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Some Functional Inequalities on
Polynomial Volume Growth
Lie Groups

Diego Chamorro

Abstract. In this article we study some Sobolev-type inequalities on polynomial volume growth Lie

groups. We show in particular that improved Sobolev inequalities can be extended to this general

framework without the use of the Littlewood–Paley decomposition.

1 Introduction

Classical Sobolev inequalities provide us with a family of a priori estimates of the

following form:

(1.1) ‖ f ‖Lq ≤ C‖∇ f ‖Lp , where q = np/(n − p).

Initially stated over R
n, they were successively generalized to other settings, such as

manifolds and Lie groups; see, for example, [1, 15] for such generalizations.

Since the work of P. Gérard, Y. Meyer, and F. Oru [9], we know that it is possible

to improve the classical Sobolev inequalities (1.1) by introducing a well-suited Besov

space, and it is worth knowing if these improved inequalities can be generalized to

some special Lie groups. For example, in the case of the Heisenberg group, which

is the simplest example of a stratified Lie group, this was done by H. Bahouri, P.

Gérard and C-J Xu [2], following essentially the same ideas of the original paper by P.

Gérard, Y. Meyer, and F. Oru. For general stratified Lie groups, the task was achieved

in [3] using some different techniques. In this special setting we obtained a family of

Sobolev-type inequalities. Namely, for G = (R
n, ·, δ) a stratified Lie group, and for

f , a function such that f ∈ Ẇ s,p(G) and f ∈ Ḃ−β,∞
∞ (G), we have

(1.2) ‖ f ‖Ẇ s,q ≤ C‖ f ‖θẆ s1 ,p‖ f ‖1−θ

Ḃ
−β,∞
∞

,

where the parameters p, q, and the indices θ, β, s, and s1 are related in a specific man-

ner. See Section 5 below for the definitions of these functional spaces.

This type of Lie group is a generalization of R
n via modifying dilations; in this

setting, the mathematical objects we are dealing with are constructed in such a way

as to respect the homogeneity induced by these dilations. Therefore, many properties

Received by the editors September 16, 2010; revised January 21, 2011.
Published electronically August 3, 2011.
AMS subject classification: 22E30.
Keywords: Sobolev inequalities, polynomial volume growth Lie groups.

481

https://doi.org/10.4153/CJM-2011-050-4 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-2011-050-4


482 D. Chamorro

of these objects (operators, functional spaces) are very similar to the Euclidean case.

See [7, 14] and the references therein for more details.

If we want to study inequalities of type (1.1) and (1.2) in a more abstract frame-

work, it is possible to consider Lie groups without a dilation structure, and in this case

we have several possibilities: a first example is given by nilpotent Lie groups, which

are a generalization of stratified Lie groups (recall that every stratified Lie group is

nilpotent) but these groups are not necessarily endowed with a dilation structure;

see more details in [6]. A second example is given by polynomial volume growth Lie

groups, where we have useful polynomial estimates for the Haar measure of a ball.

Some other examples can be considered, such as exponential growth Lie groups; see

[15] for definitions and some related results for the last case.

Classical Sobolev inequalities have been extensively studied in the three previous

frameworks, and a detailed account can be found in [15].

In this article we will focus on polynomial volume growth Lie groups, and our main

purpose is to study improved Sobolev inequalities of type (1.2) in this very particular

setting. Our results are as follows.

Theorem 1.1 Let G be a polynomial volume growth Lie group.

• Strong inequalities p > 1: If f ∈ Ẇ s1,p(G) and f ∈ Ḃ−β,∞
∞ (G), then we have

(1.3) ‖ f ‖Ẇ s,q ≤ C‖ f ‖θẆ s1 ,p‖ f ‖1−θ

Ḃ
−β,∞
∞

,

where 1 < p < q < +∞, θ = p/q, s = θs1 − (1 − θ)β, and −β < s < s1.
• Strong inequalities p = 1: If ∇ f ∈ L1(G) and f ∈ Ḃ−β,∞

∞ (G), then we have

(1.4) ‖ f ‖Lq ≤ C‖∇ f ‖θL1‖ f ‖1−θ

Ḃ
−β,∞
∞

,

where 1 < q < +∞, θ = 1/q and β = θ/(1 − θ).
• Weak inequalities p = 1: If ∇ f ∈ L1(G) and f ∈ Ḃ−β,∞

∞ (G), then we have

(1.5) ‖ f ‖Ẇ
s,q
∞

≤ C‖∇ f ‖θL1‖ f ‖1−θ

Ḃ
−β,∞
∞

,

where 1 < q < +∞, 0 < s < 1/q < 1, θ = 1/q and β =
1−sq
q−1

.

For a precise definition of these functional spaces, refer to Section 5.

Let us make some remarks concerning the techniques used in the proof of these

inequalities. For the proof of (1.3), we will not make use of the Littlewood–Paley de-

composition as was done in [2, 9]. This estimate will be obtained in a more straight-

forward way applying the sub-Laplacian’s fractional powers properties together with

some properties of the Besov spaces.

Concerning strong inequalities (1.4) and weak inequalities (1.5), the proof follows

a very different path, and we will see that these two estimates rely on the modified

Poincaré pseudo-inequality stated in Theorem 6.1. Observe in particular that it is the

use of this special inequality that suggested to us the definition of the weak Sobolev

spaces Ẇ
s,q
∞ in the estimates (1.5).
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To finish the preliminary remarks, let us stress here that the role of the polynomial

growth geometry will be clearly identified in the estimates available for the heat kernel

Ht associated with the sub-Laplacian J and in the operator’s properties built from the

spectral decomposition of the sub-Laplacian J. These estimates and properties will

be decisive for the proof of Theorem 1.1.

The plan of the article is the following: Section 2 is devoted to a short introduction

of polynomial volume growth Lie groups. Section 3 gives some important estimates

for the Heat kernel. Section 4 presents some results concerning spectral theory. Sec-

tion 5 gives the precise definition of functional spaces involved in the inequalities

above, and Section 6 presents the proof of Theorem 1.1.

2 Polynomial Volume Growth Lie Groups

Let G be a connected unimodular Lie group endowed with its Haar measure dx.

Denote by g the Lie algebra of G and consider a family X = {X1, . . . ,Xk} of left-

invariant vector fields on G satisfying the Hörmander condition, which means that

the Lie algebra generated by the X j for 1 ≤ j ≤ k is g.

In this setting we have at our disposal the Carnot–Carathéodory metric associated

with X defined as follows: let ℓ : [0, 1] → G be an absolutely continuous path. We

say that ℓ is admissible if there exist measurable functions γ1, . . . , γk : [0, 1] → C

such that, for almost every t ∈ [0, 1], we have ℓ ′(t) =
∑k

j=1 γ j(t)X j(ℓ(l)). If ℓ is

admissible, define the length of ℓ by ‖ℓ‖ =
∫ 1

0
(
∑k

j=1 |γ j(t)|2)1/2 dt . Then, for all

x, y ∈ G, the distance between x and y is the infimum of the lengths of all admissible

curves joining x to y. We will denote ‖x‖ the distance between the origin e and x and

‖y−1 · x‖ the distance between x and y.

For r > 0 and x ∈ G, denote by B(x, r) the open ball with respect to the Carnot–

Carathéodory metric centered in x and of radius r, and by V (r) the Haar measure of

any ball of radius r. When 0 < r < 1, there exist d ∈ N
∗, cl and Cl > 0 such that for

all 0 < r < 1 we have

clr
d ≤ V (r) ≤ Clr

d.

The integer d is the local dimension of (G,X). When r ≥ 1, either of the following

two situations may occur independently of the choice of the family X.

(i) G has polynomial volume growth, and there exist D ∈ N
∗, c∞ and C∞ > 0

such that for all r ≥ 1 we have

(2.1) c∞rD ≤ V (r) ≤ C∞rD.

(ii) G has exponential volume growth, which means that there exist ce,Ce, α, β > 0

such that for all r ≥ 1 we have

cee
αr ≤ V (r) ≤ Cee

βr.

When G has polynomial volume growth, the integer D in (2.1) is called the dimension

at infinity of G. Recall that nilpotent groups have polynomial volume growth and that
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a strict subclass of the nilpotent groups consists of stratified Lie groups. See [15] for

more details.

We will assume from now on that G is a connected unimodular polynomial vol-

ume Lie group with local dimension d and dimension D at infinity.

3 Sub-Laplacian and Heat Kernel

Once we have fixed the family X, we define the gradient on G by ∇ = (X1, . . . ,Xk)

and we consider a sub-Laplacian J on G defined by J = −∑k
j=1 X2

j , which is a pos-

itive self-adjoint, hypo-elliptic operator since X satisfies the Hörmander’s condition.

Its associated heat operator on G×]0,+∞[ is given by ∂t + J. We recall in the next

theorem some well-known properties of the semi-group Ht obtained from the sub-

Laplacian J. See[15] and the references therein for a proof.

Theorem 3.1 There exists a unique family of continuous linear operators (Ht )t>0 de-

fined on L1 + L∞(G) with the semi-group property Ht+s = Ht Hs for all t, s > 0 and

H0 = Id, such that

(i) the sub-Laplacian J is the infinitesimal generator of the semi-group Ht = e−tJ;

(ii) Ht is a contraction operator on Lp(G) for 1 ≤ p ≤ +∞ and for t > 0;

(iii) the semi-group Ht admits a convolution kernel Ht f = f ∗ ht , where ht is the heat

kernel;

(iv) ‖Ht f − f ‖Lp → 0 if t → 0 for f ∈ Lp(G) and 1 ≤ p < +∞;

(v) if f ∈ Lp(G), 1 ≤ p ≤ +∞, then the function u(x, t) = Ht f (x) is a solution of

the heat equation.

We obtain, in particular, that Ht is a symmetric diffusion semi-group as consid-

ered by Stein [13] with infinitesimal generator J.

We need to fix some terminology. Note that associated with the family X we also

have a family of right-invariant vector fields {Y1, . . . ,Yk} with similar properties.

Let I = ( j1, . . . , jβ) ∈ {1, . . . , k}β (β ∈ N) be a multi-index. We set |I| = β
and define XI and Y I by the formula XI = X j1

· · ·X jβ (Y I = Y j1
· · ·Y jβ , resp.) with

the convention XI = Id if β = 0. The interaction of operators XI and Y I with

convolutions is clarified by the following identities:

XI( f ∗ g) = f ∗ (XIg), Y I( f ∗ g) = (Y I f ) ∗ g, (XI f ) ∗ g = f ∗ (Y Ig).

In particular, we have (∇ f ) ∗ g = f ∗ (∇̃g), where ∇̃ = (Y1, . . . ,Yk).

We will say now that ϕ ∈ C∞(G) belongs to the Schwartz class S(G) if

Nα,I(ϕ) = sup
x∈G

(1 + ‖x‖)α|XIϕ(x)| < +∞. (α ∈ N, I ∈ ⋃

β∈N

{1, . . . , k}β).

Remark 1 To characterize the Schwartz class S(G) we can replace vector fields XI

in the semi-norms Nk,I above by right-invariant vector fields Y I .

For a proof of these facts and for further details, see [7, 13, 15] and the references

therein.

https://doi.org/10.4153/CJM-2011-050-4 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-2011-050-4


Some Functional Inequalities on Polynomial Volume Growth Lie Groups 485

Theorem 3.2 Let G be a polynomial volume growth Lie group. Then for every j ∈
{1, . . . , k} there exists C > 0 such that

|X jht (x)| ≤ Ct−1/2V (
√

t)−1e−
‖x‖2

ct for all x ∈ G, t > 0.

This theorem implies the following proposition.

Proposition 3.3 For every j ∈ {1, . . . , k} and for all p ∈ [1,+∞] there exists a

constant C > 0 such that

(3.1) ‖X jht ( · )‖Lp ≤ Ct−1/2V (
√

t)−1/p ′

, t > 0.

For a proof of Theorem 3.2 and Proposition 3.3, see [15, Chapter VIII].

4 Spectral Decomposition for the Sub-Laplacian

The use here of spectral resolution for the sub-Laplacian consists roughly in express-

ing this operator by the formula J =
∫ +∞

0
λ dEλ and, by means of this characteri-

zation, building a family of new operators m(J) associated with a Borel function m.

This kind of operator has some nice properties, as shown in the following proposi-

tions.

Proposition 4.1 If G is a polynomial growth Lie group and if m is a bounded Borel

function on ]0,+∞[, then the operator m(J) defined by

(4.1) m(J) =

∫ +∞

0

m(λ) dEλ

is bounded on L2(G) and admits a convolution kernel M, i.e., m(J)( f ) = f ∗ M for all

f ∈ L2(G).

Following [8, 10] we can improve the conclusion of the above proposition. Let

k ∈ N and m be a function of class Ck(R
+). We write

‖m‖(k) = sup
λ>0

1≤r≤k

(1 + λ)k|m(r)(λ)|.

This formula gives us a necessary condition to obtain some properties of the opera-

tors defined by (4.1).

Proposition 4.2 Let G be polynomial volume growth Lie group with local dimension

d. Let j ∈ {1, . . . , k} and p ∈ [1,+∞]. There is a constant C > 0 and an integer k

such that, for any function m ∈ Ck(R
+) with ‖m‖(k) < +∞, the kernel Mt associated

with the operator m(tJ) for t > 0 satisfies

(4.2) ‖X jMt ( · )‖Lp ≤ Ct
−( d

2p ′
+ 1

2
)‖m‖(k).

where 1/p + 1/p ′ = 1.

Proof Follow the steps of the proof of [8, Proposition 3.2] and use inequality (3.1).

Remark 2 Notice that when 0 < t ≤ 1, in (4.2), we can replace X j by XI for some

multi-index I.
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5 Functional Spaces

In this section we give the precise definition of the functional spaces involved in The-

orem 1.1. In a general way, given a norm ‖ · ‖E, we will define the corresponding

functional space E(G) by { f ∈ S ′(G) : ‖ f ‖E < +∞}. For the Lebesgue spaces Lp(G)

with 1 ≤ p + ∞, we will use the characterization

‖ f ‖p
Lp =

∫ +∞

0

pσp−1|{x ∈ G : | f (x)| > σ}| dσ,

and for the Lorentz spaces Lp,∞(G) we set

‖ f ‖Lp,∞ = sup
σ>0

{σ|{x ∈ G : | f (x)| > σ}|1/p}.

In order to define Sobolev spaces, we need to introduce the fractional powers Js

and J−s with s > 0:

Js f (x) = lim
ε→0

1

Γ(k − s)

∫ +∞

ε

tk−s−1JkHt f (x) dt,(5.1)

J−s f (x) = lim
η→+∞

1

Γ(s)

∫ η

0

t s−1Ht f (x) dt,(5.2)

for all f ∈ C∞(G) with k the smallest integer greater than s. We consider then the

Sobolev spaces with the norms

(5.3) ‖ f ‖Ẇ s,p = ‖Js/2 f ‖Lp ,

for 1 < p < +∞. When p = s = 1, we write

(5.4) ‖ f ‖Ẇ 1,1 = ‖∇ f ‖L1 .

We will also need to define the weak Sobolev spaces Ẇ
s,p
∞ (G) used in (1.5) and we

write here

(5.5) ‖ f ‖Ẇ
s,p
∞

= ‖Js/2 f ‖Lp,∞ (1 < p < +∞).

Finally, for Besov spaces of indices (−β,∞,∞), which appear in all the inequali-

ties (1.3)–(1.5), we have

(5.6) ‖ f ‖
Ḃ
−β,∞
∞

= sup
t>0

tβ/2‖Ht f ‖L∞ .

The choice of this thermic definition for Besov spaces will be clarified in the next

section. Observe that other equivalent characterizations do exist in the framework of

polynomial volume growth Lie groups (see for example [8, 12]), but they are not as

useful in our computations as the thermic one.
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6 Improved Sobolev Inequalities on Stratified Groups: The Proofs

We will divide the proof of the Theorem 1.1 into two steps following the values of

the parameter p used in the Sobolev spaces that appear on the right-hand side of in-

equalities (1.3)–(1.5). This separation of the proof in the cases when p > 1 and when

p = 1 is due to the definition of Sobolev spaces given by the formulas (5.3) and (5.4)

and is independent from the underlying geometry. Thus, we first study the inequality

(1.3), and then we prove the strong inequality (1.4) and the weak inequality (1.5).

6.1 The General Improved Sobolev Inequalities (p > 1)

We start the proof by observing that the operator Js/2 carries out an isomorphism

between the spaces Ḃ−β,∞
∞ (G) and Ḃ−β−s,∞

∞ (G). This fact follows from the thermic

definition of Besov spaces (see [12] for a proof and more details). We can rewrite the

inequality (1.3) as

‖J
s−s1

2 f ‖Lq ≤ C‖ f ‖θLp‖ f ‖1−θ

Ḃ
−β−s1 ,∞
∞

,

where 1 < p < q < +∞, θ = p/q, s = θs1 − (1 − θ)β, and −β < s < s1. Using the

sub-Laplacian fractional powers characterization (5.2), we have the identity

(6.1) J
−α

2 f (x) =
1

Γ(α
2

)

∫ +∞

0

t
α
2
−1Ht f (x) dt

=
1

Γ(α
2

)

(

∫ T

0

t
α
2
−1Ht f (x)dt +

∫ +∞

T

t
α
2
−1Ht f (x) dt

)

,

where α = s1 − s > 0 and where T > 0 is a parameter that will be fixed in the sequel.

We will use the following estimates to study each of these integrals.

|Ht f (x)| ≤ | f (x)|,

|Ht f (x)| ≤ Ct
−β−s1

2 ‖ f ‖
Ḃ
−β−s1 ,∞
∞

(by the thermic definition of Besov spaces).

Then applying these inequalities in (6.1), we obtain

|J−α
2 f (x)| ≤ c1

Γ(α
2

)
T

α
2 | f (x)| +

c2

Γ(α
2

)
T

α−β−s1
2 ‖ f ‖

Ḃ
−β−s1 ,∞
∞

.

We fix now

T =

( ‖ f ‖
Ḃ
−β−s1 ,∞
∞

| f (x)|
) 2/(β+s1)

and we get

|J−α
2 f (x)| ≤ c1

Γ(α
2

)
| f (x)|1−

α
β+s1 ‖ f ‖α/(β+s1)

Ḃ
−β−s1 ,∞
∞

+
c2

Γ(α
2

)
| f (x)|1−

α
β+s1 ‖ f ‖α/(β+s1)

Ḃ
−β−s1 ,∞
∞

.

Since α/(β + s1) = 1 − θ and θ = p/q, we have

|J−α/2 f (x)| ≤ c

Γ(α
2

)
| f (x)|θ‖ f ‖1−θ

Ḃ
−β−s1 ,∞
∞

.
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We finally obtain

‖J−α
2 f ‖Lq ≤ c‖ f ‖θLp‖ f ‖1−θ

Ḃ
−β−s1 ,∞
∞

and we are done.

6.2 Strong and Weak Inequalities (p = 1)

We treat now the inequalities (1.4) and (1.5). For this we will need the following

result.

Theorem 6.1 (Modified Poincaré pseudo-inequality) Let f be a function such that

∇ f ∈ L1(G). We have the following estimate for 0 ≤ s < 1 and for t > 0:

(6.2) ‖Js/2 f − HtJ
s/2 f ‖L1 ≤ C t

1−s
2 ‖∇ f ‖L1 .

Let us make some remarks. This theorem is crucial for proving strong and weak

inequalities when p = 1, mainly because this estimate is especially well suited for

matching with the Besov space thermic definition. Note also that when s = 0, we

have some alternative proofs of (6.2) depending on the framework and its underlying

geometry. See [11] for details. In the general case exposed in Theorem 6.1, the role

of the geometry is given in the Lp-estimates available for the Heat kernel.

Proof To begin the proof, we observe that the following identity occurs:

(Js/2 f − HtJ
s/2 f )(x) =

(

∫ +∞

0

m(tλ)dEλ

)

t1−s/2J f (x),

where we noted that m(λ) = λs/2−1(1 − e−λ) for λ > 0. Note that m is a bounded

function which tends to 0 at infinity since s/2 − 1 < 0. We break up this function by

writing

m(λ) = m0(λ) + m1(λ) = m(λ)θ0(λ) + m(λ)θ1(λ),

where we chose the auxiliary functions θ0(λ), θ1(λ) ∈ C∞(R
+) defined by

θ0(λ) = 1 on ]0, 1/2[ and 0 on ]1,+∞[,

θ1(λ) = 0 on ]0, 1/2[ and 1 on ]1,+∞[,

so that θ0(λ) + θ1(λ) ≡ 1. Then we obtain the formula

(Js/2 f − HtJ
s/2 f )(x)

=

(

∫ +∞

0

m0(tλ)dEλ

)

t1−s/2J f (x) +
(

∫ +∞

0

m1(tλ)dEλ

)

t1−s/2J f (x).

If we denote by M(i)
t the kernel of the operator fixed by

∫ +∞

0
mi(tλ)dEλ for i = 0, 1,

we have

(Js/2 f − HtJ
s/2 f )(x) = t1−s/2J f ∗ M(0)

t (x) + t1−s/2J f ∗ M(1)
t (x).
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We obtain the inequality

(6.3)

∫

G

|Js/2 f − HtJ
s/2| dx

≤
∫

G

|t1−s/2J f ∗ M(0)
t (x)| dx +

∫

G

|t1−s/2J f ∗ M(1)
t (x)| dx.

We will now estimate the right side of the above inequality by the following two

propositions.

Proposition 6.2 For the first integral in the right-hand side of (6.3) we have the in-

equality
∫

G

|t1−s/2J f ∗ M(0)
t (x)| dx ≤ Ct

1−s
2 ‖∇ f ‖L1 .

Proof The function m0 is the restriction on R
+ of a function belonging to the

Schwartz class. This function satisfies the assumptions of Proposition 4.2, which we

apply after having noticed the identity

I =

∫

G

|t1−s/2J f ∗ M(0)
t (x)| dx =

∫

G

|t1−s/2∇ f ∗ ∇̃M(0)
t (x)| dx,

where we noted ∇̃, the gradient formed by the vectors fields (Y j)1≤ j≤k. We have then

I ≤
∫

G

∫

G

t1−s/2|∇ f (y)| |∇̃M(0)
t (y−1 · x)| dxdy ≤ t1−s/2‖∇ f ‖L1‖∇̃M(0)

t ‖L1 .

Using inequality (4.2), we obtain
∫

G

|t1−s/2J f ∗ M(0)
t (x)| dx ≤ Ct

1−s
2 ‖∇ f ‖L1 .

Proposition 6.3 For the last integral of (6.3) we have the inequality
∫

G

|t1−s/2J f ∗ M(1)
t (x)| dx ≤ Ct

1−s
2 ‖∇ f ‖L1 .

Proof Here it is necessary to make an additional step. We cut out the function m1 in

the following way:

m1(λ) =
( 1 − e−λ

λ

)

θ1(λ) = ma(λ) − mb(λ),

where ma(λ) = 1
λθ1(λ) and mb(λ) = e−λ

λ θ1(λ). We will denote by M(a)
t and M(b)

t the

associated kernels of these two operators. We thus obtain the estimate

(6.4)

∫

G

|t1−s/2J f ∗ M(1)
t (x)| dx

≤
∫

G

∣

∣

∣
t1−s/2J f ∗ M(a)

t (x)
∣

∣

∣
dx +

∫

G

∣

∣

∣
t1−s/2J f ∗ M(b)

t (x)
∣

∣

∣
dx.
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We have the next lemma for the last integral in (6.4).

Lemma 6.4
∫

G

|t1−s/2J f ∗ M(b)
t (x)| dx ≤ Ct

1−s
2 ‖∇ f ‖L1 .

Proof Observe that mb ∈ S(R
+). Then the proof is straightforward and follows the

same steps as those of Proposition 6.2.

We treat the other part of (6.4) with the following lemma.

Lemma 6.5

(6.5)

∫

G

|t1−s/2J f ∗ M(a)
t (x)| dx ≤ Ct

1−s
2 ‖∇ f ‖L1

Proof We consider the auxiliary functionψ(λ) = θ0(λ/2)−θ0(λ) = θ1(λ)−θ1(λ/2)

in order to obtain the identity

+∞
∑

j=0

ψ(2− jλ) = θ1(λ).

We then have

ma(tλ) =
1

tλ

+∞
∑

j=0

ψ(2− jtλ) =

+∞
∑

j=0

2− jφ(2− jtλ),

where φ(λ) =
ψ(λ)
λ is a function in C∞

0 (R
+). Then from the point of view of opera-

tors, one has

(6.6) M(a)
t =

+∞
∑

j=0

2− jK j,t ,

where K j,t = φ(2− jtJ). With formula (6.6) we return to the left side of (6.5):

(6.7)

∫

G

|t1−s/2J f ∗ M(a)
t (x), dx ≤

+∞
∑

j=0

2− j

∫

G

|t1−s/2J f ∗ K j,t (x)| dx.

Using the sub-Laplacian definition and the vector fields properties, we have

+∞
∑

j=0

2− j

∫

G

|t1−s/2J f ∗ K j,t (x)| dx ≤
+∞
∑

j=0

2− jt1−s/2‖∇ f ‖L1‖∇̃K j,t‖L1 .

Now we apply Proposition 4.2 to obtain the estimate ‖∇̃K j,t‖L1 ≤ C2 j/2t−1/2. Then

for (6.7) we have the following inequality:

∫

G

|t1−s/2J f ∗ M(a)
t (x)| dx ≤ C

+∞
∑

j=0

2− j/2t
1−s

2 ‖∇ f ‖L1 .
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Finally we get
∫

G

∣

∣

∣
t1−s/2J f ∗ M(a)

t (x)
∣

∣

∣
dx ≤ C t

1−s
2 ‖∇ f ‖L1 ,

which ends the proof of Lemma 6.5.

With these last two lemmas we conclude the proof of Proposition 6.3. Now, getting

back to the formula (6.3), with Propositions 6.2 and 6.3 we finally finish the proof of

Theorem 6.1.

6.3 Weak Inequalities

To begin the proof, we again use the fact that operator Js/2 carries out an isomor-

phism between the spaces Ḃ−β,∞
∞ and Ḃ−β−s,∞

∞ . Thus we rewrite inequality (1.5) as

‖Js/2 f ‖Lq,∞ ≤ C‖∇ f ‖θL1‖Js/2 f ‖1−θ

Ḃ
−β−s,∞
∞

.

By homogeneity, we can suppose that the norm ‖Js/2 f ‖
Ḃ
−β−s,∞
∞

is bounded by 1; then

we must show

‖Js/2 f ‖Lq,∞ ≤ C‖∇ f ‖θL1 .

We thus must evaluate the expression |{x ∈ G : |Js/2 f (x)| > 2α}| for all α > 0. If

we use the thermic definition of the Besov space (5.6), we have

‖Js/2 f ‖
Ḃ
−β−s,∞
∞

≤ 1 ⇐⇒ sup
t>0

{

t (β+s)/2‖HtJ
s/2 f ‖L∞

}

≤ 1.

But if one fixes tα = α−( 2
β+s

), we obtain ‖HtαJ
s/2 f ‖L∞ ≤ α. Note also that with

the definition of parameter β one has tα = α− 2(q−1)
(1−s) . Therefore, since we have the

following set inclusion

{x ∈ G : |Js/2 f (x)| > 2α} ⊂ {x ∈ G : |Js/2 f (x) − HtαJ
s/2 f (x)| > α},

the Chebyshev inequality implies

αq|{x ∈ G : |Js/2 f (x)| > 2α}| ≤ αq−1

∫

G

|Js/2 f (x) − HtαJ
s/2 f (x)|dx.

At this point, we use Theorem 6.1 to estimate the right side of the preceding inequal-

ity:

(6.8) αq|{x ∈ G : |Js/2 f (x)| > 2α}| leqCαq−1 t
1−s

2
α

∫

G

|∇ f (x)|dx.

But by the choice of tα, one has αq−1α− 2(q−1)
(1−s)

(1−s)
2 = 1. Then (6.8) implies the in-

equality

αq
∣

∣

∣
{x ∈ G : |Js/2 f (x)| > 2α}

∣

∣

∣
≤ C‖∇ f ‖L1

and, finally, using the definition (5.5) of weak Sobolev spaces, we obtain

‖Js/2 f ‖q
Lq,∞ ≤ C‖∇ f ‖L1 ,

which is the desired result.
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6.4 Strong Inequalities

When s = 0 in the weak inequalities above, it is possible to obtain stronger estimates.

To achieve this, we will need an intermediate step.

Proposition 6.6 Let 1 < q < +∞, θ = 1
q

and β = θ/(1 − θ). Then we have

‖ f ‖Lq ≤ C‖∇ f ‖θL1‖ f ‖1−θ

Ḃ
−β,∞
∞

,

when the three norms in this inequality are bounded.

Proof We will follow closely [11]. Just as in the preceding theorem, we will start by

supposing that ‖ f ‖
Ḃ
−β,∞
∞

≤ 1. Thus, we must show the estimate

‖ f ‖Lq ≤ C‖∇ f ‖θL1 .

Let us fix t in the following way: tα = α−2(q−1)/q, where α > 0. Then by the thermic

definition of Besov spaces, we have the estimate ‖Ht f ‖L∞ ≤ α. Now we use the

characterization of Lebesgue space given by the distribution function

(6.9)
1

5q
‖ f ‖q

Lq =

∫ +∞

0

|{x ∈ G : | f (x)| > 5α}| d(αq).

It now remains to estimate |{x ∈ G : | f (x)| > 5α}| and for this we introduce the

following thresholding function:

Θα(t) =











0 if 0 ≤ t ≤ α,

t − α if α ≤ t ≤ Mα,

(M − 1)α if t > Mα.

and Θα(−t) = −Θα(t). Here M is a parameter depending on q and which we will

suppose for the moment to be larger than 10.

This cut-off function enables us to define a new function posing fα = Θα( f ). In

the next lemma we collect some significant properties of the function fα.

Lemma 6.7 (i) The set defined by {x ∈ G : | f (x)| > 5α} is included in the set

{x ∈ G : | fα(x)| > 4α}.

(ii) On the set {x ∈ G : | f (x)| ≤ Mα} one has the estimate | f − fα| ≤ α.

(iii) If f ∈ C1(G), one has the equality ∇ fα = (∇ f )1{α≤| f |≤Mα} almost everywhere.

We leave the verification of this lemma to the reader.

Let us return now to (6.9). By the first point of Lemma 6.7 we have

(6.10)

∫ +∞

0

|{x ∈ G : | f (x)| > 5α}| d(αq)

≤
∫ +∞

0

|{x ∈ G : | fα(x)| > 4α}| d(αq) = I.
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We denote

Aα = {x ∈ G : | fα(x)| > 4α},
Bα = {x ∈ G : | fα(x) − Htα( fα)(x)| > α},
Cα = {x ∈ G : |Htα( fα − f )(x)| > 2α}.

By linearity of Ht we can write fα = fα − htα( fα) + htα( fα − f ) + htα( f ). Then,

recalling the fact that ‖Ht f ‖L∞ ≤ α, we obtain Aα ⊂ Bα ∪ Cα. Returning to (6.10),

this set inclusion gives us the following inequality:

(6.11) I ≤
∫ +∞

0

|Bα| d(αq) +

∫ +∞

0

|Cα|d(αq).

We will study and estimate these two integrals, which we will call I1 and I2, respec-

tively, by the two following lemmas.

Lemma 6.8 For the first integral of (6.11) we have the estimate

I1 =

∫ +∞

0

|Bα| d(αq) ≤ C q log(M)‖∇ f ‖L1 .

Proof The Chebyshev inequality implies

|Bα| ≤ α−1

∫

G

| fα(x) − Htα( fα)(x)| dx.

Using Theorem 6.1 with s = 0 in the above integral, we obtain

|Bα| ≤ Cα−1t1/2
α

∫

G

|∇ fα(x)| dx.

We remark that the choice of tα fixed before gives t
1/2
α = α1−q. Then we have

|Bα| ≤ Cα−q

∫

{α≤| f |≤Mα}

|∇ f (x)| dx.

Now we integrate the preceding expression with respect to d(αq):

I1 ≤ C

∫ +∞

0

α−q
(

∫

{α≤| f |≤Mα}

|∇ f (x)| dx
)

d(αq)

= C q

∫

G

|∇ f (x)|
(

∫ | f |

| f |
M

dα

α

)

dx.

It follows then that I1 ≤ C q log(M)‖∇ f ‖L1 , and one obtains the estimation needed

for the first integral.
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Lemma 6.9 For the second integral of (6.11) one has the following result:

I2 =

∫ +∞

0

|Cα| d(αq) ≤ q

q − 1

1

Mq−1
‖ f ‖q

Lq .

Proof For the proof of this lemma, we write

| f − fα| = | f − fα|1{| f |≤Mα} + | f − fα|1{| f |>Mα}.

As the distance between f and fα is lower than α on the set {x ∈ G : | f (x)| ≤ Mα},

one has the inequality | f − fα| ≤ α+ | f |1{| f |>Mα}. By applying the heat semi-group

to both sides of this inequality, we obtain Htα(| f − fα|) ≤ α+ Htα(| f |1{| f |>Mα}) and

we then have the following set inclusion: Cα ⊂ {x ∈ G : Htα(| f |1{| f |>Mα}) > α}.

Thus, considering the measure of these sets and integrating with respect to d(αq), we

obtain

I2 =

∫ +∞

0

|Cα| d(αq) ≤
∫ +∞

0

|{Htα(| f |1{| f |>Mα}) > α}| d(αq).

By applying the Chebyshev inequality, we now obtain the estimate

I2 ≤
∫ +∞

0

α−1
(

∫

G

Htα(| f |1{| f |>Mα}) dx
)

d(αq).

Then by Fubini’s theorem we have

I2 ≤ q

∫

G

| f (x)|
(

∫ +∞

0

1{| f |>Mα}α
q−2dα

)

dx

=
q

q − 1

∫

G

| f (x)| | f (x)|q−1

Mq−1
dx =

q

q − 1

1

Mq−1
‖ f ‖q

Lq .

And this concludes the proof of this lemma.

We finish the proof of Proposition 6.6 by connecting together these two lemmas:

1

5q
‖ f ‖q

Lq ≤ Cq log(M)‖∇ f ‖L1 +
q

q − 1

1

Mq−1
‖ f ‖q

Lq .

Since we supposed all the norms bounded and M ≫ 1, we finally have

( 1

5q
− q

q − 1

1

Mq−1

)

‖ f ‖q
Lq ≤ Cq log(M)‖∇ f ‖L1 .

The proof of Theorem 1.1 is not yet completely finished. The last step is provided

by the following proposition.

Proposition 6.10 In Proposition 6.6 it is possible to consider only the two assumptions

∇ f ∈ L1(G) and f ∈ Ḃ−β,∞
∞ (G).
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Proof For the proof of this proposition we will build an approximation of f , writing:

f j =

(

∫ +∞

0

(ϕ(2−2 jλ) − ϕ(22 jλ))dEλ

)

( f ),

whereϕ is aC∞(R
+) function such thatϕ = 1 on ]0, 1/4[ andϕ = 0 on [1,+∞[.

Lemma 6.11 If q > 1, if ∇ f ∈ L1(G), and if f ∈ Ḃ−β,∞
∞ (G), then ∇ f j ∈ L1(G),

f j ∈ Ḃ−β,∞
∞ (G), and f j ∈ Lq(G).

Proof The fact that ∇ f j ∈ L1(G) and f j ∈ Ḃ−β,∞
∞ (G) is an easy consequence of the

definition of f j . For f j ∈ Lq(G) the starting point is given by the relation

f j =

(

∫ +∞

0

m(2−2 jλ) dEλ

)

2−2 jJ( f ),

where we noted

m(2−2 jλ) =
ϕ(2−2 jλ) − ϕ(22 jλ)

2−2 jλ
.

Observe that the function m vanishes near the origin and satisfies the assumptions of

Proposition 4.2. We obtain then the following identity where M j is the kernel of the

operator m(2−2 jJ):

f j = 2−2 jJ f ∗ M j = 2−2 j∇ f ∗ ∇̃M j .

Using inequality (4.2), we estimate the norm Lq(G) in the preceding identity:

‖ f j‖Lq = ‖2−2 j∇ f ∗ ∇̃M j‖Lq ≤ 2−2 j‖∇ f ‖L1‖∇̃M j‖Lq .

Finally, we obtain

‖ f j‖Lq ≤ C 2 j(d(1− 1
q

)−1)‖∇ f ‖L1 < +∞.

Thanks to this estimate, we can apply Proposition 6.6 to f j , whose Lq(G) norm is

bounded, and we obtain:

‖ f j‖Lq ≤ C‖∇ f j‖θL1‖ f j‖1−θ

Ḃ
−β,∞
∞

.

Now, since f ∈ Ḃ−β,∞
∞ (G), we have f j ⇀ f in the sense of distributions. It follows

that

‖ f ‖Lq ≤ lim inf
j→+∞

‖ f j‖Lq ≤ C‖∇ f ‖θL1‖ f ‖1−θ

Ḃ
−β,∞
∞

.

We restricted ourselves to the two initial assumptions, namely ∇ f ∈ L1(G) and f ∈
Ḃ−β,∞
∞ (G). The strong inequalities (1.4) are now completely proved for stratified

groups.
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