Hostname: page-component-8448b6f56d-gtxcr Total loading time: 0 Render date: 2024-04-18T06:47:25.973Z Has data issue: false hasContentIssue false

The pressure-temperature phase diagram of URu2Si2 under hydrostatic conditions

Published online by Cambridge University Press:  01 February 2011

Nicholas Patrick Butch
Affiliation:
nbutch@umd.edu, University of Maryland, College Park, Center for Nanophysics and Advanced Materials, Department of Physics, College Park, Maryland, United States
Jason R. Jeffries
Affiliation:
jeffries4@llnl.gov, Lawrence Livermore National Laboratory, 7000 East Avenue, L-350, Livermore, California, 94550, United States
William J. Evans
Affiliation:
wjevans@llnl.gov, Lawrence Livermore National Laboratory, 7000 East Avenue, L-350, Livermore, California, 94550, United States
Song Xue J. Chi
Affiliation:
songxue.chi@nist.gov, NIST, NCNR, Gaithersburg, Maryland, United States
Juscelino B. Leao
Affiliation:
juscelino.leao@nist.gov, NIST, NCNR, Bldg. 235, Gaithersburg, Maryland, 20899-6102, United States, 301 975-6246, 301 921-9847
Jeffrey W Lynn
Affiliation:
Jeff.Lynn@nist.govJeffLynn@comcast.net, NIST, NCNR, Bldg. 235, Gaithersburg, Maryland, 20899-6102, United States, 301 975-6246, 301 921-9847
Stanislav V. Sinogeikin
Affiliation:
ssinog@hpcat.aps.anl.gov, Advanced Photon Source, Argonne National Laboratory, HPCAT, Argonne, Illinois, United States
James J. Hamlin
Affiliation:
jhamlin@physics.ucsd.edu
Diego A. Zocco
Affiliation:
dzocco@physics.ucsd.edu, University of California, San Diego, Department of Physics, La Jolla, California, United States
M. Brian Maple
Affiliation:
mbmaple@physics.ucsd.edu, University of California, San Diego, Department of Physics, La Jolla, California, United States
Get access

Abstract

The pressure dependence of the hidden order phase of the heavy fermion superconductor URu2Si2 has been a subject of intense research since shortly after the discovery of the compound decades ago. Applied pressure increases the critical temperature of the paramagnetic / hidden order transition and brings about a transition to long-range antiferromagnetism. The reported pressures and temperatures of these phase boundaries vary between studies: 4 – 7 kbar at low temperature and 12 – 15 kbar at high temperature. We review experimental evidence that the measured values of pressure and temperature are very sensitive to the chosen pressure transmitting medium. Recent x-ray diffraction measurements suggest that the relative position of the silicon atom in the unit cell is changing as a function of pressure. Recent neutron diffraction measurements show that the zero-temperature limit of the hidden order / antiferromagnetic transition occurs at pressures greater than 7.5 kbar.

Type
Research Article
Copyright
Copyright © Materials Research Society 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Maple, M. B., Chen, J., Dalichaouch, Y., Kohara, T., Rossel, C., Torikachvili, M. S., McElfresh, M. W., and Thompson, J. D., Phys. Rev. Lett. 56, 185 (1986).Google Scholar
2 Palstra, T. T. M. Menovsky, A. A. Berg, J. van den, Dirkmaat, A. J. Kes, P. H. Nieuwenhuys, G. J. and Mydosh, J. A. Phys. Rev. Lett. 55, 2727 (1985).Google Scholar
3 Schlabitz, W., Baumann, J., Pollit, B., Rauchschwalbe, U., Mayer, H. M. Ahlheim, U., and Bredl, C. D. Z. Phys. B 62, 171 (1986).Google Scholar
4 Kuwahara, K., Amitsuka, H., Sakakibara, T., Suzuki, O., Nakamura, S., Goto, T., Mihalik, M., Menovsky, A. A. Visser, A. de, and Franse, J. J. M. J. Phys. Soc. Jpn. 66, 3251 (1997).Google Scholar
5 Visser, A. de, Kayzel, F. E. Menovksy, A. A. Franse, J. J. M. Berg, J. van den, and Nieuwenhuys, G. J. Phys. Rev. B 34, 8168 (1986).Google Scholar
6 Sharma, P. A. Harrison, N., Jaime, M., Oh, Y. S. Kim, K. H. Batista, C. D. Amitsuka, H., and Mydosh, J. A. Phys. Rev. Lett. 97, 156401 (2006).10.1103/PhysRevLett.97.156401Google Scholar
7 Wiebe, C. R. Janik, J. A. MacDougall, G. J. Luke, G. M. Garrett, J. D. Zhou, H. D. Jo, Y.-J., Balicas, L., Qiu, Y., Copley, J. R. D. Yamani, Z., and Buyers, W. J. L. Nat. Phys. 3, 96 (2007).Google Scholar
8 Santander-Syro, A. F., Klein, M., Boariu, F. L. Nuber, A., Lejay, Pascal, and Reinert, Friedrich, Nat. Phys. 5, 637 (2009).Google Scholar
9 Broholm, C., Kjems, J. K. Buyers, W. J. L. Matthews, P., Palstra, T. T. M. Menovsky, A. A. and Mydosh, J. A. Phys. Rev. Lett. 58, 1467 (1987).Google Scholar
10 Amitsuka, H., Matsuda, K., Kawasaki, I., Tenya, K., Yokoyama, M., Sekine, C., Tateiwa, N., Kobayashi, T.C., Kawarazaki, S., and Yoshizawa, H., J. Magn. Magn. Mater. 310, 214 (2007).Google Scholar
11 Elgazzar, S., Rusz, J., Amft, M., Oppeneer, P. M. and Mydosh, J. A. Nat. Mat. 8, 337 (2009).Google Scholar
12 Balatsky, A. V. Chantis, A., Dahal, Hari P., Parker, David, and Zhu, J. X. Phys. Rev. B 79, 214413 (2009).Google Scholar
13 Haule, K. and Kotliar, G., Nat. Phys. 5, 796 (2009).Google Scholar
14 Kim, K. H. Harrison, N., Jaime, M., Boebinger, G. S. and Mydosh, J. A. Phys. Rev. Lett. 91, 256401 (2003).Google Scholar
15 Dalichaouch, Y., Maple, M. B. Torikachvili, M. S. and Giorgi, A. L. Phys. Rev. B 39, 2423 (1989).Google Scholar
16 Dalichaouch, Y., Maple, M. B. Guertin, R. P. Kuric, M. V. Torikachvili, M. S. and Giorgi, A. L. Physica B 163, 113 (1990).Google Scholar
17 Dalichaouch, Y., Maple, M. B. Chen, J. W. Kohara, T., Rossel, C., Torikachvili, M. S. and Giorgi, A. L. Phys. Rev. B 41, 1829 (1990).Google Scholar
18 Bauer, E. D. Zapf, V. S. Ho, P.-C., Butch, N. P. Freeman, E. J. Sirvent, C., and Maple, M. B. Phys. Rev. Lett. 94, 046401 (2005).Google Scholar
19 Butch, N. P. and Maple, M. B. Phys. Rev. Lett. 103, 076404 (2009).Google Scholar
20 Krishnamurthy, V. V. Adroja, D. T. Butch, N. P. Sinha, S. K. Maple, M. B. Osborn, R., Robertson, J. L. Nagler, S. E. and Aronson, M. C. Phys. Rev. B 78, 024413 (2008).Google Scholar
21 Butch, N. P. and Maple, M. B. J. Phys.: Condens. Matter 22, 164204 (2010).Google Scholar
22 Boer, F. R. de, Franse, J. J. M. Louis, E., Menovsky, A. A. Mydosh, J. A. Palstra, T. T. M. Rauchschwalbe, U., Schlabitz, W., Steglich, F., and Visser, A. de, Physica 138B, 1 (1986).Google Scholar
23 Louis, E., Visser, A. de, Menovsky, A., and Franse, J. J. M. Physica 144B, 48 (1986).Google Scholar
24 Onuki, Y., Yamazaki, T., Ukon, I., Omi, T., Shibutani, K., Komatsubara, T., Sakamoto, I., Sugiyama, Y., Onodera, R. K.Yonemitsu, Umezawa, A. Kwok, W. K. Crabtree, G. W. and Hinks, D. G. Physica 148B, 29 (1987).Google Scholar
25 Fisher, R. A. Kim, S. Wu, Y. Phillips, N. E. McElfresh, M. W. Torikachvili, M. S. and Maple, M. B. Physica B 163, 419 (1990).Google Scholar
26 McElfresh, M. W. Thompson, J. D. Willis, J. O., Maple, M. B. Kohara, T. and Torikachvili, M. S. Phys. Rev. B 35, 43 (1987).Google Scholar
27 Uwatoko, Y. Iki, K. Oomi, G. nuki, Y. O, and Komatsubara, T. Physica B 177, 147 (1992).Google Scholar
28 Ido, M. Segawa, Y. Amitsuka, H. and Miyako, Y. J. Phys. Soc. Jpn. 62, 2692 (1993).Google Scholar
29 Brison, J. P. Keller, N. Lejay, P. Huxley, A. Schmidt, L. Buzdin, A. Bernhoeft, N. R. Mineev, I. Stepanov, A. N. Flouquet, J. Jaccard, D. Julian, S. R. and Lonzarich, G. G. Physica B 199&200, 70 (1994).Google Scholar
30 Amitsuka, H. Sato, M. Metoki, N. Yokoyama, M. Kuwahara, K. Sakakibara, T. Morimoto, H. Kawarazaki, S. Miyako, Y. and Mydosh, J. A. Phys. Rev. Lett. 83, 5114 (1999).Google Scholar
31 Matsuda, K. Kohori, Y. Kohara, T. Kuwahara, K. and Amitsuka, H. Phys. Rev. Lett. 87, 087203 (2001).Google Scholar
32 Matsuda, K. Kohori, Y. Kohara, T. Amitsuka, H. Kuwahara, K. and Matsumoto, T. J. Phys.: Condens. Matter 15, 2363 (2003).Google Scholar
33 Amitsuka, H. Tenya, K. Yokoyama, M. Schenck, A. Andreica, D. Gygax, F. N. Amato, A. Miyako, Y. Huang, Y. K. and Mydosh, J. A. Physica B 326, 418 (2003).Google Scholar
34 Amato, A. Graf, M. J. deVisser, A. Amitsuka, H. Andreica, D. and Schenck, A. J. Phys.: Condens. Matter 16, S4403 (2004).Google Scholar
35 Motoyama, G. Nishioka, T. and Sato, N. K. Phys. Rev. Lett. 90, 166402 (2003).Google Scholar
36 Uemura, S. Motoyama, G. Oda, Y. Nishioka, T. and Sato, N. K. J. Phys. Soc. Jpn. 74, 267 (2005).Google Scholar
37 Amitsuka, H. Matsuda, K. Kawasaki, I. Tenya, K. Yokoyama, M. Sekine, C. Tateiwa, N. Kobayashi, T. C. Kawarazaki, S. and Yoshizawa, H. J. Magn. Mater. 310, 214 (2007).Google Scholar
38 Amitsuka, H. Matsuda, K. Yokoyama, M. Kawasaki, I. Takayama, S. Ishihara, Y. Tenya, K. Tateiwa, N. T. C.Kobayashi, and Yoshizawa, H. Physica B 403, 925 (2008).Google Scholar
39 Hassinger, E. Knebel, G. Izawa, K. Lejay, P. Salce, B. and Flouquet, J. Phys. Rev. B 77, 115117 (2008).Google Scholar
40 Aoki, D. Bourdarot, F. Hassinger, E. Knebel, G. Miyake, A. Raymond, S. Taufour, V. and Flouquet, J. J. Phys. Soc. Jpn. 78, 053701 (2009).Google Scholar
41 Niklowitz, P. G. Pfleiderer, C. Mühlbauer, S., Böni, P., Keller, T. Link, P. Wilson, J. A. Vojta, M. and Mydosh, J. A. Physica B 404, 2955 (2009).Google Scholar
42 Bakker, K. Visser, A. de, Brück, E., Menovsky, A. A. and Franse, J. J. M. J. Magn. Mater. 108, 63 (1992).Google Scholar
43 Guillaume, A. Salce, B. Flouquet, J. and Lejay, P. Physica B 259-261, 652 (1999).Google Scholar
44 Yokoyama, M. Amitsuka, H. Tenya, K. Watanabe, K. Kawarazaki, S. H.Yoshizawa, and Mydosh, J. A. Phys. Rev. B 72, 214419 (2005).Google Scholar
45 Nakashima, M. Ohkuni, H. Inada, Y. Settai, R. Haga, Y. E.Yamamoto, and Onuki, Y. J. Phys.: Condens. Matter 15, S2011 (2003).Google Scholar
46 Jo, Y. J. Balicas, L. Capan, C. Behnia, K. Lejay, P. Flouquet, J. Mydosh, J. A. and Schlottmann, P. Phys. Rev. Lett. 98, 166404 (2007).Google Scholar
47 Tenya, K. Kawasaki, I. Tameyasu, K. Yasuda, S. Yokoyama, M. Amitsuka, H. Tateiwa, N. and Kobayashi, T.C. Physica B 359-361, 1135 (2005).Google Scholar
48 Jeffries, J. R. Butch, N. P. Yukich, B. T. and Maple, M. B. Phys. Rev. Lett. 99, 217207 (2007).Google Scholar
49 Jeffries, J. R. Butch, N. P. Yukich, B. T. and Maple, M. B. J. Phys.: Condens. Matter 20, 095225 (2008).Google Scholar
50 Butch, N. P. Jeffries, J. R. Zocco, D. A. and Maple, M. B. High Pressure Res. 29, 335 (2009).Google Scholar
51 Jeffries, J. R. Butch, N. P. Hamlin, J. J. Sinogeikin, S. V. Evans, W. J. and Maple, M. B. in preparation.Google Scholar
52 Butch, N. P. Jeffries, J. R. Chi, S. X. Leao, J. B. Lynn, J. W. and Maple, M. B. in preparation.Google Scholar
53 Jayaraman, A. Hutson, A. R. McFee, J. H. Coriell, A. S. and Maines, R. G. Rev. Sci. Instrum. 38, 44 (1967).Google Scholar
54 Sidorov, V. A. and Sadykov, R. A. J. Phys.: Condens. Matter 17, S3005 (2005).Google Scholar
55 Cordier, G. Czech, E. Schafer, H. and Woll, P. J. Less-Common Met. 110, 327 (1985).Google Scholar
56 Bourdarot, F. Bombardi, A. Burlet, P. Enderle, M. Flouquet, J. Lejay, P. Kernavanois, N. Mineev, V. P. Paolasini, L. Zhitomirsky, M. E. and Fåk, B., Physica B 359-361, 986 (2005).Google Scholar