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We develop a high-fidelity multi-physics model and, by using it, study the energy
conversion process of a piezohydroelastic flag. Instead of a regular flag with a clamped
upstream leading edge, we use an inverted flag so as to make the best of fluid elastic
instability for energy harvesting. Moreover, different from many previous studies where
a resistor–capacitor (RC) circuit is usually used, we adopt a resistor–inductor–capacitor
(RLC) circuit for electricity generation. The influences of several key parameters
associated with fluid, structure and electric dynamics are studied. Significantly different
response modes are identified, among which the symmetric- and asymmetric-flutter modes
are most suitable for sustainable energy harvesting, both emerging with moderate bending
stiffness. If only deploying the RC circuit, increasing the resistance makes the flag more
stable. By adding an inductor to turn the RC circuit into an RLC one, we observe the
occurrence of ‘lock-in’ between the flag frequency and the circuit frequency as first
reported on a regular flag by Xia et al. (Phys. Rev. Appl., vol. 3, 2015, 014009). This
phenomenon can significantly enhance the energy output, but it only happens when
the circuit resistance is sufficiently large. From a derivation based on dynamic mode
decomposition analysis, we further identify an optimal condition for maximizing the
energy output, which can serve as a guideline to determine whether deploying an inductor
can boost the performance, and, if yes, the required inductance. The findings from this
study can better guide the design of flow-induced-vibration-based piezoelectric energy
harvesters for microelectronic devices.
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1. Introduction

Low-power electronics have been widely used in many areas such as implanted biomedical
devices (Mitcheson et al. 2008; Paulo & Gaspar 2010) and wireless sensory nodes
in remote or hostile locations for environmental monitoring (Shaikh & Zeadally 2016;
Kanoun 2018). Conventionally, many of these electronics are powered by chemical
batteries which necessitate periodic replacement and costly maintenance. To circumvent
this situation, sustainable power generation can be achieved by extracting ambient energy.
Some possible ambient energy sources are, for instance, thermal energy, light energy or
flow energy. The present research focuses on the extraction of a ubiquitous source of flow
energy via flow-induced vibration (FIV). Once triggered by fluid elastic instability, FIV is
able to induce unsteady loads on structures. Classical FIV models include fluttering airfoils
(Zhu & Peng 2009; Zhu 2011; Bibo & Daqaq 2013; Wang et al. 2020; Tamimi et al. 2022)
and thin plates (Sodano, Inman & Park 2004; Dunnmon et al. 2011; Giacomello & Porfiri
2011; Xu-Xu, Barrero-Gil & Velazquez 2016; Qadri, Zhao & Tang 2020; Zhao et al. 2021)
mounted in a uniform flow, cantilever beams placed in the Kármán vortex street behind
a cylinder (Adhikari, Rastogi & Bhattacharya 2020; Du et al. 2022), galloping of bluff
bodies (Barrero-Gil, Alonso & Sanz-Andres 2010; Tan, Zuo & Yan 2021), etc.

To convert the mechanical energy from ambient flows into electricity, there are
several transduction mechanisms such as piezoelectric, electromagnetic and electrostatic
generators, among which the piezoelectric transducer is of the major interest over the
past decade due to its inherent electromechanical coupling and transduction capacity,
ease of applications and high power density (Stojcev, Kosanovic & Golubovic 2009).
Piezoelectricity refers to the phenomenon that piezoelectric material becomes polarized
due to the accumulation of electric charge on the electrodes in response to applied
mechanical stress (Cross 2004; Panda 2009). Through this mechanism, FIV-based
piezoelectric transducers are able to provide stable power. As such, they have been
considered as a promising alternative to batteries for low-power electronics (Uchino 2018;
Hamlehdar, Kasaeian & Safaei 2019; Safaei, Sodano & Anton 2019).

Many experimental, theoretical and numerical efforts have been spent to explore the
energy conversion process of FIV-based piezoelectric transducers, on which Hamlehdar
et al. (2019) have done a comprehensive review. Experimental studies (e.g. Dunnmon
et al. 2011; Hobbs & Hu 2012; Song et al. 2015; Petrini & Gkoumas 2018) have
demonstrated the feasibility and reliability of the FIV-based piezoelectric transducer under
various conditions. Theoretical studies, such as those conducted by Abdelkefi, Nayfeh &
Hajj (2012) and Tan, Yan & Hajj (2016), used decoupled electromechanical models to
analyse the dynamics of FIV-based piezoaeroelastic systems. However, these decoupled
models oversimplified the sophisticated fluid–structure interactions. To address this issue,
a number of coupled fluid–structure–electric models have been developed in the past
decade. For example, Doaré & Michelin (2011) and Michelin & Doaré (2013) developed
such a multi-physics model to study a two-dimensional elastic plate placed in an axial
flow. The plate experiences self-sustained flutter when the flow velocity exceeds a critical
value (Connell & Yue 2007; Alben & Shelley 2008). Electricity is then generated via
distributed piezoelectric patches that are applied along the plate’s surface. They found
that energy harvesting efficiency of this system is optimized when the flutter frequency
is tuned to the time scale of the electric system. De Marqui, Erturk & Inman (2010)
presented a piezoaeroelastic model combining an unsteady vortex-lattice model and
an electromechanically coupled finite-element model to investigate the electrical power
output of a cantilever plate placed on the flexible wing of micro air vehicles.
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Although revealing useful physical insights in the energy conversion mechanism, the
above coupled fluid–structure–electric models employed either the slender body theory or
the potential flow theory to describe the fluid dynamics, which may not be applicable to
low- or intermediate-Reynolds-number flows in which most low-power electromechanical
devices are operated (Taylor et al. 2001; Wang & Ko 2010; Wang & Liu 2011). To address
this issue, Akcabay & Young (2012) and Shoele & Mittal (2016) developed new sets of
fully coupled fluid–structure–electric models, in which the fluid dynamics is described
by the Navier–Stokes equations and the interactions between the viscous flow and the
piezoelectric structure are dealt with by the immersed boundary method (Peskin 2002).
In these studies, the impacts of many parameters such as density ratio, Reynolds number,
electromechanical coupling coefficient, etc. upon the piezohydroelastic system have been
extensively investigated. The difference of these two studies lies in the piezoelectric patch
configuration: the former utilized the single-patch configuration while the latter used
distributed piezoelectric patches.

Existing studies have also revealed some scenarios where the energy harvesting
performance of FIV-based piezoelectric transducers can be enhanced. Such improvements
can be achieved through manipulations in fluid, structure or electrical domains, either
separately or collectively. For example, from the fluid perspective, Mazharmanesh et al.
(2022) found that, compared with in uniform flows, a piezoelectric flag placed in
oscillating flows is able to create much higher energy due to constructive interactions
between the vorticity flow and the flag. From the structure perspective, inverted flags,
clamped at the downstream trailing edge and free to flap at the upstream leading edge, are
found to be beneficial to energy harvesting (Kim et al. 2013; Ryu et al. 2015; Tang, Liu
& Lu 2015). Compared with regular flags with clamped upstream leading edge, inverted
flags are far more unstable and are able to produce sustained large-amplitude vibrations in
a wider range of bending rigidity and flow speeds (Shoele & Mittal 2016).

As for the electrical circuit, most existing studies only considered the simplest
resistor–capacitor (RC) circuit, i.e. a capacitor rendered by the piezoelectric material’s
intrinsic feature and a resistor representing the electrical load (Doaré & Michelin 2011;
Michelin & Doaré 2013; Dias, De Marqui & Erturk 2014; Shoele & Mittal 2016;
Safaei et al. 2019; Mazharmanesh et al. 2022). Energy harvesting performance can
be enhanced by introducing an inductor into this conventional RC circuit, forming a
resistor–inductor–capacitor (RLC) circuit that intrinsically has a resonant frequency. By
inheriting the fully coupled model used in Michelin & Doaré (2013) and deploying an RLC
circuit on a regular flag, Xia, Michelin & Doaré (2015) found that the flapping frequency
of the flag was locked onto the circuit’s natural frequency under certain circumstances,
leading to a wider operating frequency bandwidth and an enhanced efficiency. A similar
observation was also made by Wang et al. (2016). Moreover, by applying a decoupled
model to a regular flag, Tan & Yan (2017) concluded that simultaneous tuning of the
resistance and the inductance can achieve better energy harvesting efficiencies than tuning
the resistance alone.

Clearly, the existing studies have suggested that inverted flags can generally perform
better than regular flags in terms of energy generation, and RLC-circuit-based flags
may perform better than RC-circuit-based flags. Intuitively, one would expect that
RLC-circuit-based inverted flags can exhibit the best performance. However, so far, no
study has been reported on such a highly promising configuration. To this end, the current
study aims at developing a fully coupled fluid–structure–electric model and using it to
study the energy conversion of an inverted piezohydroelastic flag mounted in a viscous
flow. The fluid dynamics will be depicted with the Navier–Stokes equations and the
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Figure 1. (a) Schematic of the inverted piezoelectric flag. (b) Electric circuit of a piezoelectrical patch pair
connected with the output loop and the equivalent RLC circuit.

fluid–structure coupling will be handled by the immersed boundary method. An RLC
circuit will be applied for the electricity generation. With this multi-physics model, we
explore the characteristics of the inverted piezohydroelastic flag system, particularly the
influence of the RLC circuit on the dynamics of the flag and the resulting energy harvesting
performance.

2. Physical problem

As shown in figure 1(a), the inverted flag we consider here is reduced to a cantilevered
plate with length L and infinite span, subjected to a parallel fluid flow of speed U∞ moving
from the free leading edge to the clamped trailing edge. The plate is assumed to be thin
and inextensible, and only its out-of-plane deformation is considered. As such, we can use
a two-dimensional Euler–Bernoulli beam model to describe its structural dynamics.

The lower and upper surfaces of the flag are covered by piezoelectric layers (referred
to as the bimorph configuration (Bonello & Rafique 2011); see figure 1b), which contain
continuous piezoelectrical patch pairs of infinitesimal length (Bisegna, Caruso & Maceri
2006; Doaré & Michelin 2011). The patch pairs are connected in series with opposite
polarity. The electrodes are coupled with the power output circuit consisting of a resistor
and an inductor, which are connected in parallel. As the piezoelectric material is deformed
by the local curvature of the flag, the electrodes will have a potential difference so that an
electric current can be generated in the circuit. The power dissipated by the resistor as the
electric current passes through is the harvested energy.

3. Problem formulations

3.1. Governing equations for the coupled fluid–structure–electric system
Described in the Eulerian coordinate x ≡ (x, y), the fluid dynamics is governed by
the incompressible Navier–Stokes (N–S) equations with constant fluid density ρ and
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viscosity μ. The dimensionless N–S equations are

∂u
∂t

+ ∇ · (uu) = −∇p + 1
Re

∇2u + f (x) and

∇ · u = 0,

⎫⎬
⎭ (3.1)

in which u represents the fluid velocity vector, p the pressure, Re ≡ ρU∞L/μ the Reynolds
number and f the fluid–structure interaction force density.

The three-layer ‘sandwich’ in figure 1 is modelled as an Euler–Bernoulli beam. Let
X (s, t) denote the instantaneous displacement vector of an arbitrary structural element at
the Lagrangian location s, the conservation of momentum and the inextensibility constraint
(i.e. ∂X/∂s · ∂X/∂s = 1) for the flag lead to

ms
∂2X (s, t)

∂t2
= ∂

∂s

[
σ(s, t)eτ − ∂M(s, t)

∂s
en

]
− F (s, t) + msg,

X = X 0 and
∂X
∂s

= (1, 0), at the trailing edge

M = 0 and σ eτ − ∂M
∂s

en = 0, at the leading edge

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

(3.2)

where ms is the mass per unit length of the beam and F stands for the hydrodynamic
loading. The gravity acceleration g is set as zero throughout the manuscript unless
otherwise stated (it is only involved in Appendix A.1). Here, en and eτ are, respectively,
the unit normal and tangential vectors, defined as eτ = ∂X/∂s and en = (0, 0, 1) × eτ and
X 0 is the initial position of the flag. The tension force σ is determined by the constraint of
inextensibility(Huang, Shin & Sung 2007)

∂2

∂s2 (σ eτ ) · eτ = ms

2
∂2

∂t2
(eτ · eτ ) − ms

∂eτ

∂t
· ∂eτ

∂t
+ ∂

∂s

[
∂

∂s

(
∂M
∂s

en

)
+ F − msg

]
· eτ .

(3.3)

In (3.2), M is the total internal bending moment of the piezoelectric flag resulting from
the flag’s deformation and the reverse piezoelectric effect of the piezoelectric patches, i.e.

M = kb
∂2X
∂s2 · en − χυ(s, t), (3.4)

in which kb is the bending stiffness, χ the structure–electric coupling coefficient and υ

the electric voltage. We consider a continuous distribution of patches (Doaré & Michelin
2011; Michelin & Doaré 2013) such that the voltage υ and electrical charge displacement
Q are continuous functions of the flag’s location s. Based on Gauss’ law (Jackson & David
1998), the electrical equation for the RLC circuit is

∂Q
∂t

+ γ υ +
∫ t

0

υ(τ)

	
dτ = 0,

Q = cυ + χ
∂2X
∂s2 · en.

⎫⎪⎪⎬
⎪⎪⎭ (3.5)

It can be further reduced to

c
∂2υ

∂t2
+ γ

∂υ

∂t
+ υ

	
= −χ

∂2

∂t2

(
∂2X
∂s2 · en

)
, (3.6)
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Figure 2. The energy transfer pathway of a piezohydroelastic flag.

where c is the intrinsic capacitance of the piezoelectric patch pair, γ the lineic conductivity
of the resistor (inverse of the resistance R) and 	 the inductance.

The coupling of the fluid and piezoelastic dynamics is accomplished with the immersed
boundary method (IBM). The IBM-based fluid–structure interaction algorithm has been
well documented in past studies (Peskin 2002; Bi & Zhu 2019), herein, we only briefly
sketch its key points. The fluid–structure interacting forces f (x, t) and F (s, t) are defined
in the Eulerian and Lagrangian coordinates, respectively. The transformation between
these two quantities is achieved by using the Dirac delta function

f (x, t) =
∫

Γ

F (s, t)δ(x − X (s, t)) ds, (3.7)

in which Γ represents the Lagrangian domain. Following Goldstein, Handler & Sirovich
(1993), F is calculated by

F (s, t) = α̃

∫ t

0
[U(s, τ ) − V (s, τ )] dτ + β̃ [U(s, t) − V (s, t)] , (3.8)

where α̃ and β̃ are sufficiently large negative constants (Goldstein et al. 1993), V (s, t)
is the structural velocity, i.e. V = ∂X/∂t, U(s, t) denotes the local fluid velocity at the
immersed structural position s, which is calculated by

U(s, t) =
∫

Ω

u(x, t)δ(x − X (s, t)) dx, (3.9)

where Ω denotes the fluid domain. Since the fluid and structure dynamics are solved
independently, the matching of U and V is achieved by (3.8), through which a penalty
force will be generated, which converges to the physical fluid–structure interaction force
after iterations.

The energy transfer pathway of the piezohydroelastic system is presented in figure 2.
The ambient flow powers the flag at a rate of Pin, leading to substantial mechanical
energy Em (including the kinetic energy and the strain energy) being stored in the flag.
A portion of Em is converted to electric energy Ee at a rate of Pme, which is stored in the
piezoelectric capacitor and the inductor in the output electric circuit. The electricity will
then be dissipated by the resistor at a rate of Pr; Pr is always positive according to its
nature, but the instantaneous values of the other two energy transfer rates Pin and Pme can
be negative during certain time intervals. For this reason, reversed arrows are added beside
the main arrows. Nevertheless, the energy is mainly transferred along the main arrows and
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the time-averaged values of these two energy transfer rates are positive. According to the
law of energy conservation, we have

dEm

dt
= Pin − Pme,

dEe

dt
= Pme − Pr. (3.10a,b)

When the system achieves its periodic steady state, we have 〈Pr〉 = 〈Pme〉 = 〈Pin〉, where
〈·〉 denotes the time-averaging operator.

The performance of the system is evaluated through energy harvesting efficiency Cp,
the ratio between the time-averaged power expenditure by the resistor and the theoretical
upper limit of the flow-energy flux past the projected area that is swept by the fluttering
flag, i.e.

Cp = 〈Pr〉
1
2
ρ2LU∞U2∞

= 〈Pr〉
ρLU3∞

. (3.11)

In the present work, the characteristic length, velocity, density and voltage are chosen as
L, U∞, ρ and U∞

√
ρL/c, respectively. The electroelastic equations ((3.2) and (3.6)) can

be non-dimensionalized as

1
m∗

∂2X
∂t2

= ∂

∂s
(σ (s, t)eτ ) − ∂

∂s

[
K∗ ∂3X

∂s3 − α
√

K∗ ∂υ

∂s
en

]
− F (s, t),

∂2υ

∂t2
+ 1

β

∂υ

∂t
+ ω2

0υ = −α
√

K∗ ∂2

∂t2

(
∂2X
∂s2 · en

)
,

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(3.12)

in which m∗ represents the inertial ratio between the fluid and structure, K∗ the
normalized bending stiffness, α the normalized electromechanical coupling coefficient,
β the normalized resistance and ω0 the natural frequency of the electrical circuit, defined
as follows:

m∗ = ρL
ms

, K∗ = kb

ρU∞2L3
, α = χ√

kbc
, β = cU∞

γ L
, ω0 = L

U∞
√

	c
. (3.13a–e)

Note that Michelin & Doaré (2013) and Shoele & Mittal (2016) used 1/U∗2 to replace
K∗, where U∗ is defined as the normalized free-stream velocity. In addition, the power
harvesting efficiency Cp can also be viewed as the non-dimensional time-averaged energy
harvested by the system:

Cp =
〈∫ 1

0
υ2 ds

〉/
β. (3.14)

Hereafter, all simulation results will be presented in the non-dimensional form.

3.2. Numerical implementation
The hydrodynamic equations (3.1) are spatially discretized using the finite difference
approach over a set of staggered Cartesian grids. The Crank–Nicolson scheme is used
to temporally discretize the diffusion and convection terms. The discrete form of the
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equations becomes

un+1 − un

�t
+ H (un+1) + H (un)

2
= −G ( pn+1/2) + L (un+1) + L (un)

2Re
+ f n+1,

D(un+1) = 0,

⎫⎪⎬
⎪⎭

(3.15)

where �t is the time step, the superscript ‘n + 1’ denotes the (n + 1)th time step. Here,
H represents the discrete convective operator, L the discrete Laplace operator, G the
discrete gradient operator and D the discrete divergence operator. Following Kim, Baek
& Sung (2002), the discrete hydrodynamic equations are solved with a projection method.
The general process of updating the flow velocity and pressure fields is well documented
in this reference.

Regarding the numerical treatment for the piezoelastic equations, uniform staggered
grids are also used to discretize the body along s. A fully implicit time advancement
method is employed, leading to the discrete piezoelastic equations

1
m∗

X n+1 − 2X n + X n−1

�t2
= Ds(σ

n+1/2DsX n+1) − K∗DssssX n+1

+ α
√

K∗Ds(Dsυ
n+1en+1

n ) − F n+1, (3.16)

and

υn+1 − 2υn + υn−1

�t2
+ υn+1 − υn

β�t
+ ω2

0υ
n+1

= α
√

K∗ DssX n+1 · en+1
n − 2DssX n · en

n + DssX n−1 · en−1
n

−�t2
, (3.17)

where Ds, Dss and Dssss are the first-, second- and fourth-order central difference operators
with respect to s, respectively. The tension γ n+1/2 is calculated by

Dss(σ
n+1/2e′

τ ) · e′
τ = 1 − 2(eτ · eτ )

n + (eτ · eτ )
n−1

2m∗�t2
− 1

m∗ (DsV ′ · DsV ′)

+ Ds

[
K∗DssssX ′ − α

√
K∗Ds(Dsυ

′en
n) + F ′

]
· e′

τ , (3.18)

in which the superscript prime represents the intermediate time step, indicating the
variables will be updated during feedback iterations.

The following time-marching method including two feedback loops is chosen to resolve
the coupled hydrodynamic and piezoelastic equations:

(i) Solve (3.15) for un+1.
(ii) Update the penalty force F via (3.8) and (3.9) by using the updated un+1.

(iii) Solve (3.16) and (3.18) for X n+1, then update F through (3.8)–(3.9).
(iv) Update υn+1 via (3.17).
(v) Repeat steps (iii) to (iv) until the convergence of the piezoelastic solutions.

(vi) Update f by using (3.7).
(vii) Repeat steps (i) to (vi) until the fluid field un+1 converges.

More details of this numerical scheme can be found in Shoele & Mittal (2016).
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∞
, 
0
),

 ∂
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∂
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=
 0

u = (U∞, 0), ∂p/∂n = 0

 +
 U

∞
∂
u ∂
t

∂
u ∂
x

=
 0

, 
∂
p/

∂
n 

=
 0

Figure 3. Computational domain (not to scale) and boundary conditions.

All simulations will be performed in the rectangular domain depicted in figure 3, where
the boundary conditions are also specified. There are 500 × 400 grid nodes in the x and y
directions. A uniform grid size �x = �y = 0.011 is used in the vicinity of the flag, whose
structural grid size is chosen to be �s = 0.0067. A constant time step �t = 0.0002 is
employed. All these numerical parameters are determined based on a series of sensitivity
tests.

The accuracy of our fluid–structure–electrical numerical model is confirmed
multi-hierarchically through comparisons with benchmark results (see Appendix A).

4. Results and discussion

We conduct multi-physics simulations using the above coupled structure–fluid–electrical
model to study the energy harvesting performance of the inverted piezohydroelastic flag.
The dynamics of the system is dependent upon the five non-dimensional parameters listed
in (3.13a–e) plus the Reynolds number Re. As revealed in Shoele & Mittal (2016), the
dynamics of the piezoelectric flag is very similar when Re lies in the range of 25–800.
Hence, in the present study Re is fixed at 200, which is sufficiently high to capture the
key features of the system and, in the meantime, not computationally expensive. Although
the density ratio, m∗, is also a key factor determining the dynamics and energy harvesting
performance of the system, its influence has been extensively studied in literature and
hence is fixed at m∗ = 1.0 in the present study. The electromechanical coupling coefficient,
α, describes the coupling strength between the mechanical part and the output circuit.
In this study, we only focus on the strong coupling scenario in favour of high energy
conversion rate, and choose a high value, i.e. α = 0.9, unless otherwise mentioned. As
such, we will concentrate on the influences of the remaining three parameters, i.e. K∗, β

and ω0, respectively characterizing the structural bending stiffness, resistive and inductive
properties of the electrical circuit, on the dynamics and energy harvesting performance of
the system.

4.1. Structural response
In what follows, we explore the structural dynamics of the inverted piezohydroelastic flag
with three representative bending rigidity values K∗ = 0.1, 0.25, 0.4 (0.1 represents a
super flexible flag while 0.4 connotes a very stiff one), in a large electrical parameter
space, i.e. 10−2 ≤ β ≤ 102 and 0 ≤ ω0 ≤ 10. Since our simulations show that the flag
tends to stay undeformed (referred to as the ‘straight mode’) (Kim et al. 2013) as the
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Figure 4. (a–d) Deformation and wake patterns of various dynamic modes: (a) the symmetric-flutter (SF)
mode, (b) the small-deflection (SD) mode, (c) the large-deflection (LD) mode, (d) the asymmetric-flutter
(AF) mode. The contours are based on vorticity (dashed contours represent counterclockwise vortices with
negative vorticity). The insets present the corresponding full body profiles. (e) Time histories of the vertical
displacement of the flag tip in different dynamic modes. Panels show (a) K∗ = 0.25, β = 0.1, ω0 = 10;
(b) K∗ = 0.4, β = 1.0, ω0 = 0.5; (c) K∗ = 0.1, β = 10, ω0 = 5.0; (d) K∗ = 0.25, β = 10, ω0 = 0.

bending rigidity reaches the level of K∗ = 0.5, this scenario will be excluded from our
consideration.

Four dynamic modes are observed, namely the symmetric-flutter mode where the flag
performs symmetric-flutter motion about its equilibrium position, the small-deflection
mode where the flag slightly deforms to one side, the large-deflection mode where the flag
significantly deforms to one side and the asymmetric-flutter mode where the flag performs
flutter motion but the upward and downward strokes are asymmetric about its equilibrium
position. Figure 4 presents the time histories of the lateral displacement of the flag free tip,
ytip, and the body profiles of these four dynamic modes. These modes are consistent with
those observed in previous studies (Kim et al. 2013; Cerdeira et al. 2021), in which the
dynamics of inverted flags (without electric circuits) was experimentally investigated for
various bending rigidity values and mass ratios, indicating that the inclusion of electric
circuits does not induce any new response mode. Only when the two flutter modes
are exhibited, i.e. the symmetric- and asymmetric-flutter modes, does the flag undergo
large-amplitude oscillations so that it can continuously and effectively extract flow energy.

Figure 4 also presents the wake patterns of these dynamic modes. As shown in
figure 4(b), the wake of the small-deflection mode is characterized by a pair of shear
layers, developed from both the upper and lower surfaces of the flag, which are elongated
and eventually break up due to the Kelvin–Helmholtz instability. In the large-deflection
mode, the large mean deformation and small-amplitude oscillation make the flag behave
like a bluff body. As a result, vortices of opposite signs alternatively shed from the leading
and trailing edges of the flag, leading to a typical Kármán vortex street in the wake
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 : Symmetric-flutter mode :  Asymmetric-flutter mode : Large-deflection mode
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Figure 5. Distribution of dynamic modes in the β − ω0 space for flags of different bending stiffness. Panels
show (a) K∗ = 0.1, (b) K∗ = 0.25, (c) K∗ = 0.4.

(i.e. the S mode) as shown in figure 4(c). In the symmetric-flutter mode shown in
figure 4(a), a pair of opposite-signed vortices shed from the leading edge once the
flag reaches either one of its stroke extremes, which then propagate downstream with a
prominent angle. As a result, two streets of vortex pairs (i.e. the 2P mode) appear in the
wake. Differently, in the asymmetric-flutter mode the flag flutters with a much smaller
amplitude and a lower frequency, as can be read in figure 4(e). As such, only one pair of
vortices are generated during one flapping period, forming a 2S-mode vortex street with
very small lateral distance, as shown in figure 4(d).

Figure 5 maps the structural dynamics of the inverted piezohydroelastic flag in
the electrical parameter space. Here, we use green markers (both up-pointing and
down-pointing triangles) to denote the symmetric- and asymmetric-flutter modes that are
appropriate for flow-energy harvesting. When the flag is super flexible with K∗ = 0.1,
there is only a small green region in the upper left corner of figure 5(a), while all the
remaining cases belong to the unsuitable large-deflection mode. This is not surprising
because a too soft flag fails to provide sufficient recovery bending moment for sustainable
flutter motion. On the other hand, as the flag becomes very stiff with K∗ = 0.4 (figure 5c),
the cases in the upper left corner are in the small-deflection mode or even remain
undeformed (i.e. in the straight mode), and hence inappropriate for flow-energy harvesting.
Only when the flag is moderately flexible with K∗ = 0.25 does the system undergo the
symmetric- or asymmetric-flutter motions in most of the map except for the case with the
small-deflection mode at β = 102 and ω0 = 0 (see figure 5b).

Note that all the cases in the first column of each panel of figure 5 are only equipped with
an RC circuit, where ω0 = 0. Furthermore, with the smallest resistance (i.e. β = 10−2)
the bottom left case approximates the short-circuit case (or, equivalently, the case without
piezoelectric effect, i.e. α = 0), whereas with the largest resistance (i.e. β = 102), the
upper left case approximates the open-circuit case. From the results in this column, it is
interesting to see that increasing the resistance in the output RC circuit makes the flag
appear stiffer, or in other words, more stable. Specifically, as β increases, the flag changes
from the large-deflection mode to the symmetric-flutter mode in figure 5(a), from the
symmetric-flutter mode to the asymmetric-flutter mode and then to the small-deflection
mode in figure 5(b) and from the symmetric-flutter mode all the way to the straight mode
in figure 5(c).
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Figure 6. Variations of flapping frequency (a,c) and amplitude (b,d) against ω0 for the moderate flexible flag
((a,b), K∗ = 0.25) and the less flexible flag ((c,d), K∗ = 0.4) equipped with various resistances β in the
electrical circuit. Here, ωs and As, indicated by black solid lines, are the flapping frequency and amplitude
of the flag with no electromechanical coupling, respectively.

Figure 6 further shows the variations of the flag’s dominant flapping frequency ω and
amplitude A against the electrical circuit’s undamped natural frequency ω0 at selected
resistance and bending stiffness values. Here, ω is calculated by Fourier analysis of the
time histories of vertical displacement of the flag tip, ytip, and A is obtained by measuring
the difference between the upper and lower bounds of ytip. Since in the present study
the flag neither experiences high-order oscillations nor reverses its leading-edge tip, A is
positively correlated with its maximum curvature. Mode types identified in figure 5 are
also marked in the figure with the same set of symbols. As baseline values, the frequency
and amplitude of the flag with no electromechanical coupling (i.e. α = 0), referred to as
ωs and As, respectively, are also presented as black solid straight lines.

When the resistance is trivial (e.g. β = 0.01), the flapping frequency and amplitude
are very close to the baseline values, because under this condition the RLC circuit is
almost short circuited by the resistor. As a result, the circuit has almost no influence on the
flag deformation, which is reminiscent of the electroelastic coupling coefficient α being
zero. Similarly, when ω0 is sufficiently large (equivalently when the lineic admittance
1/	 of the inductor is sufficiently small according to (3.13a–e)), the RLC circuit is then
short circuited by the inductor. Consequently, the structural responses with respect to
both the flapping frequency and amplitude converge to the baseline values asymptotically
regardless of the β value.

Only when β is not too small and ω0 is not too large does the electrical circuit exert
a significant impact on the structural dynamics. It shows that varying ω0 may lead
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to mode transition. For example, in figure 6(a) the asymmetric-flutter mode (∇, lime)
appearing in the RC circuit is transitioned into the symmetric-flutter mode (�, green)
after implementing a small inductor (ω0 = 0.1) into the circuit. The mode transition in
figure 6(c), however, takes place in the RLC circuit, where the most noticeable one is
between the small-deflection mode (♦, red) and the symmetric-flutter mode (�, green).

These mode transitions are usually accompanied by an abrupt change in the flag’s
dominant flapping frequency ω and amplitude A. In particular, as shown in figure 6(a,c), ω
plunges during the transition, followed by a continuous rise up to ωs with a slope close to
that of the line ω = ω0, suggesting a ‘lock-in’ phenomenon. As revealed in the following
sections, in this ‘lock-in’ regime, the flag will resonate with the circuit, leading to an
enhanced energy output. A similar observation has been made by Wang et al. (2016) when
examining a regular piezoelectric flag, who also revealed that during this ‘lock-in’ the
flag is able to flutter at much lower speeds. Note that, in both studies, ω is consistently
smaller than ω0, the undamped natural frequency of the circuit, in the ‘lock-in’ regime,
different from what was reported in Xia et al. (2015), where the two frequencies coincide
with each other. This frequency reduction reflects the damped and nonlinear nature of the
current coupled fluid–structure–electrical system. This ‘lock-in’ becomes less pronounced
as β decreases towards the short-circuit scenario. As shown in figure 6(a,c), the ‘lock-in’
phenomenon even vanishes when β ≤ 0.4 for the moderate flexible flag (i.e. K∗ = 0.25)
and β ≤ 0.1 for the less flexible flag (i.e. K∗ = 0.4).

4.2. Energy harvesting performance
The electrical parameters β and ω0 characterize the resistive and inductive properties
of the circuit, respectively, affecting the energy extraction performance of the inverted
piezohydroelastic flag. In this section, we explore how they influence the energy output of
the flag and pin down the underlying physics.

4.2.1. The RC circuit
The impact of β on the energy output in the scenario of the RC circuit (i.e. ω0 = 0) is
presented in figure 7. Since the stiff flag (i.e. K∗ = 0.4) displays multiple modes in this
scenario, here, we only consider the moderate flexible flag (i.e. K∗ = 0.25) for simplicity.
It is not surprising to see that trivial energy is harvested when β is too small (β � 1) or
too large (β � 1), corresponding to the short- and open-circuit conditions, respectively.
A peak energy output is then achieved at a moderate β value between 0.1 and 1. Similar
observations have also been reported in Michelin & Doaré (2013) and Shoele & Mittal
(2016). They attributed the optimal performance to the ‘resonance’ achieved by matching
the electrical time scale and the mechanical time scale, i.e. ωβ ∼ O(1). In the present
study, the energy peak appears at approximately ωβ = 0.22, as denoted in figure 7,
confirming the above statement on optimal condition but near the lower bound of O(1).
Our discussions in the following part and the result presented in figure 16 of Appendix A.3
further suggest that this near-the-lower-bound optimal condition can be attributed to the
enhanced damping due to the much stronger electromechanical coupling α = 0.9 applied
here (instead of α = 0.5 in Michelin & Doaré 2013; Shoele & Mittal 2016).

In what follows, we attempt to elaborate on the energy transfer mechanism through
mode analysis. As described in (3.12), the circuit undergoes damped oscillations forced by
an excitation term originated from the curvature of the flag, i.e. Λ(s, t) = (∂2X/∂s2) · en.
A dynamic-mode-decomposition (DMD) analysis (Kutz et al. 2016) is then conducted on
a time series of snapshots of Λ with an equal time interval �T = 0.0125. The electrical
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Figure 7. (a) Variation of the energy output Cp and its dominant DMD mode Cp,1 against β for the moderate
flexible lag with K∗ = 0.25 and ω0 = 0. The insets show the flag deformation for the cases marked with
coloured symbols. (b) Variation of the amplitude of the dominant DMD mode against β.

energy output from each DMD mode can be formulated as

Cp,j = 2α2K∗|bj|2

β + 1
βIm{ωj}2

, (4.1)

where |bj| stands for the amplitude of the jth DMD mode, Im{ωj}, i.e. the imaginary part
of ωj is the frequency of this mode. The derivation of (4.1) is provided in Appendix B.

As an example, in figure 8(a) we present the DMD spectrum of the case with β = 0.3,
where the energy output Cp achieves its peak value (see figure 7a). It is seen that the
dynamics of the excitation term of (3.12) can be represented by the dominant DMD mode,
whose amplitude |bj| = 12.2. Its oscillation frequency Im{ωj} = 0.76 is, not surprisingly,
consistent with the flapping frequency of the flag which can be read from figure 6.
Figure 8(b) plots the time evolution of Λ at the mid-point (s = 0.5) and its reconstruction
using the first 10 DMD modes, proving the accuracy of the data decomposition process.

Figure 8(c) further presents the energy contribution of each mode calculated by (4.1). As
expected, the leading mode provides the greatest portion of the overall energy generation.
Specifically, Cp,1 (here, the subscript ‘1’ refers to the leading DMD mode) accounts for
91 % of the total electrical energy output Cp. Cases in figure 7 with other β values, without
any exception, share a similar feature: the overall energy output is mostly attributed to
the leading DMD mode. As a result, as displayed in figure 7(a), in which we present Cp
and Cp,1 together, the two quantities are very close to each other over the range of β we
consider.
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Figure 8. (a) The DMD spectrum of Λ for the case with β = 0.3. (b) Time history of Λ at the flag mid-point
s = 0.5 and the reconstruction with the first 10 DMD modes. (c) Energy output Cp,j contributed by the DMD
modes.

From (4.1), one can see that the energy transfer is mainly determined by three variables,
namely the resistance parameter, β, the magnitude, |b1|, and the frequency, Im{ω1}, of the
leading DMD mode of the curvature distribution. Shoele & Mittal (2016) reported that, at
α = 0.5, where the electromechanical coupling is relatively weak, the flapping amplitude
of the flag (which can be approximately reflected by |b1|) remains nearly unchanged
over β. Meanwhile, as revealed in figure 6, the flapping frequency ω (approximately
represented by the leading frequency Im{ω1}) usually falls in a much narrower range
(between O(10−1) and O(100)) compared with β. Therefore, the optimal energy output
Cp (approximately represented by Cp,1) can be achieved roughly under the condition
ωβ ≈ Im{ω1}β = 1, where the denominator of the right-hand side of (4.1) is minimized
while the numerator is constant. This derivation, again, confirms the optimal condition
proposed by Michelin & Doaré (2013) and Shoele & Mittal (2016), i.e. ωβ ∼ O(1).
Nevertheless, the strong electromechanical coupling considered in the present study makes
|b1| decrease prominently with β, especially in range of 10−1 < β < 10 (see figure 7b),
instead of remaining nearly unchanged. This may be responsible for the optimal condition
moving towards the lower bound of O(1).

The energy output Cp defined in (3.14) and presented in figure 7(a) is a quantity
averaged over the length of the flag. Since the curvature of the fluttering flag is generally
non-uniform, the generated energy varies along its length. To compare the contributions
from different sections of the flag, we present in figure 9 the distributions of local curvature
〈|Λ|〉 and corresponding local energy output 〈υ2/β〉 along the length of the flag, both
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Figure 9. Distributions of the energy output 〈υ2/β〉 and the curvature 〈|Λ|〉 along the length of the flag for
the case with β = 0.3, where 〈·〉 is the time-averaging operator.

being time-averaged quantities, for the case with β = 0.3. Not surprisingly, they both
monotonically increase with s and reach their respective maximum at the trailing edge
(s = 1), consistent with what has been reported in Singh, Michelin & De Langre (2012)
and Piñeirua, Doaré & Michelin (2015). The downstream half of the flag (0.5 < s < 1)
contributes approximately 90 % of the overall energy, suggesting that in practice it is more
cost effective to deploy piezoelectric patches only in this part.

4.2.2. The RLC circuit
When an inductor is introduced into the circuit, the circuit becomes an RLC circuit with
an undamped natural frequency ω0. We have shown in § 4.1 that varying ω0 may result
in mode transitions for the inverted piezohydroelastic flag, which is associated with the
‘lock-in’ phenomenon. In this subsection, we further evaluate its influence on the energy
harvesting performance.

Figure 10 presents the variations of the flag energy output Cp against the frequency ratio
ω0/ω at different β values. It is seen that, regardless the flag stiffness, the implementation
of small ω0 (corresponding to very large inductance), e.g. ω0/ω = 0.1, makes the circuit
close to a pure RC one, so that the energy output remains almost the same as that at ω0 = 0.
On the other hand, very large ω0 tends to short circuit the loop, resulting in almost zero
energy output. Similarly, when the resistance β is too small or too large (e.g. β = 0.01 or
100), the electrical loop is close to short circuited or a pure inductor-capacitor circuit. In
either case the energy output is trivial. As such, the enhancement of energy output from
the RLC circuit can only be possible when both ω0 and β are moderate. Indeed, significant
enhancement is observed for both the moderate flexible flag (i.e. K∗ = 0.25 in figure 10a)
and the less flexible flag (i.e. K∗ = 0.4 in figure 10b), in the ‘lock-in’ regime where
ω0/ω ∼ O(1). For the moderate flexible flag, however, three exception cases are observed,
i.e. β = 0.01, 0.1 and 0.4, where the electrical circuit is overdamped and hence cannot
induce larger structure motions through the ‘lock-in’. For the stiff flag, the performance
improvement induced by the ‘lock-in’ seems more pronounced. This is attributed to the
extremely low energy output produced in the small ω0 cases which are mainly in the
unfavourable small-deflection mode (evidenced in figures 5 and 6).

Upon closer inspection of figure 10(a,b), it is found that all maximum Cp values
(marked with filled symbols) occurring in the RLC-circuit regime (where ω0 /= 0) are
located slightly to the right of the ω0/ω = 1 line due to the damped nature of the
circuit. The corresponding optimal frequency ratio (ω0/ω)opt that leads to the maximum

975 A49-16

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

90
9 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2023.909


Energy harvesting using an inverted flag with RLC circuit

0

0.02

0.04

0.06

Cp

0

0 10–1 100 101

0.02

0.04

0.06

(ω
0
/
ω

) op
t

10–3 10–2 10–1 100 101
0

1

2

3

4

a a a a ab

b
b

b

b
b

b

OverdampedUnderdamped

2.4

a

ω0/ω
0 10–1 100 101

ω0/ω

β = 0.01
β = 0.1
β = 0.4
β = 1.0
β = 2.0
β = 5.0
β = 10.0
β = 100.0

ζ

∞

Π+(ζ)

Π–(ζ)

(a) (b)

(c)

Figure 10. Variation of Cp against ω0/ω for (a) the moderate flexible flag (K∗ = 0.25) and (b) the less flexible
flag (K∗ = 0.4). All peaks are marked with filled symbols. (c) Optimal frequency ratio (ω0/ω)opt vs damping
ratio ζ . The scatters are (ω0/ω)opt extracted from (a,b).

Cp is expected to be highly associated with the circuit’s damping ratio ζ = 1/2βω0.
As such, we map all these maximum Cp values in the (ω0/ω)opt − ζ space as shown
in figure 10(c). Two sequences of data labelled ‘a’ and ‘b’ are respectively extracted
from panels (a) and (b). As expected, all these RLC-circuit boosted maximum Cp
values appear in the underdamped zone (i.e. ζ < 1). Moreover, all the corresponding
optimal frequency ratios are greater than 1, and they generally grow with ζ . In
contrast, all the maximum Cp values occurring in the RC-circuit regime (where ω0 = 0)
are located at the same place in the overdamped zone (i.e. ζ > 1), where ζ = +∞
and (ω0/ω)opt = 0.

To establish a better understanding of the optimal performance of the system, the DMD
analysis is also conducted for the flag equipped with oscillatory circuits. We present in
figure 11 the DMD analysis results of a representative sequence of cases with various
ω0 and β = 1.0 for the moderate flexible flag, which specifies the spectrum and energy
output of the leading few DMD modes (calculated with (B11)), and compares the total
energy output Cp with the contributions from the first two DMD modes. As revealed in
(a–e), when ω0 is small the energy output is dominated by the leading mode. However, as
ω0 exceeds 1.0 the energy output of the second modes (appearing at the third harmonic
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Figure 11. (a–e) The DMD spectra of the flag energy harvesting process and the corresponding energy output
for different ω0 when β = 1.0 and K∗ = 0.25. ( f ) Total energy output Cp and contributions from the first or
two DMD modes vs ω0. Panels show (a) ω0 = 0, (b) ω0 = 0.5, (c) ω0 = 1.0, (d) ω0 = 2.0, (e) ω0 = 5.0.

frequency) significantly increases, which can be even higher than the first mode (e.g.
at ω0 = 5.0 in e). As such, in this ω0 regime the electrical dynamics is determined by
the coupled effect of the first few modes, instead of solely by the leading mode. It is
necessary to point out that, when higher frequency modes play a considerable role in
the electrical dynamics, the linear combination of Cp,1 and Cp,2 may not reproduce Cp
exactly. This is because when there are multiple modes of the same order of magnitude
contributing to the energy output, the interaction among these modes could be strong
and hence cannot be neglected. Nevertheless, in the ‘lock-in’ regime where ω0 is near
or less than 1.0, the leading DMD mode still plays a dominant role in contributing
to Cp.

With the above observation, it is inferred that the Cp,1 formulation is still useful in
determining the condition for optimal energy output. According to Appendix B, we have

Cp,1 ∼ α2K∗

β

(
ω2

0
Im{ω1}2 − 1

)2

+ 1
βIm{ω1}2

|b1|2. (4.2)

As noted before, the amplitude |b1| and frequency Im{ω1} of the leading DMD mode
vary slightly in comparison with β in the ‘lock-in’ regime. The denominator of the above
formula is minimized approximately when

β

(
ω2

0
Im{ω1}2 − 1

)2

≈ 1
βIm{ω1}2 , (4.3)
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which can be rewritten as Im{ω1}4 − (2ω2
0 + 1/β2)Im{ω1}2 + ω4

0 ≈ 0. Solving it gives

Im{ω1}2 ≈ ω2
0

(
1 + 2ζ 2 ± 2ζ

√
1 + ζ 2

)
, (4.4)

where ζ = 1/(2βω0) is the damping ratio of the electrical circuit. We obtain a simple
expression of the optimal frequency ratio that leads to the maximum energy output(ω0

ω

)
opt

≈ 1√
1 + 2ζ 2 ± 2ζ

√
1 + ζ 2

= Π(ζ). (4.5)

If plotting (4.5) by adopting the negative sign in figure 10(c), we see all the optimal
frequency ratios appearing in the RLC-circuit regime (see figure 10a,b) are located near
the prediction (the black solid curve) in the underdamped zone, following a similar trend.
Due to the damping effect exerted by the circuit on the flag dynamics, all these values are
located above the prediction curve. It is interesting to see that (4.5), if adopting the positive
sign, also captures all the optimal frequency ratios appearing in the RC-circuit regime,
even though they collapse at the same point in the overdamped zone. Overall speaking,
(4.5) provides a fairly good prediction of the optimal frequency for the electrohydroelastic
flag where the electrical damping ratio is known.

Although very insightful, (4.5) includes the system response frequency ω, which is
unknown beforehand. To better facilitate the selection of electrical circuit for energy
harvesting, especially when the electrical load (β) is known and the inductance (	 or ω0)
is to be determined, Cp contours for the moderate and less flexible flags are plotted in
the ω0 − β space, as shown in figure 12(a,b), respectively, in which all the optimal cases
(with maximum Cp for given β) are marked with red circles. To underline the potential
of performance enhancement by using RLC circuits, figure 12(c,d) further compare the
maximum Cp values at various β when the RC or RLC circuit is deployed, which are
extracted from the contours. Obviously, at lower β (the range varies with the stiffness of
the flag), the maximum Cp is achieved with RC circuits, indicating that the employment of
an inductor fails to improve the system performance. At higher β, on the contrary, the best
performance is achieved by RLC circuits (i.e. with non-zero ω0) through the ‘lock-in’. The
boundary that separates these two optimal regimes, as shown in the figure, is the ζ = 1.0
(the critical damping) line. The implication is that, to trigger the ‘lock-in’ state, one should
carefully choose the inductance ω0 to ensure the damping ratio falls into the underdamped
zone, i.e. ω0 > 1/2β, which defines the lower bound of the optimal ω0.

It is also observed from figure 12 that, in the underdamped zone (i.e. ζ < 1), the
maximum Cp generally decreases with β despite some local peak or plateau. This suggests
a possible upper bound for the optimal ω0. From (4.5), we can obtain in the underdamped
zone the maximum value of optimal ω0/ω, i.e. max(ω0/ω)opt ≈ 2.4, which corresponds
to the intersection point value of the (4.5) curve and the ζ = 1 line, as denoted in
figure 10(c). Note that, when undergoing the flutter modes, the flapping frequency of
the electrohydroelastic flag ω is upper bounded by the frequency of the pure mechanical
flag ωs, i.e. ω < ωs, which is evidenced in figure 6(a,c). This leads to a reasonable upper
bound for optimal ω0, i.e. ω0 < 2.4ωs. Therefore, the optimal ω0 shall be chosen in a
double-bounded range as

0.5β−1 < ω0 < 2.4ωs. (4.6)

This bounded range is depicted by the triangle zone formed with the two black dashed
lines shown in figure 12(a,b). Note that some optimal ω0 value slightly falls outside this
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Figure 12. (a,b) Contour map of Cp in the β − ω0 space and (c,d) comparison of Cp between the optimal
RLC circuit (extracted from the contour maps along the red trajectories) and the RC circuit: (a,c) the moderate
flexible flag and (b,d) the less flexible flag. Panels show (a) K∗ = 0.25, (b) K∗ = 0.4, (c) K∗ = 0.25, (d)
K∗ = 0.4.

triangle zone, especially near the ζ = 1 line (see figure 12b). This can be attributed to the
general underestimation made by (4.5) through ignoring the damping the circuit brings
to the electrohydroelastic flag. Nevertheless, the bounded range described by (4.6) still
delineates an acceptable zone for optimal ω0.

Note that (4.6) requires a condition

β > 0.21ω−1
s . (4.7)

It indicates that, if one would like to utilize RLC circuits to achieve better performance
over RC circuits, the electrical load β must be greater than a critical value, i.e. 0.21ω−1

s .
Otherwise, the use of RLC circuits cannot bring any benefit.

The optimal frequency ratio (4.5), the proposed searching zone for the optimal ω0 (4.6)
and the critical electrical load (4.7) are very useful in guiding the optimization process
of the electrical circuits. They can assist in choosing an appropriate inductor quickly and
efficiently when RLC circuits are needed for higher energy production, which usually
happens at relatively large electrical load.

It should be pointed out that, although the free-stream velocity U∗ is not explicitly
adopted as a design variable in the above optimization process, its influence has already
been reflected in (4.5)–(4.7). Specifically, in (4.5) it affects ω, the actual response
frequency of the system, through complex fluid–structure–electric coupling, whereas in
(4.6) and (4.7) it affects the ranges of ω0 and β through ωs, the flutter frequency of the
pure mechanical flag.
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5. Conclusions and discussion

The present study focuses on the multi-physics dynamics of an inverted electrohydroelastic
flag. The mechanical energy of ambient flows is harvested through FIV, which is
then converted into electricity via an electric circuit. By using a fully coupled
fluid–structure–electric model, we simulate the entire energy conversion process, with the
focus placed on the dynamics of the flag and its energy output, particularly the impacts of
structural and electrical parameters.

Via parametric studies, a variety of structural response modes are identified. Among
these response modes, the two flutter modes, i.e. the symmetric- and asymmetric-flutter
modes, are the most suitable ones for sustainable energy harvesting. We found that, with
moderate flexibility, the flag is more likely to fall into the flutter modes, whereas too
flexible flags can be easily bent and deflected to one side considerably (large-deflection
mode) and too rigid flags tend to remain almost undeformed (small-deflection mode). We
also found that, with only an RC circuit deployed, the increase of electrical load (i.e. β)
can stabilize the flag.

For benchmark purposes, the energy harvesting performance of the flag equipped
with an RC circuit is first examined. Our simulation results and DMD-analysis-based
derivations confirm the optimal condition, i.e. βω ∼ O(1), for the maximum energy
output. However, unlike in the weak electromechanical coupling scenario, where this
optimal condition works very well, the strong coupling considered in the present study
connotes more complicated nonlinear fluid–structure–electric interaction and pushes this
condition towards the lower bound of O(1).

We then proceed to study the impact of inductors on the performance of the system. By
adding an inductor, the output loop becomes an oscillatory RLC circuit with an undamped
natural frequency ω0. Our results show that, when the circuit’s natural frequency ω0

satisfies 0.5β−1 < ω0 < 2.4ωs (i.e. (4.6)), the employment of the oscillatory circuit
tends to lock the structural vibration frequency into the circuit’s frequency, which can
significantly improve the energy harvesting performance. This performance improvement
due to the ‘lock-in’ can only occur in the underdamped zone. Furthermore, the optimal ω0
can be estimated by (4.5). These findings and guidelines are expected to play an important
role in the RLC circuit design and optimization.

In the present study, an RLC circuit is used to harvest the energy from ambient
flows. However, we note that the simplified electrical rendition is still far from the real
system to be developed. For example, for voltage compatibility, electrical interfaces need
to be applied between the terminal electric load and the piezoelectric element (Sarker
et al. 2019). The most frequently used interface is the combination of a diode rectifier
bridge and a filter capacitor, which are respectively used for rectifying and smoothing the
alternating voltage (Lefeuvre et al. 2006). Moreover, more complicated interfaces based
on the so-called synchronized switching harvesting with inductor technique based on a
specific nonlinear processing of the voltage have been proposed (Daniel et al. 2016; Li,
Roy & Calhoun 2019). Such interfaces can significantly affect the dynamics of the flag
and influence the energy output. Therefore, a complete multi-physics model that involves
an electric interface may be a better option, whose results can be directly used for guiding
the prototype development. This will be our future direction in this area.
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J2023A011); and the Hong Kong Polytechnic University under Postdoc Matching Fund Scheme (X.B., grant
number W211).

975 A49-21

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

90
9 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2023.909


X. Bi, C. Wang, Q. Zhu and H. Tang

0 5 10 15

t

g

U∞
U∞

20 25 30

–2

0

2

y tip

4

6

0 1 2
t/T

3

–0.5

–1.0

0

0.5

1.0

1.5

2.0
Huang et al. (2007)

Present study
Huang et al. (2018)
Ryu et al. (2015)
Kim et al. (2013)
Present study

(a) (b)

Figure 13. (a) Time histories of vertical displacement of the regular flag’s tip: Re = 300, m∗ = 1.0, K∗ =
0.001, Fr = 0.5. (b) Time histories of the vertical displacement of the inverted flag: Re = 250, m∗ = 1.0,

K∗ = 0.25.
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Appendix A. Validation of the numerical model

A.1. Validation of the fluid–structure interaction solver
We verify the accuracy of the fluid–structure interaction solver with two canonical tests.
The first one is the relaxation test of a conventional cantilevered filament (whose trailing
edge is free and the leading edge is fixed) in an axial flow. The second test is to simulate
the flow-induced flutter motion of an inverted cantilevered flag in an incoming flow. Both
tests are performed by setting the electromechanical coupling factor α to zero to remove
the influence of the electrical circuit.

For the first test, the initial state of the filament is defined by the equation

X j−1 = X j − �s[cos((N − j)a), − sin((N − j)a)], V j = 0, j = N, N − 1, . . . 2,

(A1)

where a is a small number (here, we choose a = 0.01), N is number of Lagrangian nodes
along s. Note that the trailing end of the flag is fixed, i.e. X 1 = V 1 = 0. Released from
the strained configuration described by (A1), the motion of the conventional filament
under the effects of the fluid field and gravity is then examined using our fluid–structure
interaction model at Re = 300, m∗ = 1.0, K∗ = 0.001, Fr = 0.5 (Froude number). The
lateral position of the tip ytip is measured throughout the vibration. As displayed in
figure 13(a), our simulation perfectly reproduces the time evolution of the tip motion
reported in a previous numerical experiment (Huang et al. 2007). In the second test,
induced by the fluid instability the inverted cantilever flag displays self-sustained flutter
motion with a certain frequency. As shown in figure 13(b), the present study acquires
nearly identical motion amplitude and frequency as existing numerical and experimental
works (Kim et al. 2013; Ryu et al. 2015; Huang, Wei & Lu 2018). Therefore the two tests
prove our hydroelastic solver is accurate and robust.
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Figure 14. Spectrum of the amplification factor at the tip of the piezoelectric flag as functions of the
actuation frequency ω̄, m∗ = 1.0, K∗ = 1.0, α = 0.3, β = 1.0.

A.2. Validation of the structure–electrical model

A.2.1. Forced vibration of a piezoelectric flag
The validity of the structure–electric model is firstly assessed with a canonical case,
in which a cantilever piezoelectric flag experiences forced vibration in the absence of
the ambient flow. Following Shoele & Mittal (2016), the flag vibration is driven by
the prescribed periodic heaving motion of the fixed end: y0 = A0 sin(ω̄t), in which
A0 is a sufficiently small amplitude catering to the small-deflection assumption so
that nonlinearities can be neglected. Here, it is chosen to be 0.002L. Assuming the
vertical displacement of the flag y(s, t) = Re[Y(s)eiωt] and the generated voltage υ(s, t) =
Re[V(s)eiωt], we then conduct modal analysis on the piezoelectric equations (3.12),
yielding

d4Y
ds

− κ(ω)4Y = 0, (A2)

in which

κ(ω) = 4

√√√√ ω2

m∗K∗

[
1 − βα2ω

β(ω2
0 − ω2) + iω

]−1

. (A3)

By solving the above equation with boundary conditions, the deflection of the free end is
formulated as

Ytip = cos (κ(ω̄)) + cosh (κ(ω̄))

cos (κ(ω̄)) cosh (κ(ω̄)) + 1
. (A4)

Herein, the forced vibration is simulated with our structure–electric model for two
different electrical circuits, i.e. RC (ω0 = 0) and RLC (ω0 = 15). Other electrical and
mechanical parameters are fixed at m∗ = 1.0, K∗ = 1.0, α = 0.3, β = 1.0. In figure 14 we
compare the simulation results with the theoretical prediction obtained by (A4). It shows
that the simulations are able to capture the natural frequencies of the piezoelectric flag.
Note that the implementation of the inductor is found to have negligible impacts on the
tip deflection, except for the enlarged damping effect that happens when the excitation
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frequency coincides the circuit’s natural frequency (see the trough in the figure at ω0 =
15). Our structure–electrical model successfully predicts the damping phenomenon.

A.2.2. Free vibration of a simply supported piezoelectric beam
We then proceed to assess the structure–electrical model’s accuracy through a relaxation
test, the free vibration of a piezoelectric beam with both ends simply supported. Only
with this specific boundary condition is it possible to analytically solve the piezoelectric
equations with finite Fourier transform. Using the small-deflection assumption, (3.12) is
linearized as

∂2y
∂t2

= −m∗K∗ ∂4y
∂s4 + αm∗√K∗ ∂2υ

∂s2 ,

β
∂2υ

∂t2
+ ∂υ

∂t
+ βω2

0υ = −αβ
√

K∗ ∂4y
∂t2∂s2

⎫⎪⎪⎬
⎪⎪⎭ , (A5)

and the boundary conditions are y = 0, ∂2y/∂s2 = αυ/
√

K∗ at s = 0 or s = 1. Solutions
of the above linear system can be written as

y(s, t) = 2
∞∑

n=1

ŷ(n, t) sin(nπs), υ(s, t) = 2
∞∑

n=1

υ̂(n, t) sin(nπs), (A6a,b)

in which the coefficients are given by

ŷ(n, t) =
∫ 1

0
y(s, t) sin(nπs) ds, υ̂(n, t) =

∫ 1

0
υ(s, t) sin(nπs) ds. (A7a,b)

We multiply (A5) by sin(nπs) and integrate with respect to s from 0 to 1, yielding

∂2ŷ
∂t2

+ m∗K∗n4π4ŷ = −αm∗√K∗n2π2υ̂,

β
∂2υ̂

∂t2
+ ∂υ̂

∂t
+ βω2

0υ̂ = αβ
√

K∗n2π2 ∂2ŷ
∂t2

.

⎫⎪⎪⎬
⎪⎪⎭ (A8)

We take the solutions of the eigenvalue problem as ŷ = Ŷeiωnt and υ̂ = Υ̂ eiωnt and
substitute into (A8), yielding

(−ω2
n + m∗K∗n4π4)Ŷ + αm∗√K∗n2π2Υ̂ = 0,

(−βω2
n + iωn + βω2

0)Υ̂ + αβ
√

K∗n2π2ω2
nŶ = 0.

}
(A9)

The equation can be further reduced to the characteristic equation of the eigenvalue
problem

βω4
n − iω3

n − β
(

m∗K∗n4π4(1 + α2) + ω2
0

)
ω2

n + im∗K∗n4π4ωn

+ βω2
0m∗K∗n4π4 = 0. (A10)

Each solution ωn,j ( j = 1, 2, 3, 4) of the fourth-order polynomial equation corresponds to
a normal mode vector (

Ŷ( j)

Υ̂ ( j)

)
eiωn,jt =

(
Ŷ( j)

r( j)Ŷ( j)

)
eiωn,jt, (A11)
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Figure 15. Time histories of the (a) deflection and (b) electric voltage at the centroid of the beam (s = 0.5),
α = 0.3, ω0 = 10, β = K∗ = m∗ = 1.0.

in which r( j) is obtained by substituting ωnj into (A9), leading to

r( j) =
ω2

n,j − m∗K∗n4π4

α
√

K∗m∗n2π2
. (A12)

Thus, the general solution to (A8) is calculated by the linear superposition of the four
normal modes ŷ(n, t) = ∑4

j=1 Ŷ( j)eiωn,jt and υ̂(n, t) = ∑4
j=1 r( j)Ŷ( j)eiωn,jt, where the four

unknowns Ŷ( j) can be determined from initial conditions: y(s, t = 0) = y0(s), υ(s, t =
0) = υ0(s), dy/dt(s, t = 0) = ẏ0(s) and dυ/dt(s, t = 0) = υ̇0(s). The finite Fourier sine
transforms of the initial conditions yield

ŷ(n, t = 0) =
∫ 1

0
y0(s) sin(nπs) ds,

dŷ
dt

(n, t = 0) =
∫ 1

0
ẏ0(s) sin(nπs) ds,

υ̂(n, t = 0) =
∫ 1

0
υ0(s) sin(nπs) ds,

dυ̂

dt
(n, t = 0) =

∫ 1

0
υ̇0(s) sin(nπs) ds.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(A13)

Finally, the solutions of (A5) can be calculated by substituting ŷ(n, t) and υ̂(n, t) into
(A6a,b).

Here, we set y0(s) = a sin(πs) (a = 0.001) and ẏ0 = υ0 = υ̇0 = 0, such that all
modes except for the first one disappear due to the orthogonality of trigonometric
functions. The solutions turn out to be y(s, t) = 2

∑4
j=1 Ŷ( j)eiω1,jt sin(πs) and υ(s, t) =

2
∑4

j=1 r( j)Ŷ( j)eiω1,jt sin(πs). In figure 15 we compare our numerical predictions of
y(0.5, t) and υ(0.5, t) (measured at the beam centroid) with the analytical solutions for the
case of α = 0.3, ω0 = 10, β = K∗ = m∗ = 1.0. As is shown in the figure, the numerical
results are in good agreement with the theoretical analysis, verifying the validity of our
piezoelectric model.
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Figure 16. Energy harvesting efficiency Cp as functions of the product of the structural frequency ω and the
tuning coefficient β when ω0 = 0, K∗ = 0.25, m∗ = 1.

A.3. Validation of the entire piezohydroelastic model
Having verified the robustness of the two ‘submodules’ (i.e. the fluid–structure and
structure–electrical interactions), we then focus on the whole fluid–structure–electrical
model in this section. The energy harvesting capability of the piezohydroelastic system
with purely resistive circuit is evaluated at various electroelastic coupling coefficients α

and tuning coefficients β. As shown in figure 16, the efficiencies predicted by our model
are in perfect accord with the simulation data from the reference (Shoele & Mittal 2016),
proving that the piezohydroelastic model is reliable and accurate.

Appendix B. Dynamic mode decomposition of the mechanoelectrical system

Dynamic mode decomposition (Kutz et al. 2016) is a data decomposition method that
serves to extract a coherent relevant data structure and its temporal dynamics (e.g. growth
rate and frequency) from a sequence of discrete data. In our case the variable of interest is
the local curvature Λ, thus a time series of Λ with equal time interval �T is synthesized
into a matrix as

Λm
1 =

⎡
⎣ | | |

Λ1 Λ2 · · · Λm
| | |

⎤
⎦ , (B1)

where m is the number of time snapshots and each column represents the discrete
distribution of Λ along the flag for each snapshot, e.g.

Λ1 =

⎡
⎢⎣

Λ1(�s)
Λ1(2�s)

:
Λ1(N�s)

⎤
⎥⎦ , (B2)

in which �s is the spatial interval corresponding to the Lagrangian grid size, and N is the
size of the vector. Even though those snapshots are normally obtained from a nonlinear
process, DMD aims to find an optimal linear operator A to achieve inter-snapshot
linear mapping between any two consecutive snapshots, i.e. Λi+1 = A Λi. Physically, this
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process can be interpreted as the linear–tangent approximation of a nonlinear dynamic.
Given the constant mapping between the snapshots, the operator A becomes a linear
mapping from data sequence Λm−1

1 to Λm
2 :

Λm
2 = {

Λ2, Λ3, . . . , Λm
} = A

{
Λ1, Λ2, . . . , Λm−1

} = A Λm−1
1 (B3)

A = Λm
2 · (Λm−1

1 )†. (B4)

The DMD computes the leading eigendecomposition of A to obtain the dynamic modes
(φ) and their corresponding eigenvalues (λ).

With eigenvalues and eigenvectors of A determined, the curvature distribution of
arbitrary snapshot at time tk = k�T can be reconstructed by

Λ(tk) =
m∑

j=0

bjλ
k−1
j φj, (B5)

where bj denotes the magnitude of the discrete mode φj. λ,φ and bj are all complex
quantities. Since the sampled curvature is real, the complex eigenvalues and eigenmodes
will be conjugated, thus the imaginary part will disappear in doing above summation.

A continuous projected solution may be derived from the above discrete expression. By
assuming ωj = ln(λj)/�T , continuous time evolution of the problem is then given by

Λ(t) =
m∑

j=0

bjeωjtφj. (B6)

The real part of ωj represents exponential growth or decay rate, and the imaginary part
contains the temporal frequency. Due to the periodicity of the structural deformation
the growth rate should be negligible, i.e. Re{ωj} ≈ 0. Plugging (B6) into the electrical
governing equation (3.12) yields

∂2υ

∂t2
+ 1

β

∂υ

∂t
+ ω2

0υ = −α
√

K∗∑
j

bjIm{ωj}2eIm{ωj}itφj. (B7)

In damped systems, the oscillation in the natural frequency is usually damped out rapidly
and only the steady state solution is left. The voltage output of one arbitrary mode φj at
sı = ı�s is

υj(sı , t) = −α
√

K∗bjIm{ωj}2φj(sı )

ω2
0 − Im{ωj}2 + Im{ωj}

β
i
eIm{ωj}it, (B8)

whose imaginary component can be zeroed out by summing its conjugate counterpart. The
real part can be expressed by

Re
{
υj(sı , t)

} = −2υ̂j|φj(sı )| cos
(
Im{ωj}t + θ1 + θ2(sı ) − θ3

)
, (B9)

where

υ̂j = α
√

K∗Im{ωj}2√(
Im{ωj}2 − ω2

0
)2 + Im{ωj}2

β2

|bj|, (B10)

where the operator |·| calculates the magnitude of the complex number, θ1, θ2(sı ) and
θ3 represent the argument of bj,φj(sı ) and ω2

0 − Im{ωj}2 + (Im{ωj}/β)i, respectively.
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Thus the energy output sourced from a pair of conjugate modes is

Cp,j ≈
4υ̂2

j

β

N∑
ı=1

[
|φj(sı )|2

∫
T

cos2[Im{ωj}t + θ1 + θ2(sı ) − θ3] dt/T
]

�s =
2υ̂2

j �s

β
,

(B11)
in which T = 2π/Im{ωj}. Note that the modulus of each mode equals to unity, i.e.

N∑
ı=1

|φj(sı )|2 = 1, sı = ı�s. (B12)

Assuming that the spatial equation Φj(s) is the continuous mode corresponding to φj(sı ),
one can obtain ∫ 1

0
|Φj(s)|2 ds ≈

N∑
ı=1

|bj|2|φj(sı )|2�s = |bj|2�s = |bj|2/N. (B13)

Since the left-hand side of the above equation is a constant for a given case, |bj|2 should be
proportional to 1/�s (i.e. N). As a result, Cp,j is proven to be independent to the sampling
interval �s (or N) after a close inspection of (B10) and (B11). To avoid confusion, in the
following |bj|2/N will be only presented as a normalized term |bj|2.

Within a certain DMD framework, C j
p scales with υ̂2

j /β, which is calculated by

υ̂2
j

β
= α2K∗Im{ωj}4

β
(
Im{ωj}2 − ω2

0
)2 + Im{ωj}2

β

|bj|2. (B14)

Specifically, when the inductive element is absent (ω0 = 0), we have

υ̂2
j

β
= α2K∗|bj|2

β + 1
βIm{ωj}2

. (B15)
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