BULL. AUSTRAL. MATH. SOC. VOL. 25 (1982), 317-320.

WEAK IDEAL INVARIANCE AND ORDERS IN ARTINIAN RINGS: CORRIGENDUM

JOHN A, BEACHY

Let R be an associative ring with identity element which has Krull dimension on the left (see [3] for the relevant definitions). For any ordinal α , and any module R^X , let $\tau_{\alpha}(X)$ denote the sum in X of all cyclic submodules of Krull dimension less than α . (The Krull dimension of a module X will be denoted by |X|.) It is clear that if X' is a submodule of X, then $\tau_{\alpha}(X') = X' \cap \tau_{\alpha}(X)$ and that $f(\tau_{\alpha}(X)) \subseteq \tau_{\alpha}(Y)$ for any R-homomorphism $f: X \neq Y$. Thus τ_{α} defines a torsion preradical.

It has been pointed out to the author by Professor Ann Boyle that in [1] the torsion preradical τ_{α} was incorrectly assumed to always determine a torsion radical. Difficulties may arise if α is a limit ordinal and R is not left Noetherian. The main result of [1], Theorem 7, is valid as stated. The necessary corrections to the proof can be made easily by using the proposition proved in this note. The statements of Theorem 4 and Theorem 5 of [1] can be corrected by making the additional assumption that τ_{α} is a torsion radical. A revised version of Theorem 6 is given below.

To show that τ_{α} is a torsion radical, it is necessary to show that $\tau_{\alpha}(X/\tau_{\alpha}(X)) = (0)$ for all modules $_{R}X$. It is sufficient to show that if A and B are left ideals with $A \subseteq B$, $\tau_{\alpha}(B/A) = B/A$ and $|R/B| < \alpha$, then $|R/A| < \alpha$. This follows immediately if R is left Noetherian. If α is not a limit ordinal, then $|B/A| < \alpha$ by Corollary 4.2 of [3], and so

Received 30 October 1981.

 $|R/A| < \alpha$.

Definitions and notation are those of [1], and the following notation will be fixed throughout. The prime radical of R will be denoted by N, and the Krull dimension of R will be denoted by α . The intersection of all prime ideals P of R such that $|R/P| = \alpha$ will be denoted by N_{α} .

PROPOSITION. (a) If N is left weakly ideal invariant, then τ_{α} is a torsion radical.

(b) N is left weakly ideal invariant if and only if N $_{\alpha}$ is left weakly ideal invariant.

(c) If R/N is K-homogeneous and $C(N) \subseteq C(0)$, then N is left weakly ideal invariant.

Proof. (a) Let $C = \{c \in R \mid |R/Rc| < \alpha\}$. By Corollary 5 of [4], if D is a left ideal of R with $|R/D| < \alpha$, then $D \cap C \neq \emptyset$. The proof that C is a left Ore set is similar to the first part of the proof of Theorem 8 of [4]. (Given $c \in C$ and $a \in R$, let $A = \{r \in R \mid ra \in Rc\}$. Then $|R/A| < \alpha$, and so there exists $c' \in A \cap C$, which implies that c'a = a'c for some $a' \in R$. Furthermore, if c, $d \in C$, then $cd \in C$ since $|R/Rcd| = \sup\{|R/Rd|, |Rd/Rcd|\}$ and $|Rd/Rcd| \leq |R/Rc|$.) Thus the filter of left ideals $\{D \subseteq R \mid |R/D| < \alpha\}$ which defines τ_{α} has as a basis the set $\{Rc \mid c \in C\}$, and since C is a left Ore set, it follows immediately that τ_{α} is a torsion radical.

(b) Let I be the intersection of all minimal prime ideals P of R with $|R/P| < \alpha$ (if this intersection is empty, then of course $N = N_{\alpha}$) and let D be a left ideal of R with $|R/D| < \alpha$. Then $|R/I| < \alpha$ and $IN_{\alpha} \subseteq I \cap N_{\alpha} = N$, so N_{α}/N and $N_{\alpha}D/ND$ are left R/I-modules, which forces $|N_{\alpha}/N| < \alpha$ and $|N_{\alpha}D/ND| < \alpha$. Since

$$|N/ND| \leq |N_{\alpha}/ND| = \sup\{|N_{\alpha}D/ND|, |N_{\alpha}/N_{\alpha}D|\}$$

and

$$|N_{\alpha}/N_{\alpha}D| \leq |N_{\alpha}/ND| = \sup\{|N_{\alpha}/N|, |N/ND|\},$$

it follows that $|N/ND| < \alpha$ if and only if $|N_{\alpha}/N_{\alpha}D| < \alpha$.

(c) Let D be a left ideal of R with $|R/D| < \alpha$. Then Hom(R/D, E(R/N)) = (0) since R/N is K-homogeneous, and so there exists $d \in D \cap C(N)$. If $|R/Rd| = \beta$, then $\beta < \alpha$ since by assumption $C(N) \subseteq C(0)$ and hence d is a regular element of R. For any element $x \in N \cap D$, if rx = ad for r, $a \in R$, then $ad \in N$ implies that $a \in N$ since $d \in C(N)$, and so $rx \in Nd$. Thus

$$\{r \in R \mid rx \in Nd\} = \{r \in R \mid rx \in Rd\},\$$

and so $|R/A| \leq |R/Rd| = \beta$ for the left ideal $A = \{r \in R \mid rx \in Nd\}$. This shows that each cyclic submodule of $(N \cap D)/ND$ has Krull dimension less than or equal to β , which implies that $|(N \cap D)/ND| \leq \beta < \alpha$. Thus $|N/ND| < \alpha$ since $|N/ND| = \sup\{|N/(N \cap D)|, |(N \cap D)/ND|\}$ and $|N/(N \cap D)| = |(N+D)/D| \leq |R/D| < \alpha$.

THEOREM 6'. Let R be a ring with Krull dimension α on the left, and let N_{α} be the intersection of all minimal prime ideals P of R such that $|R/P| = \alpha$. Then the prime radical N of R is left weakly ideal invariant if and only if $C(N_{\alpha})$ is a left Ore set and τ_{α} is a torsion radical.

Proof. If N is left weakly ideal invariant, then by part (a) of the preceding proposition, τ_{α} is a torsion radical. The proof of Theorem 6 of [1] then shows that $C(N_{\alpha})$ is a left Ore set, since by part (b) of the preceding proposition, N is left weakly ideal invariant if and only if N_{α} is left weakly ideal invariant.

The converse follows from the preceding proposition and the proof of Theorem 6 of [1].

References

- John A. Beachy, "Weak ideal invariance and orders in Artinian rings", Bull. Austral. Math. Soc. 23 (1981), 255-264.
- [2] K.A. Brown, T.H. Lenagan and J.T. Stafford, "Weak ideal invariance and localisation", J. London Math. Soc. (2) 21 (1980), 53-61.

- [3] Robert Gordon and J.C. Robson, Krull dimension (Memoirs of the American Mathematical Society, 133. American Mathematical Society, Providence, Rhode Island, 1973).
- [4] Gunter Krause, T.H. Lenagan and J.T. Stafford, "Ideal invariance and Artinian quotient rings", J. Algebra 55 (1978), 145-154.

Department of Mathematical Sciences, Northern Illinois University, DeKalb, Illinois 60115, USA.

320