. RCA0 + RSpoCD3 � ADS.

Proof. Let (L,<L) be an infinite linear order. Let (Q,<Q) be the three-element
partial order Q = {a, b, z} with a, b <Q z and a |Q b. Consider the product partial
order (P,<P), where P = L×Q and 〈�0, q0〉 ≤P 〈�1, q1〉 if and only if �0 ≤L �1
and q0 ≤Q q1. The partial order P has the 3-chain decomposition Ca = L× {a},
Cb = L× {b}, Cz = L× {z}. Thus by RSpoCD3 , let C be a (0,∞)-homogeneous
chain for P.

Notice that C cannot intersect both Ca and Cb because 〈�0, a〉 |P 〈�1, b〉 for
every �0, �1 ∈ L. Thus either C ⊆ Ca ∪ Cz or C ⊆ Cb ∪ Cz . Assume for the sake
of argument that C ⊆ Ca ∪ Cz . The C ⊆ Cb ∪ Cz case is symmetric.

We claim thatC ∩ Cz has no maximum element. Suppose for a contradiction that
〈m, z〉 is the maximum element of C ∩ Cz , and consider the element 〈m, b〉. Then
〈m, b〉 <Q 〈m, z〉. However, every other element of C is either of the form 〈�, a〉,
in which case 〈m, b〉 |P 〈�, a〉 because b |Q a; or of the form 〈�, z〉 with � <L m, in
which case 〈m, b〉 |P 〈�, z〉 because m >L � and b <Q z. Thus 〈m, b〉 is comparable
with exactly one element of C, contradicting that C is (0,∞)-homogeneous.

IfC ∩ Cz �= ∅, thenC ∩ Cz is non-empty and has no maximum element, so we can
define an infinite ascending sequence 〈�0, z〉 <P 〈�1, z〉 <P 〈�2, z〉 <P ··· in C ∩ Cz .
This yields an infinite ascending sequence �0 <L �1 <L �2 <L ··· in L.

If C ∩ Cz = ∅, then C ⊆ Ca . In this case, we claim that C has no minimum
element. Suppose for a contradiction that 〈m, a〉 is the minimum element of C, and
consider the element 〈m, z〉. Then 〈m, a〉 <P 〈m, z〉. However, every other element
of C is of the form 〈�, a〉 withm <L �, in which case 〈m, z〉 |P 〈�, a〉 becausem <L �
and z >Q a. Thus 〈m, z〉 is comparable with exactly one element of C, contradicting
that C is (0,∞)-homogeneous. We may now define an infinite descending sequence
〈�0, a〉 >P 〈�1, a〉 >P 〈�2, a〉 >P ··· in C and hence an infinite descending sequence
�0 >L �1 >L �2 >L ··· in L.

Thus L has either an infinite ascending sequence or an infinite descending
sequence. �

Lemma 6.2. RCA0 + RSpoCD2 � SADS.

Proof. Let (L,<L) be an infinite stable linear order. Let (Q,<Q) be the two-
element linear order Q = {a, z} with a <Q z, and let (P,<P) be the product partial
order L×Q. The partial order P has the 2-chain decomposition Ca = L× {a},
Cz = L× {z}. Thus by RSpoCD2 , let C be a (0,∞)-homogeneous chain for P.

The linear order L is stable, so every � ∈ L has either finitely many <L-
predecessors or finitely many <L-successors. We claim that C ∩ Ca cannot contain
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two elements 〈�, a〉 and 〈r, a〉 where � has only finitely many <L-predecessors and
r has only finitely many <L-successors. Suppose for a contradiction that C ∩ Ca
does contain such an 〈�, a〉 and 〈r, a〉, and consider the element 〈�, z〉. The element
〈�, z〉 is comparable with an 〈x, a〉 ∈ Ca if and only if x ≤L �, and there are only
finitely many such elements x ∈ L. Thus 〈�, z〉 is comparable with only finitely many
elements of C ∩ Ca . On the other hand, the element 〈r, a〉 is comparable with an
〈x, z〉 ∈ Cz if and only if r ≤L x, and there are only finitely many such elements
x ∈ L. ThusC ∩ Cz is finite because all of its elements are comparable with 〈r, a〉. It
follows that 〈�, z〉 is comparable with 〈�, a〉 ∈ C and is comparable with only finitely
many elements of C in total. This contradicts that C is (0,∞)-homogeneous for
P. Symmetric reasoning shows that C ∩ Cz also cannot contain two elements 〈�, z〉
and 〈r, z〉 where � has only finitely many <L-predecessors and r has only finitely
many <L-successors.

The chain C is infinite, so either C ∩ Ca is infinite or C ∩ Cz is infinite.
Suppose for the sake of argument that C ∩ Ca is infinite. The other case is
symmetric. By the claim above, it must be that either � has only finitely many
<L-predecessors whenever 〈�, a〉 ∈ C ∩ Ca or that � has only finitely many <L-
successors whenever 〈�, a〉 ∈ C ∩ Ca . Suppose that � has only finitely many <L-
predecessors whenever 〈�, a〉 ∈ C ∩ Ca . Then for every 〈�, a〉 ∈ C ∩ Ca , there is
an 〈r, a〉 ∈ C ∩ Ca with 〈�, a〉 <P 〈r, a〉. We may thus define an infinite ascending
sequence 〈�0, a〉 <P 〈�1, a〉 <P 〈�2, a〉 <P ··· in C ∩ Ca and hence an infinite
ascending sequence �0 <L �1 <L �2 <L ··· in L. Similarly, if � has only finitely
many <L-successors whenever 〈�, a〉 ∈ C ∩ Ca , then for every 〈�, a〉 ∈ C ∩ Ca ,
there is an 〈r, a〉 ∈ C ∩ Ca with 〈r, a〉 <P 〈�, a〉. We may thus define an infinite
descending sequence 〈�0, a〉 >P 〈�1, a〉 >P 〈�2, a〉 >P ··· in C ∩ Ca and hence an
infinite descending sequence �0 >L �1 >L �2 >L ··· in L. Thus L has either an infinite
ascending sequence or an infinite descending sequence. �

Lemma 6.3. RCA0 + RSpoCD<∞ � IΣ0
2.

Proof. We show that RCA0 + RSpoCD<∞ proves the Π0
2 least element principle,

which is equivalent to IΣ0
2 over RCA0 as explained in Section 2. Notice that

RCA0 + RSpoCD<∞ � BΣ0
2 because RCA0 + RSpoCD<∞ � ADS by Lemma 6.1, and

RCA0 + ADS � BΣ0
2 as explained in Section 2. Thus we may make use of RT1

<∞
in the following argument.

Let ∀x ∃y ϕ(n, x, y) be a Π0
2 formula, possibly with undisplayed parameters,

where ϕ is Σ0
0. Let n be such that ∀x ∃y ϕ(n, x, y). We want to find the least i such

that ∀x ∃y ϕ(i, x, y). Define a partial order (P,<P) by

P =
{
〈i, s, t〉 : (i ≤ n) ∧

(
∀x ≤ s ∃y ≤ t ϕ(i, x, y)

)
∧

(
∃x ≤ s ∀y < t ¬ϕ(i, x, y)

)}
and

〈i0, s0, t0〉 ≤P 〈i1, s1, t1〉 ⇔ i1 ≤ i0 ∧ s1 ≥ s0.

That is, P consists of all triples 〈i, s, t〉 where i ≤ n and t is least such that ∀x ≤
s ∃y ≤ t ϕ(i, x, y). Notice that given i and s, there is at most one t with 〈i, s, t〉 ∈ P.

By assumption, ∀x ∃y ϕ(n, x, y). Thus given any s, we have that ∀x ≤
s ∃y ϕ(n, x, y), and therefore by BΣ0

0 there is a t such that ∀x ≤ s ∃y ≤ t ϕ(n, x, y).
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Moreover, there is a least such t by the Σ0
0 least element principle. This shows that for

every s there is a t with 〈n, s, t〉 ∈ P. Therefore P is infinite. Furthermore, P has the
(n + 1)-chain decompositionC0, ... , Cn, whereCi = {〈i, s, t〉 : 〈i, s, t〉 ∈ P} for each
i ≤ n. By RSpoCD<∞, let C be a (0,∞)-homogeneous chain for P. By RT1

<∞, there is
an i such that C ∩ Ci is infinite. We show that i is least such that ∀x ∃y ϕ(i, x, y).

First, as C ∩ Ci is infinite, given any x0 there are an s and a t with 〈i, s, t〉 ∈ P
and s ≥ x0. The fact that 〈i, s, t〉 ∈ P means that ∀x ≤ s ∃y ≤ t ϕ(i, x, y). Thus
∃y ϕ(i, x0, y) because x0 ≤ s . Therefore ∀x ∃y ϕ(i, x, y).

Second, if j < i , then C ∩ Cj = ∅. This is because for any 〈j, s0, t0〉 ∈ P, there
is an 〈i, s1, t1〉 ∈ C ∩ Ci with s1 > s0 because C ∩ Ci is infinite. Then 〈j, s0, t0〉 |P
〈i, s1, t1〉, so 〈j, s0, t0〉 /∈ C because C is a chain. Now suppose for a contradiction that
there is a j < i such that ∀x ∃y ϕ(j, x, y). Let 〈i, s0, t0〉 be any element ofC ∩ Ci . By
the same argument as for n, the assumption ∀x ∃y ϕ(j, x, y) implies that for every
s there is a t with 〈j, s, t〉 ∈ P. Therefore there is a t1 such that 〈j, s0, t1〉 ∈ P, and
we have that 〈j, s0, t1〉 >P 〈i, s0, t0〉. However, C ⊆

⋃n
k=i Ck , and for 〈j, s0, t1〉 to be

comparable with some 〈k, s, t〉 ∈
⋃n
k=i Ck , it must be that s ≤ s0. There are only

finitely many 〈k, s, t〉 ∈
⋃n
k=i Ck with s ≤ s0, so 〈j, s0, t1〉 is comparable with only

finitely many elements of C. Thus 〈j, s0, t1〉 is comparable with 〈i, s0, t0〉 ∈ C , but it
is comparable with only finitely many elements of C in total. This contradicts that
C is (0,∞)-homogeneous for P. Therefore we cannot have that ∀x ∃y ϕ(j, x, y), so
i is least such that ∀x ∃y ϕ(i, x, y). �

Lemma 6.4. RCA0 + (0, cof)-RSpoCD2 � ADS.

Proof. Let (L,<L) be an infinite linear order. As in the proof of Lemma 6.2,
let (Q,<Q) be the two-element linear order Q = {a, z} with a <Q z, and let
(P,<P) be the product partial order L×Q. The partial order P has the 2-chain
decomposition Ca = L× {a}, Cz = L× {z}. Thus by (0, cof)-RSpoCD2 , let C be a
(0, cof)-homogeneous chain for P.

The chain C is infinite, so either C ∩ Ca is infinite or C ∩ Cz is infinite. First
suppose that C ∩ Ca is infinite. Then C ∩ Ca has no minimum element. Suppose
for a contradiction that 〈m, a〉 is the minimum element of C ∩ Ca , and consider
the element 〈m, z〉. Then 〈m, a〉 <P 〈m, z〉. However, every other element ofC ∩ Ca
is of the form 〈�, a〉 with m <L �, in which case 〈m, z〉 |P 〈�, a〉 because m <L �
and z >Q a. Thus 〈m, z〉 is comparable with at least one element of C, but it is not
comparable with cofinitely many elements of C because it is incomparable with every
element of C ∩ Ca except 〈m, a〉. This contradicts that C is (0, cof)-homogeneous
for P. ThusC ∩ Ca is infinite and has no minimum element. We may therefore define
an infinite descending sequence 〈�0, a〉 >P 〈�1, a〉 >P 〈�2, a〉 >P ··· in C ∩ Ca and
hence an infinite descending sequence �0 >L �1 >L �2 >L ··· in L.

The case where C ∩ Cz is infinite is dual to the previous case. If C ∩ Cz has
maximum element 〈m, z〉, then 〈m, a〉 witnesses that C is not (0, cof)-homogeneous.
Thus C ∩ Cz is infinite and has no maximum element. We may therefore define an
infinite ascending sequence 〈�0, z〉 <P 〈�1, z〉 <P 〈�2, z〉 <P ··· in C ∩ Cz and hence
an infinite ascending sequence �0 <L �1 <L �2 <L ··· in L.

Thus L has either an infinite ascending sequence or an infinite descending
sequence. �
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Thus for k ≥ 2, (0, cof)-RSpok implies ADS, which implies that every (0, cof)-
homogeneous chain in a partial order of width ≤k has a suborder of type either �
or �∗. We therefore have the following proposition.

Proposition 6.5. RCA0 proves the statement “For every k ≥ 2, (0, cof)-RSpok
holds if and only if every infinite partial order of width ≤k has a (0,∞)-homogeneous
chain of order-type either � or �∗.”

Proof. Let k ≥ 2. In any partial order, a (0,∞)-homogeneous chain of order-
type � or �∗ is necessarily (0, cof)-homogeneous. Thus if every infinite partial
order of width ≤k has a (0,∞)-homogeneous chain of order-type either � or �∗,
then (0, cof)-RSpok holds. Conversely, suppose that (0, cof)-RSpok holds. Then
(0, cof)-RSpo2 holds because k ≥ 2, so ADS holds by Lemma 6.4. Let (P,<P) be an
infinite partial order of width ≤k. Then P has a (0, cof)-homogeneous chain C by
(0, cof)-RSpok , and C has a suborder B of type either � or �∗ by ADS. The chain
B is also (0, cof)-homogeneous, and therefore it is (0,∞)-homogeneous. Thus B is
a (0,∞)-homogeneous chain in P of order-type either � or �∗. �

Of course, Proposition 6.5 also holds with (0, cof)-RSpoCDk and “that is k-chain
decomposable” in place of (0, cof)-RSpok and “of width ≤k.”

The following theorem characterizes the strength the Rival–Sands theorem for
partial orders.

Theorem 6.6.

(1) RSpo<∞, RSpoCD<∞, and IΣ0
2 + ADS are pairwise equivalent over RCA0.

(2) For each fixed standardk ≥ 3,RSpok ,RSpo
CD
k , andADS are pairwise equivalent

over RCA0.
(3) RSpoCD2 and SADS are equivalent over RCA0.
(4) RSpo2, RSpoCD2 , and SADS are pairwise equivalent over WKL0.
(5) (0, cof)-RSpo2, (0, cof)-RSpoCD2 , and ADS are pairwise equivalent over

RCA0 + IΣ0
2.

Proof. Item (1) is by Theorem 5.5, Lemmas 6.1 and 6.3, and the fact that
RSpo<∞ implies RSpoCD<∞. Item (2) is by Theorem 5.6, Lemma 6.1, and the fact that
RSpok implies RSpoCDk . Item (3) is by Theorem 5.9 and Lemma 6.2. Item (4) is by
item (3) and the fact that WKL0 proves the equivalence of RSpo2 and RSpoCD2 , as
explained in Section 3. Item (5) is by Theorem 5.11 and Lemma 6.4 �

We end this section with a few questions. First, we still know no better proof
of (0, cof)-RSpo<∞ than the proof in Π1

1-CA0 from Theorem 4.10. Of course,
(0, cof)-RSpo<∞ cannot be equivalent to Π1

1-CA0 over RCA0 because it is a true
Π1

2 sentence, and true Π1
2 sentences cannot imply Π1

1-CA0 over RCA0 (see [1,
Proposition 4.17]).

Question 6.7. What is the strength of (0, cof)-RSpo<∞? What is the strength of
(0, cof)-RSpok for each fixed k ≥ 3?

In the case k = 2, we do not know if RCA0 + IΣ0
2 can be weakened to RCA0 in

Theorem 6.6 item (5).

Question 6.8. Are (0, cof)-RSpo2, (0, cof)-RSpoCD2 , and ADS also pairwise
equivalent over RCA0?
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Finally, we do not know if the equivalence of RSpo2 and SADS over WKL0 of
Theorem 6.6 item (4) also holds over RCA0.

Question 6.9. What is the strength of RSpo2 relative to RCA0? In particular, does
RCA0 + SADS � RSpo2?

§7. Extending the Rival–Sands theorem to partial orders without infinite antichains.
It is possible for a partial order to have arbitrarily large finite antichains (and hence
to not have finite width) but still have no infinite antichain. The goal of this section
is to extend RSpo and (0, cof)-RSpo to countably infinite partial orders that do
not have infinite antichains. To the best of our knowledge, these extensions are
new combinatorial results. Furthermore, we show that the extension of RSpo to
countably infinite partial orders without infinite antichains is equivalent to ACA0

over RCA0.
Unions of ideals play the role of unions of chains when working with partial

orders without infinite antichains. Recall that an ideal in a partial order (P,<P) is a
set I ⊆ P that is downward-closed: ∀p, q ∈ P ((p ∈ I ∧ q ≤P p) → q ∈ I ) and
upward-directed: ∀p, q ∈ I ∃r ∈ I (p ≤P r ∧ q ≤P r).

A theorem of Bonnet [2, Lemma 2] states that a partial order has no infinite
antichain if and only if every initial interval (i.e., downward-closed set) is a finite
union of ideals. Frittaion and Marcone determined that this theorem is equivalent
to ACA0 over RCA0.

Theorem 7.1 [13, Theorem 4.5]. The following are equivalent over RCA0.

(1) ACA0.
(2) For every partial order (P,<P), if P has no infinite antichain, then every initial

interval of P is a finite union of ideals.

Furthermore, Frittaion and Marcone observe that in Theorem 7.1 item (2), it
may additionally be assumed that the partial order (P,<P) is an essential union of
finitely many ideals. This means that P =

⋃
i<k Ii for ideals Ii ⊆ P with i < k for

some k, where additionally Ii �
⋃
j<k
j 	=i
Ij for every i < k (see [13, Lemma 3.3]). We

warn the reader that when we write a partial order as a union of ideals, we may not
necessarily assume that the ideals are disjoint as we do with chain decompositions.

Theorem 7.2. Π1
1-CA0 proves the statement “Every infinite partial order with no

infinite antichain has a (0, cof)-homogeneous chain.”

Proof. Let (P,<P) be an infinite partial order that does not have infinite
antichains. Then P must have an infinite chain by CAC, which must have either
an infinite ascending sequence or an infinite descending sequence by ADS. Thus we
may assume that P contains an infinite ascending sequence A by reversing the partial
order if necessary. Use Π1

1-CA0 (and the fact that the Σ1
1 sets are the complements

of the Π1
1 sets) to define the set Q = {q ∈ P : q↑ is reverse ill-founded} of elements

of P that have infinite ascending sequences above them. Notice that Q is non-empty
because A ⊆ Q.

The proof proceeds inACA0 from this point onward. The partial order (Q,<P) has
no infinite antichain because it is a suborder of P. Therefore Q is an essential union
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of finitely many ideals Q =
⋃
i<k Ii for some k > 0 by the (1) ⇒ (2) direction of

Theorem 7.1 and the comment that follows it. No ideal Ii for i < k has a maximum
element. Suppose for a contradiction that Ii has maximum element q. As q ∈ Q,
there is an infinite ascending sequence q <P b0 <P b1 <P ··· in P and therefore in
Q. The element b0 is not in Ii because q is the maximum element of Ii . Thus b0 ∈ Ij
for some j < k, j �= i . But then Ii ⊆ Ij because b0 ∈ Ij , q <P b0, Ij is downward-
closed, and q is the maximum element of Ii . This contradicts that the union

⋃
i<k Ii

is essential. The partial order Q is infinite, so RT1
<∞ implies that ideal I� is infinite

for some � < k. (In fact, Ii is infinite for every i < k because Ii is non-empty and
has no maximum element.) We may thus define an infinite ascending sequence
C = 〈cn : n ∈ N〉 that is cofinal in I� as follows. Let 〈xn : n ∈ N〉 enumerate the
elements of I� . Let c0 = x0, and for each n, let cn+1 be the <N-least element of I�
with cn+1 >P cn and cn+1 >P xn+1. Such a cn+1 necessarily exists because I� is an
ideal with no maximum element.

We finish the proof by showing that some tail of C is (0,∞)-homogeneous for P
and therefore is (0, cof)-homogeneous for P. Suppose for a contradiction that no
tail of C is (0,∞)-homogeneous. Then every tail of C has a counterexample d. For
each n, let dn be the <N-least counterexample to the tail C≥n. The partial order P
has no infinite antichain, so by CAC applied to the infinite suborder {dn : n ∈ N},
there is a sequence n0 < n1 < n2 < ··· such that {dnj : j ∈ N} is a chain.

Arguing as in the proof of Lemma 4.8, we have that for every i, it is the case that
dni <P dnj for all sufficiently large j. Fix an i. The element dni is a counterexample
to C≥ni , so there is an s ≥ ni such that dni >P cs and dni |P C≥s+1. Let j > s + 1,
and consider dnj . The element dnj is a counterexample to C≥nj , so there is a t ≥ nj
such that dnj >P ct . We cannot have that dnj ≤P dni because this would yield that
cs+1 <P ct <P dnj ≤P dni , contradicting that dni |P cs+1. Note here that s + 1 <
j ≤ nj ≤ t, so cs+1 <P ct because C is an ascending sequence. Therefore it must be
that dni <P dnj because we know that dni ≶P dnj .

Using the above, we may thin the sequence n0 < n1 < n2 < ··· so that
dn0 <P dn1 <P dn2 <P ··· is an infinite ascending sequence in P. It follows that
{dnj : j ∈ N} ⊆ Q. By RT1

<∞, there is an s < k such that Is contains dnj for
infinitely many j. We may therefore further thin the sequence n0 < n1 < n2 < ···
so that {dnj : j ∈ N} ⊆ Is . We cannot have that s = � because every element of
I� is below a tail of C by the construction of C, whereas dnj is incomparable
with a tail of C for every j. Finally, we see that I� ≤∀∃ C by the construction
of C and that C ≤∀∃ {dnj : j ∈ N} because cnj <P dnj for every j. Therefore
I� ≤∀∃ {dnj : j ∈ N} ⊆ Is , so I� ⊆ Is because Is is an ideal. This contradicts that
the union

⋃
i<k Ii is essential because s �= �. �

As in the case of RSpo<∞ versus (0, cof)-RSpo<∞, if we only want to produce a
chain that is (0,∞)-homogeneous rather than (0, cof)-homogeneous in an infinite
partial order (P,<P) with no infinite antichain, then we may split into the cases of
where P contains a suborder of type � and where it does not.

Theorem 7.3. ACA0 proves the statement “Every infinite partial order with no
infinite antichain has a (0,∞)-homogeneous chain.”

https://doi.org/10.1017/jsl.2022.92 Published online by Cambridge University Press

https://doi.org/10.1017/jsl.2022.92


(EXTRA)ORDINARY EQUIVALENCES WITH THE ASCENDING/DESCENDING 299

Proof. The proof is the same as the proof of Theorem 7.2, except now we use
Lemma 4.5 item (2) in place of Π1

1-CA0. Let (P,<P) be an infinite partial order
that does not have infinite antichains. A chain of order-type � is necessarily (0,∞)-
homogeneous, so we may additionally assume that P has no suborder of type � .
As in the proof of Theorem 7.2, we may assume that P has an infinite ascending
sequence by applying CAC and ADS and by reversing the order if needed. By the (1)
⇒ (2) direction of Lemma 4.5 and the comments that follow it, we may form the set
Q = {q ∈ P : q↑ is reverse ill-founded}. The proof now continues exactly as in that
of Theorem 7.2. �

Recall that a partial order (P,<P) is a well-partial-order if for every function
h : N → P, there are m, n ∈ N with m < n such that f(m) ≤P f(n). A function
h : N → P witnessing that P is not a well-partial-order (i.e., such that h(m) �P h(n)
whenever m < n) is called a bad sequence. Any bijective enumeration of an infinite
antichain in a partial order (P,<P) is a bad sequence, so well-partial-orders do not
have infinite antichains.

To reverse Theorem 7.3 for well-partial-orders, we employ the construction of
[12, Definition 4.2], which is a generalization of Construction 4.4. This construction
takes an injectionf : N → N and a finite partial order P with a distinguished element
x ∈ P and produces an infinite partial order Ξf(P, x) such that the range of f is
recursive in the join of f with any bad sequence in Ξf(P, x). That is, either Ξf(P, x)
is a well-partial-order or the range of f exists as a set. Thus given an injection f,
the strategy is to construct Ξf(P, x) for the 2-element antichain P = {x, y}, show
that Ξf(P, x) has no (0,∞)-homogeneous chain, conclude that Ξf(P, x) is not a
well-partial-order, and then conclude that the range of f exists as a set.

We include Construction 7.4 for the reader’s convenience. Given an injection
f : N → N, let

Ts = {n < s : n is true at stage s}
= {n < s : ∀k (n < k ≤ s → f(n) < f(k))},

for each s ∈ N.

Construction 7.4 [12, Definition 4.2]. Letf : N → N be an injection, let (P,<P)
be a finite partial order, and let x ∈ P. Define the partial order (Q,<Q) = Ξf(P, x)
as follows. Make countably many disjoint copies (Pn,<Pn ) of P by setting Pn =
{n} × P and by setting 〈n, y〉 <Pn 〈n, z〉 if and only if y <P z for all n ∈ N and all
y, z ∈ P. Let xn = 〈n, x〉 denote the copy of x in Pn. The domain of Q is

⋃
n∈N
Pn.

Define <Q in stages, where at stage s, <Q is defined on
⋃
n≤s Pn.

• At stage 0, define <Q to be <P0 on P0.
• Suppose <Q is defined on

⋃
n≤s Ps . There are two cases.

(1) If Ts+1 � Ts ∪ {s}, let n0 be the least element of (Ts ∪ {s}) \ Ts+1,
and place Ps+1 immediately above xn0 . That is, place the elements of
Ps+1 above all y ∈

⋃
n≤s Ps such that y ≤Q xn0 , below all y ∈

⋃
n≤s Ps

such that y >Q xn0 , and incomparable with all y ∈
⋃
n≤s Ps that are

incomparable with xn0 .
(2) If Ts+1 = Ts ∪ {s}, place Ps+1 immediately below xs . That is, place the

elements of Ps+1 above all y ∈
⋃
n≤s Ps such that y <Q xs , below all
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y ∈
⋃
n≤s Ps such that y ≥Q xs , and incomparable with all y ∈⋃

n≤s Ps that are incomparable with xs .
In both cases, define <Q to be <Ps+1 on Ps+1.

This construction can be carried out in RCA0.

The following two lemmas encapsulate the important properties of
Construction 7.4.

Lemma 7.5 [12, Lemma 4.3]. The following is provable in RCA0. Let f : N → N
be an injection, let P be a finite partial order, let x ∈ P, and let (Q,<Q) = Ξf(P, x).
Consider m, n ∈ N with n < m.

(1) If n ∈ Tm, then Pm <Q xn and ∀y ∈ Pn (xn |Q y → Pm |Q y).
(2) If n /∈ Tm, then xn <Q Pm.

Lemma 7.6 [12, Lemma 4.4]. The following is provable in RCA0. Let f : N → N
be an injection, let P be a finite partial order, let x ∈ P, and let (Q,<Q) = Ξf(P, x).
If Q is not a well-partial-order, then the range of f exists as a set.

We now give the reversal for Theorem 7.3.

Lemma 7.7. The statement “Every infinite well-partial-order has a (0,∞)-
homogeneous chain” implies ACA0 over RCA0.

Proof. Letf : N → N be an injection. Let (P,<P) be the 2-element partial order
P = {x, y} with x |P y. Let (Q,<Q) = Ξf(P, x), and recall that Q =

⋃
n∈N
Pn,

where Pn = {n} × P for each n. Let xn = 〈n, x〉 and yn = 〈n, y〉 denote the copies
of x and y in Pn for each n.

First, assume that there is an infinite setC ⊆ Q consisting only of elements yn for
false numbers n, and furthermore assume that there are no false numbers n and k with
yn ∈ C and yn <Q xk . Then the number k is true whenever there is an n such that
yn ∈ C and yn <Q xk . Moreover, if k is a true number, then there is an m > k with
ym ∈ C because C is infinite, and we have that ym <Q xk by Lemma 7.5 item (1).
Thus the true numbers k are Σ0

1-definable by the formula∃m (ym ∈ C ∧ ym <Q xk).
The original definition of the true numbers from Definition 4.3 is Π0

1, so the set of
true numbers exists by Δ0

1 comprehension. Thus the range of f exists as a set.
Second, assume instead that whenever C ⊆ Q is an infinite set consisting only of

elements yn for false numbers n, there are false numbers n and k with yn ∈ C and
yn <Q xk . The goal of this case is to show that Q has no (0,∞)-homogeneous chain.
The hypothesis “Every infinite well-partial-order has a (0,∞)-homogeneous chain”
then implies that Q is not a well-partial-order, so the range of f exists as a set by
Lemma 7.6.

Consider an infinite chain C ⊆ Q. We show that C is not (0,∞)-homogeneous.
Observe that if n is a true number, then n ∈ Tm for all m > n and therefore that
yn |P Pm for all m > n by Lemma 7.5 item (1). There are now three sub-cases.

• There is a number n with xn ∈ C . Let m be a true number with m > n. Then
ym ≶Q xn by Lemma 7.5, butym is only comparable with finitely many elements
of Q because m is true. So ym witnesses that C is not (0,∞)-homogeneous.

• There is a true number n with yn ∈ C . Then yn is comparable with only finitely
many elements of Q, so C cannot be an infinite chain.
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• The chain C consists only of elements yn for false numbers n. Then by
the case assumption there are false numbers n and k with yn ∈ C and
yn <Q xk . Let m > k be such that m is true and that k /∈ Tm. Then yn <Q
xk <Q ym by Lemma 7.5 item (2), but ym is only comparable with finitely
many elements of Q because m is true. So ym witnesses that C is not
(0,∞)-homogeneous.

We have shown that the range of f exists as a set in both of the main cases. We
may therefore conclude that ACA0 holds by Lemma 2.1. �

Theorem 7.8. The following are equivalent over RCA0.

(1) ACA0.
(2) Every infinite partial order with no infinite antichain has a (0,∞)-homogeneous

chain.
(3) Every infinite well-partial-order has a (0,∞)-homogeneous chain.

Proof. We have that (1) ⇒ (2) by Theorem 7.3, that (2) ⇒ (3) because well-
partial-orders do not have infinite antichains, and that (3) ⇒ (1) by Lemma 7.7. �

It follows that the statement “Every infinite partial order with no infinite
antichain has a (0, cof)-homogeneous chain” implies ACA0 over RCA0. As with
(0, cof)-RSpo<∞, we know no better upper bound for the statement than Π1

1-CA0,
yet the statement cannot be equivalent to Π1

1-CA0 over RCA0 because it is Π1
2.

Question 7.9. What is the strength of the statement “Every infinite partial order
with no infinite antichain has a (0, cof)-homogeneous chain” relative to RCA0?

§8. Maximal chain principles and comments on the original Rival–Sands proof.
The original proof of RSpo<∞ given by Rival and Sands in [28] relies on the
following maximality principle, which we name MMLC for the maximal max-less
chain principle.

Definition 8.1. Call a chain C in a partial order (P,<P) max-less if C has no
maximum element: ∀x ∈ C ∃y ∈ C (x <P y). The maximal max-less chain principle
(MMLC) is the following statement. For every partial order (P,<P), there is a max-
less chain that is ⊆-maximal among the max-less chains of P. That is, there is a
max-less chain C ⊆ P for which C ⊆ D ⊆ P implies C = D for all max-less chains
D of P. Call such a C a maximal max-less chain in P.

Similarly, call a chain C in a partial order (P,<P) min-less if C has no minimum
element: ∀x ∈ C ∃y ∈ C (y <P x). By reversing the partial order, we see that, over
RCA0, MMLC is equivalent to the statement “For every partial order (P,<P), there
is a min-less chain that is ⊆-maximal among the min-less chains of P.”

We very roughly sketch the Rival and Sands proof, using some of the terminology
we have introduced here. Let (P,<P) be a countably infinite partial order of finite
width k for some k. Suppose for a contradiction that (P,<P) contains no (0,∞)-
homogeneous chain. The partial order P contains either an infinite ascending
sequence or an infinite descending sequence, and we may assume that P contains
an infinite ascending sequence by reversing the order if necessary. Define a sequence
(Si , Ci ,Di)i≤k+1 of triples of subsets of P as follows. First, let S0 = P, by MMLC
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let C0 be a maximal max-less chain in P, and let D0 be a cofinal infinite ascending
sequence in C0. Given (Si , Ci ,Di), let Si+1 consist of the elements of P that are
counterexamples to the (0,∞)-homogeneity of Di in the sense of Definition 4.7.
Again by MMLC, let Ci+1 be a maximal max-less chain in Si+1, and let Di+1 be
a cofinal infinite ascending sequence in Ci+1. Using the maximality of the Cj ’s,
show that Di ⊆ Sj whenever j ≤ i ≤ k + 1. This property allows us to choose an
antichain {d0, ... , dk} with di ∈ Dk+1–i for each i ≤ k, which contradicts that P has
width k. The di ’s are chosen back-to-front, with d0 chosen fromDk+1, then d1 chosen
from Dk , and so on. Thus this method does not suffice to prove the extensions of
Theorems 7.2 and 7.3 to partial orders without infinite antichains but not necessarily
of finite width.

We analyze the strength of MMLC and of a few other statements concerning
maximal chains in partial orders. In particular, we show that MMLC is equivalent
to Π1

1-CA0 over RCA0. Therefore, the original proof by Rival and Sands requires
Π1

1-CA0 in the sense that it relies on a principle that is equivalent to Π1
1-CA0.

Furthermore, if a standard bound on the width k of the partial orders being
considered is not fixed in advance, then the original Rival and Sands proof is not
a proof in Π1

1-CA0 because it iterates applying MMLC a finite-but-arbitrarily-large
number of times.

It is well-known and easy to show that RCA0 suffices to produce a maximal chain
and a maximal antichain in a given partial order (P,<P). Enumerate the elements
of P as 〈pn : n ∈ N〉, and add element pn to the chain (antichain) if and only if
it is comparable (incomparable) to all the elements previously added to the chain
(antichain). However, if we want to extend a given chain C to a maximal chain D,
then ACA0 is required.

Proposition 8.2. The following are equivalent over RCA0.

(1) ACA0.
(2) For every partial order (P,<P) and chain C ⊆ P, there is a maximal chain D

with C ⊆ D.

Proof. For the forward direction, let (P,<P) be a partial order, and let C ⊆ P
be a chain. Let Q = {q ∈ P : ∀c ∈ C (q ≶P c)} be the set of elements of P that are
comparable with all elements of C, and consider the partial order (Q,<P). Notice
that C ⊆ Q because C is a chain. Let D be a maximal chain in Q, which can be
produced in RCA0 as described above. AsD ⊆ Q, every element of D is comparable
with every element of C. Therefore C ⊆ D by the maximality of D in Q. We claim
that D is also a maximal chain in P. Suppose for a contradiction that it is not. Then
there is a p ∈ P \D that is comparable with every element of D. Then p is also
comparable with every element of C, so p ∈ Q. Thus there is a p ∈ Q \D that is
comparable with every element of D. This contradicts the maximality of D in Q.
Therefore D is a maximal chain in P with C ⊆ D.

For the reversal, let f : N → N be an injection. We define a partial order (P,<P)
and a chain C ⊆ P in such a way that the range of f can be extracted from f and
any maximal chain D ⊇ C .

Let (L,<L) be the linear order defined in Construction 4.4 for f, where L = {�n :
n ∈ N}. LetP = {cn, �n : n ∈ N}, let cn <P cm if and only if n < m, and let �n <P �m
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if and only if �n <L �m. Moreover, for each n ≤ m, define:

(1) cm <P �n if ∀k (n < k ≤ m → f(n) < f(k)) (i.e., if n is true at stage m),
and cm |P �n otherwise;

(2) cn <P �m.

Notice that cn <P �n for every n.
We must verify that (P,<P) is a partial order. Clearly<P is irreflexive, so we check

that <P is transitive. For no a, b ∈ N it is the case that �a <P cb , so we need only
verify the following four cases.

• If �a <P �b and �b <P �d for some a, b, d ∈ N, then �a <P �d because the
restriction of <P to L is a linear order.

• Similarly, if ca <P cb and cb <P cd for somea, b, d ∈ N, then ca <P cd because
the restriction of <P to {cn : n ∈ N} is a linear order.

• Suppose that cs <P cm and cm <P �n for some s,m, n ∈ N with s �= m. Notice
that cs <P cm implies s < m. If s ≤ n, then from condition (2) we immediately
obtain cs <P �n. If instead n < s , then n < s < m. That cm <P �n means that
n is true at stage m by condition (1). Thus n is also true at stage s, so cs <P �n
as well.

• Finally, suppose that cs <P �m and �m <P �n for some s,m, n ∈ N withm �= n.
If s ≤ n, then it follows immediately from condition (2) that cs <P �n. So
suppose that n < s . We claim that n < m. Suppose on the contrary thatm < n.
Then m is false at stage n by Construction 4.4 because �m <P �n. Thus m is
false at stage s as well because m < n < s , and this contradicts cs <P �m. We
therefore have that n < s , that n < m, and that n is true at stage m because
�m <P �n. If s ≤ m, then n < s ≤ m, so n is true at stage s as well, and we have
cs <P �n as desired. Otherwise m < s , so n < m < s and m is true at stage s
because cs <P �m. Suppose for a contradiction that n is false at stage s. Then
there is a k with n < k ≤ s and f(k) < f(n). It must be that k > m because
otherwise k would witness that n is false at stage m. It must therefore also be
that f(m) < f(k) because otherwise k would witness that m is false at stage
s. Thus f(m) < f(k) < f(n), so in fact m witnesses that n is false at stage m,
which is a contradiction. Thus n is true at stage s, so cs <P �n.

We conclude that (P,<P) is indeed a partial order. Let C be the chain C = {cn :
n ∈ N}, and let D be a maximal chain in P withC ⊆ D. Then {n : �n ∈ D} is the set
of true numbers for f. To see this, first observe that if n is true, then �n is comparable
with every element of P, so �n must be in D by maximality. On the other hand, if
n is false, then there is a m > n with f(m) < f(n) witnessing that n is false. Then
cm |P �n, so �n cannot be in D. The true numbers for f thus form a set, and therefore
the range of f exists as a set. This implies ACA0 by Lemma 2.1. �

The partial order constructed in the reverse direction of Proposition 8.2 is 2-
chain decomposable. Thus Proposition 8.2 item (2) remains equivalent to ACA0

when restricted to 2-chain decomposable partial orders or to partial orders of width
≤2. Extending a given antichain to a maximal antichain in a partial order is also
equivalent to ACA0 over RCA0 by [13, Lemma 5.5].

Finally, we turn to MMLC and show that it is equivalent to Π1
1-CA0 over RCA0,

even when restricted to linear orders. Consider a partial order (P,<P). The axiomatic
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difficulty in producing a maximal max-less chain in P is in determining whether a
given p ∈ P can be a member of a max-less chain. It is easy to see that p is a
member of a max-less chain if and only if p↑ is reverse ill-founded. However, this is
a Σ1

1 property of p, and we show that producing the set of such p requires Π1
1-CA0

in general. For the reversal, recall the Kleene–Brouwer ordering of N<N, whereby
� <KB � if either � is a proper extension of � or � is to the left of �. That is, � <KB �
if and only if

� � � ∨ ∃n < min(|�|, |�|)
(
�(n) < �(n) ∧ ∀i < n (�(i) = �(i))

)
.

Theorem 8.3. The following are equivalent over RCA0.

(1) Π1
1-CA0.

(2) MMLC.
(3) MMLC restricted to linear orders.
(4) For every partial order (P,<P), there is a set W ⊆ P such that ∀p ∈ P (p ∈
W ↔ p↓ is well-founded).

(5) For every linear order (L,<P), there is a set W ⊆ L such that ∀� ∈ L (� ∈
W ↔ �↓ is well-founded).

Proof. For (1) ⇒ (2), let (P,<P) be a partial order. Use Π1
1-CA0 (and the fact

that the Σ1
1 sets are the complements of the Π1

1 sets) to define the set Q = {q ∈
P : q↑ is reverse ill-founded}, and consider the partial order (Q,<P). Let C be a
maximal chain in Q, which may be produced in RCA0.

We first show that C is max-less. To see this, suppose for a contradiction that C has
a maximum element m. Then m ∈ C ⊆ Q, so m↑ is reverse ill-founded in P. Thus
there is an infinite ascending sequence m <P a0 <P a1 <P a2 <P ··· in P. Each ai↑
is reverse ill-founded in P as well, so {ai : i ∈ N} ⊆ Q. Then C ∪ {ai : i ∈ N} ⊆ Q
is a chain in Q properly extending C, contradicting that C is a maximal chain in Q.
Thus C is max-less.

We now show that C is maximal among the max-less chains of P. Suppose that
D ⊆ P is a max-less chain with C ⊆ D. Let d ∈ D. As D is max-less, we may define
an infinite ascending sequence d = d0 <P d1 <P d2 <P ··· of elements of D. Thus
d↑ is reverse ill-founded in P, so d ∈ Q. This shows that D ⊆ Q. That is, C and D
are chains in Q with C ⊆ D. Therefore C = D by the maximality of C in Q. Thus
C is a maximal max-less chain in P.

We have that (1)⇒ (4) because the set W required by item (4) is Π1
1. Furthermore,

(2)⇒ (3) because item (3) is a special case of item (2), and likewise (4)⇒ (5) because
item (5) is a special case of item (4).

For (3) ⇒ (5), let (L,<L) be a linear order, and by item (3) applied to the
reverse of L, let C be a maximal min-less chain in L. Then C consists of exactly
the � ∈ L for which �↓ is ill-founded. If � ∈ C , then there is an infinite descending
sequence in C below � because C is min-less. Thus �↓ is ill-founded. Conversely,
consider an � ∈ L with �↓ ill-founded. Then there is an infinite descending sequence
� = d0 >L d1 >L d2 >L ··· in L below �. Thin the sequence so that its range exists
as a set D with � ∈ D. Then C and D are both min-less, soC ∪D is min-less as well,
plus C ∪D is a chain because every subset of a linear order is a chain. Therefore
C = C ∪D by the maximality of C, so � ∈ C . ThusW = L \ C consists of exactly
the � ∈ L for which �↓ is well-founded.
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To finish the proof, it suffices to show that (5) ⇒ (1). To do this, we show that
item (5) implies the leftmost path principle LPP, which is equivalent to Π1

1-CA0 over
RCA0 by Theorem 2.2. Let T ⊆ N<N be an ill-founded tree, and apply item (5) to
the linear order (T,<KB) (and take complements) to obtain the set I of � ∈ T such
that �↓ is ill-founded with respect to <KB. Notice that I is a subtree of T and that I
has no <KB-minimum element.

Recursively define the following a priori possibly partial function f : N → N such
that for every n, if f�n is defined, then f�n ∈ I . Given n, if f�n is defined, let m
be least such that (f�n)�m ∈ I (if there is such an m) and set f(n) = m. We show
that f is total. Suppose for a contradiction that f is partial, and by the Π0

1 least
element principle, let n be least such that f(n) is undefined. Then f�n is defined
and in I. As I has no <KB-least element, let � ∈ I be such that � <KB f�n. If � is
to the left of f�n, then let j < n be such that �(j) < f(j) and ��j = f�j. Then
��(j + 1) = (f�j)��(j) is in I and �(j) < f(j), which contradicts the definition
of f(j). On the other hand, if � � f�n, then |�| > n and ��(n + 1) = (f�n)��(n)
is in I. Thus there is an m such that (f�n)�m is in I, and therefore there is a least
such m. Thus f(n) is defined, which is a contradiction. Therefore f is total. Thus f
is an infinite path through I and hence is an infinite path through T. We show that f
is the leftmost infinite path through T.

Consider an infinite path g through T. Then g�0 >KB g�1 >KB g�2 >KB ··· is an
infinite<KB-descending sequence. Thus (g�n)↓ is ill-founded for every n, so g�n ∈ I
for every n. Now suppose for a contradiction that g is to the left of f. Then there is an
n such that g(n) < f(n) and g�n = f�n. Thus g�(n + 1) = (f�n)�g(n) is in I and
g(n) < f(n), which contradicts the definition of f(n). Therefore g cannot be to the
left of f, so f is the leftmost path through T. This concludes the proof of LPP. �

By taking complements and/or reversing the order, the statement “p↓ is well-
founded” may be replaced by any of “p↓ is ill-founded,” “p↑ is reverse well-
founded,” and “p↑ is reverse ill-founded” in Theorem 8.3 item (4), and the analogous
replacement may be made in item (5) as well.
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