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Abstract

Coronavirus disease 2019 (COVID-19) has been described as having an overdispersed
offspring distribution, i.e. high variation in the number of secondary transmissions of severe
acute respiratory syndrome coronavirus 2 (SARS-CoV-2) per single primary COVID-19 case.
Accordingly, countermeasures focused on high-risk settings and contact tracing could
efficiently reduce secondary transmissions. However, as variants of concern with elevated
transmissibility continue to emerge, controlling COVID-19 with such focused approaches
has become difficult. It is vital to quantify temporal variations in the offspring distribution
dispersibility. Here, we investigated offspring distributions for periods when the ancestral
variant was still dominant (summer, 2020; wave 2) and when Alpha variant (B.1.1.7) was
prevailing (spring, 2021; wave 4). The dispersion parameter (k) was estimated by analysing
contact tracing data and fitting a negative binomial distribution to empirically observed
offspring distributions from Nagano, Japan. The offspring distribution was less dispersed in
wave 4 (k = 0.32; 95% confidence interval (CI) 0.24–0.43) than in wave 2 (k = 0.21 (95%
CI 0.13–0.36)). A high proportion of household transmission was observed in wave 4,
although the proportion of secondary transmissions generating more than five secondary
cases did not vary over time. With this decreased variation, the effectiveness of risk
group-focused interventions may be diminished.

Introduction

The distribution of the number of secondary transmissions per single primary case, i.e.
offspring distribution, of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)
has been described as being overdispersed, and this has been a well-known feature of the cor-
onavirus disease 2019 (COVID-19) pandemic [1–3]. The majority of primary COVID-19 cases
generate no or only a small number of secondary causes, whereas only approximately 10–20%
of SARS-CoV-2-infected individuals contribute to causing 80% of secondary COVID-19 cases
[4–7]. Published epidemiological evidence indicates that those transmissions have been caused
mostly by super-spreading events (SSEs) [8], i.e. an event at which an unusually high number
of secondary cases was produced by a single primary case [9, 10].

An in-depth understanding of individual-level variations in COVID-19 secondary trans-
mission is essential for designing a customised COVID-19 control strategy [6].
Considerations of overdispersion actually influenced the contact tracing practice in Japan,
which assumed that if intervention efforts focused on contact tracing and minimising the
chance of SSEs (i.e. targeted high-risk settings that may lead to large numbers of secondary
transmissions), it might be possible to efficiently bring the epidemic under control [11–14].
Indeed, a ‘backward’ (or ‘retroactive’) method of contact tracing, in which both the new sec-
ondary cases and the primary cases from whom they originated are traced, was implemented
during the early stages of each epidemic wave in Japan, with the aim of identifying the dom-
inant source of SSEs and calling for secondary transmission preventions in such settings [15,
16]. Secondary transmission events, especially SSEs, were found to be more likely to occur in
specific circumstances with the ‘3Cs’ (close contacts in a closed environment with crowded
conditions). Accordingly, by implementing public health and social measures that focused
on high-risk settings with the 3Cs features (e.g. closing host and hostess clubs, shortening
opening hours and restricting the maximum number of customers per table in dining service),
the second wave of the COVID-19 epidemic was suppressed without implementing a lock-
down of the entire community [11]. However, relying solely on such a focused intervention
strategy, specifically concentrating on prevention in high-risk settings, was insufficient to con-
trol the epidemics in the later waves.

Japan experienced larger epidemic waves of COVID-19 after the second wave, leading to
calls for the declaration of a state of emergency (SoE) and the enactment of more stringent
countermeasures. The failure to effectively suppress these waves may be a consequence of
the delayed initiation of appropriate countermeasures (e.g. when customised interventions
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were in place, the transmission was taking place in broader com-
munity settings, including households and workplaces). However,
it is also possible that variations in the number of secondary
transmissions may have occurred as a result of the emergence
of SARS-CoV-2 variants of concern with elevated transmissibility,
including the Alpha (B.1.1.7) and Delta (B.1.617.2) variants.
Thus, to continue with our case isolation and contact tracing
efforts during the waves caused by these variants, we faced the
need to devise a method for monitoring the overdispersion of off-
spring distribution, so that we could judge whether focused inter-
ventions were still justified.

Conventionally, individual-level variations in the offspring dis-
tribution have been quantitatively measured by the dispersion par-
ameter (k) of a negative binomial distribution, with lower values of
k corresponding to a broader (more skewed) distribution [4, 17].
However, estimating overdispersion from empirical contact tracing
data has been very challenging in practice for the following two
reasons. First, cases causing large clusters are more likely to be
detected than are cases causing only a small number of secondary
transmissions. However, a large number of transmissions occur-
ring in a public setting (e.g. public transportation) might not be
more ascertained compared with household transmissions,
which tend to be investigated with the highest priority during con-
tact tracing. As a result, the naïve estimation of k made by relying
solely on observed data might be affected by ascertainment bias
from both directions. Second, in a real time evaluation, a subset
of the secondary cases infected by the recently reported cases
would not have been observed yet in the surveillance system
owing to the censoring of observational time, resulting in an
underestimated number of secondary transmissions. Here, to
examine the time-dependence in the variations in the number of
secondary transmissions, we quantitatively examined the overdis-
persion parameter using empirical contact tracing data from two
waves of the COVID-19 epidemic in Japan. We explored the
second and fourth waves when the ancestral and the Alpha var-
iants of SARS-CoV-2 were dominant, respectively, to account for
the abovementioned ascertainment bias and right censoring.

Methods

Transmission data

To explore variations in the number of secondary transmissions
of SARS-CoV-2, information on the confirmed COVID-19
cases during ‘wave 2’ from 12 July to 21 September 2020 and
‘wave 4’ from 5 March to 12 April 2021 in Nagano Prefecture
was retrieved from the prefectural government website [18].
Among the 47 prefectures in Japan, Nagano was specifically
selected because it has publicly released detailed individual-level
data, including information regarding the transmission link, i.e.
from whom the infection was acquired, in a timely manner.
The study periods in Nagano were selected to ensure that the
transmission dynamics of COVID-19 during the study periods
were not affected by stringent countermeasures, such as a
prefectural- or national-level SoE. For this reason, the third
wave was excluded from our study (the majority of the third
wave was accompanied by a SoE in response to the upsurge of
cases), and only the early phase of the fourth wave was analysed.

A COVID-19 case was defined as any COVID-19 case con-
firmed by reverse transcriptase polymerase chain reaction
(RT-PCR) for SARS-CoV-2, regardless of symptoms.
Consequently, asymptomatic infections that were associated

with contact tracing were included in our data. From the 1083
reported COVID-19 cases, the 572 cases for which their infector
information was identified via contact tracing were extracted. The
infector–infectee pairs were categorised into two types: (1) house-
hold transmission pairs, and (2) non-household transmissions
pairs. Infectees who had multiple potential infectors, i.e. cases
with inconclusive multiple primary cases, accounting for <5%
of all infectees (28/572), were excluded. Infectors were aggregated
into the following three age groups: 20–39, 40–59 and ⩾60 years
old. Individuals aged less than 20 years old were not included in
our age-dependent analysis because the sample sizes from our
selected observation periods were too small (there were 0 and 5
primary cases in children during waves 2 and 4, respectively).

Statistical analysis

Estimation of the reproduction number (R) and overdispersion
parameter (k)
We fitted the negative binomial distribution to empirically
observed offspring distributions. The probability mass function
of the negative binomial distribution was calculated as

f (x; k, R) ; Pr (X = x)

= G(x + k)
G(x + 1)G(k)

k
k+ R

( )k R
k+ R

( )x

, (1)

where x is the number of secondary cases generated by a single pri-
mary case. R and k are parameters representing the mean and dis-
persibility of the negative binomial distribution, respectively. The
mean of the negative binomial distribution, by definition, is referred
to as the reproduction number. Considering the effect of stringent
interventions enacted in the latter part of wave 4, the majority of
the wave 4 data collected for this study were from the ascending
phase of the wave, whereas the wave 2 data collected were from
throughout the entire wave (i.e. both the ascending and declining
phases of the wave). Thus, to identify any potential bias caused
by using data from different epidemic phases, we also estimated
the R and k using only the ascending epidemic phase data of
wave 2 (see Sensitivity analysis using the ascending epidemic
phase data of wave 2 in Supplementary material).

Because an ascertainment bias influences the observed number
of primary cases who did not contribute to secondary transmis-
sion at all (e.g. sporadically occurring cases are less likely to be
detected/diagnosed compared with cases involved in a larger clus-
ter), we analysed both zero-included and zero-truncated data to
check the sensitivity of our results for an ascertainment bias
[19]. The following likelihood functions used for the
zero-included and zero-truncated data were formulated:

L0−included(k, R; X) =
∏N
i=1

f (xi; k, R), (2)

L0−truncated(k, R; X) =
∏N
i=1

f (xi; k, R)
1− f (0; k, R)

, (3)

respectively, where X = {x1, x2, …xN}, and N is the sample size.

Right censoring adjustment for infection trajectory chain
During a real time assessment, as well as here because we trun-
cated the epidemic curve of wave 4 and considered only the
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time period without a SoE declaration, the trajectory chain is
right-censored (i.e. cases that occur close to the cut-off date are
likely to have missing infectee information; Fig. 1). To overcome
this problem, we applied the following two methods.

(1) Exclusion of all potentially censored data: infectors whose
secondary cases were not fully observed owing to censoring
(primary cases in the shaded area in Fig. 1a, i.e. generation
time was not completed) were excluded from the analysis.
The 97.5th percentile of the time delay from the reporting
of a primary case to that of the secondary case (the report–
report time distribution), i.e. 9 days from the latest calendar
time, was determined as the cut-off point for exclusion.

(2) Likelihood adjusted for censoring: All observed data were
included, and the likelihood function was adjusted using
the report–report time distribution (see below).

For method (2), we used the empirically observed number of
secondary cases for primary case i, xi (number of blank circles
drawn by a solid-line in Fig. 1b), adjusting it for right censoring.
We set ti as the time at which primary case i is reported and T as
the cut-off date in the calendar time. The likelihood function for
the entire dataset (i.e. the non-excluded data) is

L0−truncated(k, R; Y) =
∏N
i=1

f (yi; k, R)
1− f (0; k, R)

, (4)

yi = xi�T−ti
0 g(t)dt

+ 0.5

⌊ ⌋
, (5)

where Y = {y1, y2, …yN > 0}, ⌊.⌋ is a floor function (thus, Equation
(5) indicates we rounded xi/

�T−ti
0 g(t)dt to the nearest integer),

Fig. 1. Schematic drawings of the methods used to control right-censored infection trajectory chains during a real time assessment. To control right-censored data,
two methods were applied (see Right censoring adjustment for infection trajectory chain in Methods). (a) Exclusion of all potentially censored data: infectors whose
secondary cases are potentially unobserved (black circles in the light blue-shaded area) were excluded from the analysis (method 1). The 97.5th percentile of the
time delay from the reporting of a primary case to that of the secondary case (report–report time), i.e. 9 days, was used for the exclusion period. (b) Likelihood
adjustment for censoring: an adjusted likelihood function (Equation (4)) for the number of secondary cases was used for the analysis (method 2). Infectors in the
light blue-shaded area (3 days, i.e. the median of the report–report time, from the cut-off date) were excluded for this adjustment. T, data cut-off date; t1, date of
the report of case #1; t2, date of the report of case #2; t3, date of the report of case #3.

Fig. 2. Epidemic curves for the study periods. (a) Wave 2 (12 July–21 Sep 2020). (b) Wave 4 (5 Mar–12 Apr 2021). Colours indicate age groups. Wave 2 contains one
case of unknown age.
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and g(.) is the probability density function of the time from
reporting in a primary case to that in the secondary case. The
data from the most recent 3 days before the cut-off date were
excluded (light blue-shaded area in Fig. 1b) because the adjust-
ment was unreliable owing to the very small values of g(.). The
timespan of 3 days corresponded to the median length of the
report–report time.

Offspring distributions for household and community settings

Subsequently, we divided all reported transmissions into the fol-
lowing two types according to their place of transmission: house-
hold and non-household. We then compared the following three
features between wave 2 and wave 4: (1) the proportion of house-
hold transmission, (2) the proportion of people whose number of
secondary cases was >5 (i.e. those who caused an extraordinarily
large cluster) in non-household settings, and (3) the average num-
ber of secondary cases infected by a single primary case in each
setting. These comparisons between waves 2 and 4 were con-
ducted using the two-sample test for equality of proportions
and the Wilcoxon rank-sum test. Potentially censored infectors
were excluded for these analyses as well, and the sample sizes
used were 107 and 310 pairs for household and non-household
transmission, respectively.

Results

The epidemic curves for the newly reported COVID-19 cases dur-
ing the study periods in Nagano are shown in Figure 2. The
empirically observed offspring distributions, stratified by the epi-
demic period and age group, that were used for the estimations of
R and k are shown in Figure 3. All observed distributions were
right skewed across all age groups.

Estimated dispersion parameter, k, for a negative binomial
distribution

Our estimates of R and k are shown in Table 1. In both the ana-
lysis conducted with the zero-included data and that conducted
with the zero-truncated data, the dispersion parameter, k, was
estimated to be greater for wave 4 than it was for wave 2 (although
the absolute values of k were not necessarily consistent), suggest-
ing that the dispersion of the number of secondary transmissions
of SARS-CoV-2 by a primary case had decreased in wave 4. The
age-dependent analyses yielded a different trend between the ana-
lysis with the zero-included data and the analysis with the zero-
truncated data. The former found smaller k values for older age
groups, and this age-dependence was consistent for both epidemic
waves (waves 2 and 4). The latter, in contrast, found the highest
value of k for individuals aged 20–39 years and the lowest estimate

Fig. 3. Observed epidemic period- and age-dependent offspring distributions. (a, e) Epidemic period-dependent offspring distributions for waves 2 (a) and 4 (e). (b–
h) Age-dependent offspring distributions for age groups: 20–39 (b, f), 40–59 (c, g) and ⩾60 years old (d, h) of waves 2 (b–d) and 4 (f–h).
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of k for those aged 40–59 years. The likelihood that addressed
right censoring led to estimates that were overall in good agree-
ment with the simple method that further truncated and excluded
the empirical data.

Offspring distributions plotted using the parameters (R and k)
estimated from the model produced with the zero-included data
are shown in Figure 4. The offspring distribution of wave 2 was
more skewed than that of wave 4, and the probability of being a
zero-secondary-case (i.e. one for whom the number of secondary
cases was zero) was higher in wave 2 (Fig. 4a). Regarding age-
dependent offspring distribution, the older age group showed
greater overdispersion (i.e. a smaller value of k) compared with
the younger age group (Fig. 4b). This age-dependence was con-
sistent between waves 2 and 4 (Fig. 4c and d). To examine the fit-
ness of the estimations, the estimated offspring distributions were
overlaid with the observed data, and the modelled distribution
visually appears to have effectively captured the observed patterns
of the data (Figs S1 and S2).

The offspring distribution determined from the zero-truncated
data was also visualised (Fig. 5). The qualitative patterns among
the analyses of the zero-truncated data were similar (Figs 4a
and 5a). The group of individuals aged 40–59 years showed the
most skewed distribution, and those in this group had the highest
probability of being a zero-secondary-case (Fig. 5b and d). As the
two adjustment methods for censoring produced consistent
results for the estimated parameters, they likewise yielded off-
spring distributions that were visually consistent (Fig. 5a–d).
The estimated offspring distributions overlaid with the observed
data are shown in Supplementary Figures S3 and S4.

Variations between household and non-household settings

To explore if the disease transmission settings influenced the vari-
ation in offspring distribution between waves 2 and 4, a descrip-
tive analysis was performed for transmission settings (i.e.
household and non-household settings) (Supplementary
Fig. S5). The proportion of secondary transmissions that were
household transmissions was higher in wave 4 (32.6%, 102/313,
P < 0.001) than in wave 2 (4.8%, 5/104). In the non-household
setting, the proportion of primary cases who contributed to gen-
erating more than five secondary cases was not different between
wave 2 and wave 4 (P = 0.838), indicating that SSEs were observed
at the same proportion in both periods (Table 2).

Discussion

To understand time- and age-dependent variations in the number
of secondary transmissions of SARS-CoV-2 originating from a
primary case, we investigated the COVID-19 contact tracing
data from Nagano Prefecture, Japan. We found that the Alpha
variant epidemic yielded less overdispersed results compared
with the ancestral SARS-CoV-2 epidemic. The extent of disper-
sion may have been diminished as a more transmissible variant
emerged.

Our analysis of the zero-truncated data produced a larger R
compared with our analysis of the zero-included data. The esti-
mate of R is influenced by the observed number of primary
cases who did not contribute to secondary transmission at all,
which may be biased by: (a) sporadically occurring cases, which

Table 1. Estimated dispersion parameter, k. Parameter estimations (for reproduction number, R and k) were performed for the zero-included and zero-truncated
offspring distributions

Zero-included data analysis Zero-truncated data analysis

Censoring excludeda Censoring excludeda Censoring adjustedb

R k R k R k

Epidemic period

Wave 2 0.47 (0.32–0.66) 0.21 (0.13–0.36) 0.69 (0.48–0.94) 0.36 (0.22–0.65) 0.69 (0.48–0.94) 0.36 (0.22–0.65)

Wave 4 0.64 (0.52–0.76) 0.32 (0.24–0.43) 0.89 (0.74–1.06) 0.55 (0.40–0.79) 0.99 (0.81–1.17) 0.58 (0.43–0.84)

Age (waves 2 and 4)

20s–30s 0.70 (0.53–0.88) 0.35 (0.24–0.54) 1.18 (0.93–1.45) 0.94 (0.60–1.72) 1.17 (0.91–1.45) 0.84 (0.55–1.49)

40s–50s 0.60 (0.43–0.78) 0.30 (0.2–0.48) 0.44 (0.32–0.59) 0.20 (0.13–0.31) 0.58 (0.42–0.76) 0.27 (0.18–0.42)

60+ 0.51 (0.33–0.71) 0.26 (0.16–0.49) 0.92 (0.64–1.25) 0.69 (0.39–1.67) 1.00 (0.69–1.36) 0.79 (0.43–2.13)

Age (wave 2)

20s–30s 0.59 (0.34–0.91) 0.23 (0.12–0.50) – – – –

40s–50s 0.51 (0.22–0.87) 0.20 (0.09–0.58) – – – –

60+ 0.29 (0.11–0.53) 0.73 (0.16–5674.75) – – – –

Age (wave 4) – – – –

20s–30s 0.76 (0.55–1.01) 0.44 (0.28–0.79) – – – –

40s–50s 0.64 (0.45–0.86) 0.35 (0.22–0.63) – – – –

60+ 0.58 (0.35–0.84) 0.25 (0.14–0.51) – – – –

aRight-censoring data excluded from the analysis.
bRight-censoring data adjusted for the analysis (see Right censoring adjustment for infection trajectory chain in Methods).
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are less likely to be detected (i.e. simply missing a lot of zeros from
the empirical offspring distribution) and (b) cases who do not
cause any secondary transmissions owing to quarantine, which
are more likely to be included (i.e. including a lot of zeros because
of interventions). Thus, the estimated R was different depending
on the data type (zero-included vs. -truncated).

Our time-dependent analysis results indicate that the offspring
distribution of wave 4 is less dispersed than that of wave 2. In gen-
eral, an overdispersion of offspring distribution indicates a high
frequency of SSEs [8]. However, the SSE frequencies were not dif-
ferent between waves 2 and 4 (P = 0.838), and what affected such
variation was the lower frequency in wave 4 of primary cases who
generated no secondary cases. This phenomenon is expected to
occur when a variant that is more transmissible (on average)
but less inherently variable in terms of infectiousness appears,
and its occurrence here could be partly explained by the emer-
gence of a more transmissible SARS-CoV-2 variant [20, 21].
Indeed, the Alpha variant was prevailing in Nagano during
wave 4 [22], and a higher frequency of household transmissions
was observed for wave 4 than for wave 2 (P < 0.001), suggesting
that the less-dispersed offspring distribution observed for wave
4 could be a consequence of the invasion of the Alpha variant.
A simulation study [23] also suggested that a SARS-CoV-2 variant

that leads to less-dispersed secondary transmission would have an
advantage over other variants under the conditions created by our
response to the pandemic, i.e. using non-pharmaceutical inter-
ventions, including wearing masks, and/or regular testing, contact
tracing and quarantining. Another potential factor could be
changes in the COVID-19 risk awareness and human mobility
patterns of a population. A search conducted using Google
regarding human mobility relating to ‘retail and recreation’ in
Nagano showed slightly higher values for wave 4 than for wave
2 [24]. Given that this category (retail and recreation) likely repre-
sents human mobility in the close-contact settings associated with
SARS-CoV-2 transmission [25], such an increase in human
mobility might have contributed to the decreased probability of
primary cases who generated no secondary cases that was
observed for wave 4. As a consequence of this decrease in the
overdispersed secondary transmission of COVID-19 over time,
the effectiveness of contact tracing and interventions focused on
high-risk settings may be diminished [4, 6, 17], thus necessitating
more intensive interventions to control the COVID-19 epidemic.

The time-dependent analyses for both the zero-included data
and zero-truncated data produced consistent trends, showing
that the offspring distribution was less dispersed when the
Alpha variant was spreading. The surveillance system is affected

Fig. 4. Estimated epidemic period- and age-dependent offspring distributions for the zero-included data conducted using the censoring data exclusion method
(method 1 in Right censoring adjustment for infection trajectory chain in Methods). (a) Epidemic period-dependent analysis. (b) Age-dependent analysis for
the entire epidemic period (both waves 2 and 4). (c–d) Age-dependent analyses for waves 2 (c) and 4 (d).
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by ascertainment bias, and larger clusters are more likely to be
detected in the community, contributing to overestimation of
the dispersion parameter [19]. However, the under-ascertainment
of sporadic cases contributes to the underestimation of the disper-
sion parameter because the probability of generating zero second-
ary cases would be erroneously estimated as smaller. In the case of
wave 4, because the number of cases was higher than that in wave

2 (Fig. 1), larger clusters would be detected more often. Also, the
increased number of SARS-CoV-2 tests conducted in wave 4 as
compared with that in wave 2 [26] could have contributed to
detecting a greater number of asymptomatic and mild cases via
contact tracing. Despite these influences, our analysis detected a
lower level of dispersion for wave 4 than for wave 2. The majority
of the analyses conducted on the zero-truncated data showed a

Fig. 5. Estimated epidemic period- and age-dependent offspring distributions for the zero-truncated data. (a) Epidemic period-dependent analysis conducted using
the censoring data exclusion method (method 1 in Right censoring adjustment for infection trajectory chain in Methods). (b) Age-dependent analysis for the entire
epidemic period (both waves 2 and 4) conducted using the censoring data exclusion method (method 1 in Right censoring adjustment for infection trajectory chain
in Methods). (c) Epidemic period-dependent analysis conducted using the censoring data adjustment method (method 2 in Right censoring adjustment for infec-
tion trajectory chain in Methods). (d) Age-dependent analysis for the entire epidemic period (both waves 2 and 4) conducted using the censoring data adjustment
method (method 2 in Right censoring adjustment for infection trajectory chain in Methods).

Table 2. Descriptive analysis of offspring distributions for household and non-household settings

Wave 2 Wave 4 Statistical test P value

Household transmission

Proportion of household transmission (%)a 4.8 (5/104) 32.6 (102/313) 2-sample test for proportions < 0.001

Mean number of secondary cases 1.25 1.52 Wilcoxon rank-sum test 0.691

Non-household transmission

Proportion of # secondary cases >5 (%)b 6.4 (3/47) 4.0 (4/99) 2-sample test for proportions 0.838

Mean number of secondary cases 2.10 2.13 Wilcoxon rank-sum test 0.669

aThe proportion of household transmissions among all transmissions.
bThe proportion of people whose number of secondary cases was >5.
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lower probability for zero-secondary-cases compared with that
with empirical observation (Supplementary Figs S3 and S4),
although the analysis of zero-truncated data was conducted to
account for the ascertainment bias among primary cases who
did not result in secondary transmissions [19]. This may be
affected by the active contact tracing and stringent quarantine
measures being enacted during the ongoing COVID-19
pandemic.

To account for the inherent right censoring that is present
when estimating overdispersion in real time, we adjusted the
observed number of secondary cases by the probability density
of the time from reporting for the primary case to reporting for
the secondary case. This adjustment method produced results
consistent with those produced by applying the conventional
censoring data exclusion method (Table 1 and Fig. 5a–d).
Our proposed adjustment method has the advantage of maxi-
mising data usage and reducing uncertainty, e.g. the applica-
tion of this method permits the gain of empirical data from
six additional days as compared with the application of an
approach that excludes data. However, it should be noted
that this method cannot be applied to zero-included data
because the expected number of secondary cases cannot be
adjusted by using Equation (5) if the observed number of sec-
ondary cases is 0.

This study is not free from limitations. First, the ascertain-
ment of contacts in this work depended on the local capacity
of contact tracing in Nagano; this factor significantly influences
the validity of the empirical observation, e.g. under-
ascertainment drastically alters the dispersion parameter esti-
mate [27]. However, we specifically trust the empirically
observed data from Nagano because their healthcare service
did not experience overwhelming pressure as measured by hos-
pital caseload, at least during waves 2 and 4. Furthermore, even
when other prefectures ceased conducting contact tracing and
publicly announcing tracing results, Nagano consistently
released detailed high-quality individual-level information in a
timely manner. Second, sequencing results for each individual
case were not used, and we assumed that COVID-19 cases
reported during wave 4 were mostly caused by infection with
the Alpha variant. Applying the screening result of an
RT-PCR for the N501Y mutation for each individual case
could have allowed a more sophisticated exclusion of the ances-
tral SARS-CoV-2 or other variants from the pool of cases.
Lastly, infectees who had at least two potential exposures to
infectors were excluded from this study; however, the propor-
tion of such cases was small (<5% of all the infectees, 28 out
of 572).

In conclusion, the extent of overdispersion for the COVID-19
offspring distribution varied depending on the epidemic
period and possibly by the transmission setting. When the
higher transmissible Alpha variant was prevalent, the offspring
distribution became less dispersed compared with that when the
ancestral variant was prevalent. When a large fraction of primary
cases generates the secondary cases (i.e. when the offspring
distribution is less overdispersed), the effectiveness of contact
tracing and focused interventions in high-risk settings may be
diminished. In such a case, the implementation of more stringent
interventions may need to be considered. Monitoring the
overdispersion of COVID-19 offspring distribution in a
continuous manner is crucial for flexibly selecting suitable public
health and social measures as countermeasures against
COVID-19.
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