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Abstract. In this paper we establish a uniform distribution result for the time
spent by a billiard particle in the unit square having vertices (0, 0), (1, 0), (1, 1), (0, 1),
with small triangular pockets of size ε removed from its corners.
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1. Introduction. A variety of ergodic and statistical properties of the periodic
Lorentz gas were investigated during the last decades. Such systems were introduced
by Lorentz in 1905 ([5]) to study the dynamics of electrons in metals. In [1], [2] a related
problem of Sinai on the length of the trajectory of a billiard in a unit square with
small pockets of size ε removed at the four corners was considered. In this paper we
study a further question about billiards that is meaningful from a physical point of
view. We consider a billiard table in the form of the unit square having vertices (0, 0),
(1, 0), (1, 1), (0, 1), with small triangular pockets of size ε removed from its corners. We
look at trajectories of particles that start from the bottom left corner, with constant
speed, and angle θ in a small interval (α − δ, α + δ). The particle reflects in the side
cushions of the table and the trajectory between two such reflections is rectilinear. The
particle leaves the table when it reaches one of the four pockets. Let us fix a region �

inside the unit square. We are interested to see, if θ is chosen randomly, then how much
time the particle spends in the region � before it leaves the table. Are there any regions
inside the unit square where the particle spends more time than in other regions? Or
does the particle share its time uniformly over the unit square? As in [1], [2] we will
let ε −→ 0. We will also allow δ to tend to zero while keeping α fixed. Note that if
tan α is rational and δ is as small as ε, the particle may be biased towards staying in
some prescribed regions of the square. For example, if δ = ε

3 and α = arctan ( 1
2 ) then

all trajectories with θ ∈ (α − δ, α + δ) bounce exactly once, near the middle point of
the right side, before proceeding to fall in the top left pocket. In order to avoid such
situations in what follows we will assume that tan α is irrational and ε/δ → 0 as δ → 0.
Under these assumptions, we are able to show that one has the following uniform
distribution result. For any θ ∈ [0, π/2] and any region � inside the unit square, we
denote by ρ�,ε (θ ) the proportion of time that a particle starting its trajectory at an
angle θ with the horizontal axis spends in �. Here by the proportion of time spent in
� we mean the ratio between the amount of time spent by the particle inside � and the
total amount of time spent by the particle in the unit square before reaching one of the
pockets. Thus ρ�,ε (θ ) represents the probability that at a randomly chosen moment in
time, the particle lies inside �. We will denote by Pα,ε,δ (�), the average value of ρ�,ε (θ )
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over the short interval θ ∈ (α − δ, α + δ), i.e.,

Pα,ε,δ (�) = 1
2δ

∫ α+δ

α−δ

ρ�,ε (θ ) dθ. (1)

THEOREM 1. For any α ∈ (0, π/2) with tan α irrational and any domain � ⊆ [0, 1] ×
[0, 1] with piecewise smooth boundary,

lim
δ→0,ε/δ→0

Pα,ε,δ (�) = Area (�). (2)

2. Two reduction steps. We start the proof of the theorem with two reduction
steps. In the first reduction step, we note that it is enough to prove the theorem for the
case that � is a rectangle. Indeed, let us assume that (2) holds true whenever � is a
rectangle.

Take now a general domain � ⊆ [0, 1] × [0, 1] with piecewise smooth boundary.
Let us partition the unit square into N2 smaller squares Tn,m each of side length 1

N ,

Tn,m =
{

(x, y)

∣∣∣∣ n
N

≤ x ≤ n + 1
N

,
m
N

≤ y ≤ m + 1
N

}
, 0 ≤ m, n ≤ N − 1.

We denote by EN the union of those squares that are entirely contained in � and by
FN the union of those squares that have non-empty intersection with �. Note that
EN ⊆ � ⊆ FN . Under our assumption we know that (2) holds for each square in EN

and in FN . Note also that for any two disjoint regions �1,�2 we have

ρ�1∪�2,ε (θ ) = ρ�1,ε (θ ) + ρ�2,ε (θ ) for any θ.

Therefore by integration it follows that

Pα,δ,ε (�1 ∪ �2) = Pα,δ,ε (�1) + Pα,δ,ε (�2). (3)

From this equality we get that if (2) holds for all rectangles, it holds for all finite unions
of rectangles. In particular it holds for EN and FN . That is,

lim
δ→0,ε/δ→0

Pα,δ,ε (EN) = Area (EN)

lim
δ→0,ε/δ→0

Pα,δ,ε (FN) = Area (FN).

Obviously, Pα,δ,ε (EN) ≤ Pα,δ,ε (�) ≤ Pα,δ,ε (FN) for any ε and δ. Hence it follows that

Area (EN) = lim
δ→0,ε/δ→0

Pα,δ,ε (EN)

≤ lim inf
δ→0,ε/δ→0

Pα,δ,ε (�)

≤ lim sup
δ→0,ε/δ→0

Pα,δ,ε (�)

≤ lim
δ→0,ε/δ→0

Pα,δ,ε (FN) = Area (FN). (4)
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We now let N −→ ∞. By the Lipschitz principle on the number of integer points in an
r-dimensional domain (see Davenport [3]), it follows that

Area (FN \ EN) = O� (1/N) , as N −→ ∞.

But from (4) we see that

0 ≤ lim sup
δ→0,ε/δ→0

Pα,δ,ε (�) − lim inf
δ→0,ε/δ→0

Pα,δ,ε (�)

≤ Area (FN) − Area (EN)

= Area (FN \ EN) = O� (1/N) .

Letting N −→ ∞, it follows that

lim sup
δ→0,ε/δ→0

Pα,δ,ε (�) = lim inf
δ→0,ε/δ→0

Pα,δ,ε (�).

Hence limδ→0,ε/δ→0 Pα,δ,ε (�) exists. Moreover

Area (EN) ≤ Area (�) ≤ Area (FN)

Area (EN) ≤ limδ→0,ε/δ→0 Pα,δ,ε (�) ≤ Area (FN)

for all N. So, ∣∣∣∣ lim
δ→0,ε/δ→0

Pα,δ,ε (�) − Area (�)

∣∣∣∣ ≤ Area (EN \ FN).

Again letting N −→ ∞ we find that

lim
δ→0,ε/δ→0

Pα,δ,ε (�) = Area (�).

In the second reduction step, we can assume that � is a rectangle with two sides as the
coordinate axes.

X

Y

O

T1

T2 T3

T0

Referring to the figure above we let T = T0 ∪ T1 ∪ T2 ∪ T3 be the rectangle enclosing
the four smaller rectangles T0, T1, T2 and T3. By the hypothesis that (2) holds when �
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is a rectangle with two sides as the coordinate axes, we see that

Pα,δ,ε (T2) −→ Area (T2)

Pα,δ,ε (T1 ∪ T2) −→ Area (T1 ∪ T2)

as δ → 0, ε/δ → 0. It follows from equation (3) that

Pα,δ,ε (T1) −→ Area (T1)

as δ → 0, ε/δ → 0. Similarly,

Pα,δ,ε (T3) −→ Area (T3)

as δ → 0, ε/δ → 0. But now, applying the hypothesis to T shows that

Pα,δ,ε (T) −→ Area (T)

as δ → 0, ε/δ → 0. Applying equation (3) on T we see that

Pα,δ,ε (T0) −→ Area (T0) (5)

as δ → 0, ε/δ → 0, establishing the second reduction step.

3. Visible points. From now on, � will be a fixed rectangle [0, 2u] × [0, 2v],
where the factors of 2 here are inserted to simplify some later computations. By the
symmetry of the billiards table with respect to the diagonal y = x, we may assume
that (α − δ, α + δ) ⊆ [0, π/4]. As in [1], [2], we work with the equivalent formulation
of the billiard problem in the plane. More precisely, we take the unit lattice in the
plane, construct around each integer point (n, m) the square with vertices (n + ε, m),
(n, m + ε), (n − ε, m), and (n, m − ε), then consider the union of all these squares.
Next, for each angle θ consider the linear trajectory that starts at the origin, making
an angle θ with the horizontal axis, with the convention that the trajectory ends when
it reaches one of these squares. The length of this trajectory equals the length of the
trajectory in the original billiard problem. Let us remark that the trajectory never ends
in a square around a point (n, m) that is not visible from the origin. Moreover, as
was proved in Lemma 3.1 from [1], for any 0 ≤ θ ≤ π/4 the corresponding trajectory
always ends on the square around a (visible) point (n, m) that lies inside the triangle
with vertices (0, 0), (Q, 0), (Q, Q) where Q = [ 1

ε
]. This naturally brings Farey fractions

into the problem, since the slopes of the straight lines from the origin through the
visible points inside the above triangle are exactly the Farey fractions of order Q. We
denote by FQ the set of Farey fractions a/q with q ≤ Q. For an exposition of the
classical properties of Farey fractions, the reader is referred to [4], Ch. 3. Now, given
an arbitrary angle θ ∈ [0, π/4], the corresponding slope λ = tan θ ∈ [0, 1] will lie in
between two consecutive Farey fractions in FQ, a/q and a′/q′ say. Then the trajectory
from the origin at angle θ ends at the boundary of the square around one of the visible
points (q, a) or (q′, a′). More precisely, as shown in [1], there is a λ	 ∈ [a/q, a′/q′],
whose exact value is given below, with the following property. For any θ for which
the corresponding λ lies inside the interval (a/q, λ	), the trajectory at angle θ ends on
the square around the point (q, a), and for any θ for which λ lies inside (λ	, a′/q′), the
trajectory at angle θ ends on the square around the point (q′, a′). The value of λ	 is
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given by

λ	 =




a′ − ε

q′ , if q′ < q

a + ε

q
, if q < q′.

(q ', a ')

(q, a)

(q ', a ' - e)

(q, a + e)

X

Y

O

q ' < q

Next, for each angle θ , we need to take the trajectory at angle θ , which is a segment
in the plane, and identify the set of points on this segment which correspond, in the
initial formulation of the billiard problem, to points in the unit square that lie inside
the rectangle �. This set of points is a union of segments in the trajectory, and we need
to estimate the ratio between the sum of lengths of these segments and the total length
of the trajectory. Then we will need to integrate this ratio with respect to θ over the
short interval (α − δ, α + δ) in order to obtain the desired probability ρ�,ε (θ ). Now,
by symmetry of the unit square with vertices (0, 0), (1, 0), (1, 1), (0, 1) with respect to
one of its sides, the rectangle � will correspond to a symmetric rectangle inside that
next unit square. By repeating this, we obtain replicates of the rectangle � inside each
unit square with integer vertices in the plane. These replicates fall into four categories.
More precisely, they consist of points (x, y) in the plane satisfying one of the following
pair of conditions:

I. n ≤ x ≤ n + 2u and m ≤ y ≤ m + 2v, for some even integers n, m,
II. n ≤ x ≤ n + 2u and m + 1 − 2v ≤ y ≤ m + 1, for some even n and odd m,

III. n + 1 − 2u ≤ x ≤ n + 1 and m ≤ y ≤ m + 2v, for some odd n and even m,
IV. n + 1 − 2u ≤ x ≤ n + 1 and m + 1 − 2v ≤ y ≤ m + 1, for some odd n, m.

In what follows we will only study the contribution to ρ�,ε (θ ) of those points satisfying
I above, and will show that this contribution is asymptotic to uv = 1

4 Area(�). Similarly
one can show that each of the remaining three cases contributes asymptotically
1
4 Area(�), and this would complete the proof of the theorem. Hence, we restrict
to the case I, and denote its contribution to ρ�,ε (θ ) and Pα,ε,δ(�) by ρI,�,ε (θ ) and
PI,α,ε,δ(�) respectively. Thus, in what follows we need to show that PI,α,ε,δ(�) is
asymptotic to 1

4 Area(�). To proceed, we first make a homothetic transformation of
the plane with ratio 1/2. This will not change the ratios of the lengths of segments, and
consequently it will leave PI,α,ε,δ(�) unchanged. The set of points from case I above
will be reduced to the set, call it B, of points (x, y) in the plane for which n ≤ x ≤ n + u
and m ≤ y ≤ m + v, for some integer numbers m, n. Note that B is a countable union
of rectangles. Now, take a trajectory from the origin, with angle θ , and denote its end
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point by (XT , YT ). Thus, using the notation from above, if the corresponding slope λ

lies in the interval ( a
q , λ	), then (XT , YT ) is the point of intersection between the line

through the origin at angle θ and the boundary of the square with vertices 1
2 (q + ε, a),

1
2 (q, a + ε), 1

2 (q − ε, a), 1
2 (q, a − ε). Note that 1

2 (q − ε) ≤ XT ≤ 1
2 q. Let L be the line

segment joining the origin and (XT , YT ). Then B ∩ L is a finite union of line segments,
B ∩ L = ∪r

j=1Lj. Therefore

ρI,�,ε (θ ) =
r∑

j=1

length
(
Lj

)
length (L)

.

In the case when λ ∈ (λ	, a′/q′), one has a similar formula for ρI,�,ε (θ ) where now
(XT , YT ) is the intersection between the line through the origin at angle θ and
the boundary of the square with vertices 1

2 (q′ + ε, a′), 1
2 (q′, a′ + ε), 1

2 (q′ − ε, a′),
1
2 (q′, a′ − ε). Note that 1

2 (q′ − ε) ≤ XT ≤ 1
2 q′. Let L′

j with 1 ≤ j ≤ r and L′ be the
projections of Lj and L on the horizontal axis. Then

length (L′
j) = length (Lj) cos θ

length (L′) = length (L) cos θ

Hence

ρI,�,ε(θ ) =
∑r

j=1 length (L′
j)

length (L′)
.

Here L′ = [0, XT ]. So length (L′) = XT . On the other hand

∪r
j=1L′

j = {x ∈ [0, XT ] |{x} ∈ [0, u] , {λx} ∈ [0, v] }
= {x ∈ [0, XT ] |(x, λx) ∈ B ∩ L }.

Thus ρI,�,ε (θ ) = 1
XT

µ (A) where µ denotes the Lebesgue measure on the horizontal
line andA = {x ∈ [0, XT ] |{x} ∈ [0, u] , {λx} ∈ [0, v] }. Now we assume that q < q′. Then
1
2 (q − ε) ≤ XT ≤ 1

2 q gives

2
q

≤ 1
XT

≤ 2
q − ε

≤ 4
q
,

for 0 < ε < 1. So,

1
XT

= 2
q

+
(

1
XT

− 2
q

)

≤ 2
q

+ 4ε

q2

= 2
q

+ O
(

ε

q2

)
.

Now, 0 ≤ µ (A) ≤ XT ≤ q/2. So,

ρI,�,ε (θ ) = 1
XT

µ (A)

= 2µ (A)
q

+ O
(

ε

q

)
.
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Therefore, ρI,�,ε (θ ) = 2µ (A) /q + O (ε/q), where the term O (ε/q) is independent of
θ . Next we define

B = {x ∈ [0, q/2) |{x} ≤ u, {λx} ≤ v}.
Note that A ⊆ B and

µ (B) − ε ≤ µ (A) ≤ µ (B).

So we can replace A with B in the computation of ρI,�,ε with an error term O (ε/q),

ρI,�,ε (θ ) = 2
q
µ (B) + O

(
ε

q

)

Next, we write B = ∪q∗−1
n=0 Bn, where Bn = {n ≤ x ≤ n + u |{λx} ≤ v } and q∗ denotes the

smallest integer larger or equal to q/2. So, µ (B) = ∑q∗−1
n=0 µ (Bn) and

ρI,�,ε (θ ) = 2
q

q∗−1∑
n=0

µ (Bn) + O
(

ε

q

)
.

For any real number β, we define the set

Cβ = {0 ≤ t ≤ u |{β + λt} ≤ v }.
We note that Bn = Cλn. So we may write

ρI,�,ε (θ ) = 2
q

q∗−1∑
n=0

µ (Cλn) + O
(

ε

q

)
. (6)

4. The weight function h. We consider the following function h : R −→ [0,∞)
periodic with period 1 and which is defined on the interval [0, 1] as follows:

if u ≥ v/λ, v ≤ 1 − λu, then we set

h (β) =




v − β

λ
, if 0 ≤ β ≤ v

0, if v ≤ β ≤ 1 − λu

β − (1 − λu)
λ

, if 1 − λu ≤ β ≤ 1 − λu + v

v

λ
, if 1 − λu + v ≤ β ≤ 1

if u ≥ v/λ, v ≥ 1 − λu, then we set

h (β) =




v − β

λ
, if 0 ≤ β ≤ 1 − λu

v + λu − 1
λ

, if 1 − λu ≤ β ≤ v

β − (1 − λu)
λ

, if v ≤ β ≤ 1 − λu + v

v

λ
, if 1 − λu + v ≤ β ≤ 1.
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if u ≤ v/λ, v ≤ 1 − λu, then we set

h (β) =




u, if 0 ≤ β ≤ v − λu

v − β

λ
, if v − λu ≤ β ≤ v

0, if v ≤ β ≤ 1 − λu

u − 1 − β

λ
, if 1 − λu ≤ β ≤ 1.

if u ≤ v/λ, v ≥ 1 − λu, then we set

h (β) =




u, if 0 ≤ β ≤ v − λu

v − β

λ
, if v − λu ≤ β ≤ 1 − λu

v + λu − 1
λ

, if 1 − λu ≤ β ≤ v

u − 1 − β

λ
, if v ≤ β ≤ 1.

We will prove the following lemma.

LEMMA 7. For any real number β,

µ
(
Cβ

) = h (β).
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Proof. h is by definition periodic with period 1. We also observe that µ
(
Cβ

)
is

periodic with period 1. So it is enough to check the equality for 0 ≤ β ≤ 1. We rewrite
Cβ as

Cβ = {0 ≤ t ≤ u |β + tλ ∈ [0, v] ∩ [1, 1 + v] }
=

{
0 ≤ t ≤ u

∣∣∣∣t ∈
[
−β

λ
,
v − β

λ

]
∪

[
1 − β

λ
,

1 + v − β

λ

]}

=
{

0 ≤ t ≤ u
∣∣∣∣t ∈

[
0,

v − β

λ

]
∪

[
1 − β

λ
,

1 + v − β

λ

]}

=
(

[0, u] ∩
[

0,
v − β

λ

])
∩

(
[0, u] ∪

[
1 − β

λ
,

1 + v − β

λ

])

Hence

µ
(
Cβ

) = µ

(
[0, u] ∩

[
0,

v − β

λ

])
+ µ

(
[0, u] ∩

[
1 − β

λ
,

1 + v − β

λ

])
= h1 (β) + h2 (β)

= h (β),

where

h1 (β) = µ

(
[0, u] ∩

[
0,

v − β

λ

])
=

{
0 if β ≥ v

min
(
u,

v − β

λ

)
otherwise,

h2 (β) = µ

(
[0, u] ∩

[
1 − β

λ
,

1 + v − β

λ

])
=

{
0 if β + uλ ≤ 1
min

(
u,

1 + v − β

λ

)
otherwise. �

Using the previous lemma and equation (6) we obtain

ρI,�,ε (θ ) = 2
q

q∗−1∑
n=0

h (λn) + O
(

ε

q

)
.

5. Computing the Fourier coefficients. Next, we compute the Fourier coefficients
of the function h. Let us first compute the Fourier coefficients of a triangular function
of the form

ga,b (t) =




0 if t < a,

t − a if a ≤ t ≤ a + b
2

,

b − t if
a + b

2
≤ t ≤ b,

0 if b < t.

Let the Fourier expansion of ga,b be

ga,b (t) =
∑
m∈Z

ca,b,me (mt),
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where e (x) = e2π ix. So

ca,b,m =
∫ 1

0
e (−mt) ga,b (t) dt

=
∫ a+b

2

a
e (−mt) (t − a) dt +

∫ b

a+b
2

e (−mt) (b − t) dt (8)

To compute the first integral in (8), set u = t − a, then

∫ a+b
2

a
e (−mt) (t − a) dt =

∫ b−a
2

0
e (−m (t + a)) u du

=
∫ b−a

2

0
e−2π im(u+a)u du

= e−2π ima


 ue−2π imu

−2π im

∣∣∣∣
b−a

2

0
−

∫ b−a
2

0

e−2π imu

−2π im
du




= e−2π ima
[

ue−2π imu

−2π im
− e−2π imu

(2π im)2

] b−a
2

0

= e−2π ima
[

(b − a) e−π im(b−a)

−4π im
+ 1 − e−π im(b−a)

(2π im)2

]

= (b − a) e−π im(b+a)

−4π im
+ e−2π imai

(2π im)2

[
1 − e−π im(b−a)]

= (b − a)
−4π im

e−π i(b+a) + e−π im(b+a)

(2π im)2

[
eπ im(b−a) − 1

]
.

Similarly, setting u = b − t, we obtain

∫ b

a+b
2

e (−mt) t dt =
∫ b−a

2

0
e (−m (b − u)) u du

=
∫ b−a

2

0
e−2π im(b−u)u du

= e−2π imb


 ue2π imu

2π im

∣∣∣∣
b−a

2

0
−

∫ b−a
2

0

e2π imu

2π im
du




= e−2π imb
[

ue−2π imu

2π im
− e2π imu

(2π im)2

] b−a
2

0

= e−2π imb

[
b−a

2 e2π im (b−a)
2

2π im
− e2π im b−a

2 − 1

(2π im)2

]

= (b − a) e−π i(a+b)

4π im
+ e−π im(a+b)

(2π im)2

(
e−π im(b−a) − 1

)
.
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Therefore,

ca,b,m = e−π im(a+b)

(2π im)2

[
eπ im(b−a) + e−π im(b−a) − 2

]

= 2e−π im(a+b)

(2π im)2 [cos (πm (b − a)) − 1]

= −4e−π im(a+b)

(2π im)2 sin2
(

π

2
m (b − a)

)

= e−π im(a+b)

π2m2
sin2

(
π

2
m (b − a)

)
.

We note that

|ca,b,m| = sin2
(

π
2 m (b − a)

)
π2m2

≤ 1
π2m2

. (9)

Since the graph of h is a trapezoid in all four cases, we see that in each case h can be
expressed as a linear combination of ga,b’s for suitable values of a, b. More precisely,

h (β) =




−1
λ

g0,1−λu+v (β) + 1
λ

gv,1−λu (β) + v

λ
, if u ≤ v/λ, v ≤ 1 − λu

−1
λ

g0,1−λu+v (β) + 1
λ

g1−λu,v (β) + v

λ
if u ≥ v/λ, v ≥ 1 − λu

−1
λ

gv−λu,1 (β) + 1
λ

gv,1−λu (β) + u if u ≤ v/λ, v ≥ 1 − λu

−1
λ

gv−λu,1 (β) + 1
λ

g1−λu,v (β) + u if u ≤ v/λ, v ≥ 1 − λu

(10)

Now we write the Fourier expansion of h as

h (t) =
∞∑

m=−∞
cme (−mt)

where c0 = ∫ 1
0 h (t) dt = uv. In view of (10) we see that for m �= 0

cm =




−1
λ

c0,1−λu+v,m + 1
λ

cv,1−λu,m if u ≥ v/λ, v ≤ 1 − λu

−1
λ

c0,1−λu+v,m + 1
λ

c1−λu,v,m if u ≥ v/λ, v ≥ 1 − λu

−1
λ

cv−λu,1,m + 1
λ

cv,1−λu,m if u ≤ v/λ, v ≤ 1 − λu

−1
λ

cv−λu,1,m + 1
λ

c1−λu,v,m if u ≤ v/λ, v ≥ 1 − λu

(11)

From the above formulae for the Fourier coefficients of h it follows that

|cm| ≤ 2
λπ2m2

.
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On the other hand,

|cm| =
∣∣∣∣
∫ 1

0
h (t) e (−mt) dt

∣∣∣∣
≤

∫ 1

0
|h (t)| dt

=
∫ 1

0
h (t) dt = uv ≤ 1.

So

|cm| ≤ min
{

1,
2

λπ2m2

}
, m �= 0. (12)

6. Proof of Theorem 1. We are now ready to complete the proof of Theorem 1.
We set c�,θ,m = cm for all m ∈ Z. We have

ρI,�,ε (θ ) = 2
q

q∗−1∑
n=0

h�,θ (λn) + O
(

ε

q

)

= 2
q

q∗−1∑
n=0

∑
m∈Z

c�,θ,me (mλn) + O
(

ε

q

)

= 2
q

∑
m∈Z

c�,θ,m

q∗−1∑
n=0

e (nmλ) + O
(

ε

q

)

Therefore,

ρI,�,ε (θ ) = 2q∗uv

q
+ 2

q

∑
0�=m∈Z

c�,θ,m
(1 − e (q∗mλ))

1 − e (mλ)
+ O

(
ε

q

)
. (13)

Now ∣∣∣∣∣
q∗−1∑
n=0

e (mnλ)

∣∣∣∣∣ ≤ min
{

q,
2

|1 − e (mλ)|
}

= O
(

min
{

q,
1

‖mλ‖
})

.

So

ρI,�,ε (θ ) = 2q∗uv

q
+ 2

q

∑
0�=m∈Z

c�,θ,m

q∗−1∑
n=0

e (nmλ) + O
(

ε

q

)

= 2q∗uv

q
+ O

(
ε

q

)
+ O

( ∞∑
m=1

min
{

1,
1

λm2

}
min

{
1,

1
q‖mλ‖

})
.

Since tan α is irrational, if we fix a large positive number V , for δ small enough we will
have that for all fractions a/q inside the interval [tan(α − δ), tan(α + δ)], q will be larger
than V . Note also that 2q∗uv

q differs from uv by a quantity bounded by 1/q, therefore
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bounded by 1/V . It follows that, on average over θ in [α − δ, α + δ], this error will be
bounded by 1/V . Thus

PI,α,ε,δ (�) = 1
2δ

∫ α+δ

α−δ

ρI,�,ε (θ ) dθ

= uv + O
(

1
V

)
+ O (E�,α,δ,ε)

where

E�,α,δ,ε = 1
2δ

∫ α+δ

α−δ

( ∞∑
m=1

min
{

1,
1

λm2

}
min

{
1,

1
q (θ ) ‖mλ‖

})
dθ

and q (θ ) depends on θ as described in the beginning of Section 3. Since V may be
chosen as large as we please, in order to finish the proof of the theorem it remains to
show that

lim
δ→0,ε/δ→0

E�,α,δ,ε = 0. (14)

Let η0, η1, . . . , ηr be consecutive fractions in FQ such that

η0 ≤ (α − δ) < η1 < η2 < . . . < ηr−1 < (α + δ) ≤ ηr

where Q = [ 1
ε
]. Then

E�,α,δ,ε ≤ 1
2δ

∞∑
m=1

r∑
j=1

Ij

where

Ij =
∫ arctan ηj

arctan ηj−1

min
{

1,
1

m2 tan θ

}
min

{
1,

1
q (θ ) ‖m tan θ‖

}
dθ.

By the discussion at the beginning of Section 3, we know that for each j we have a
λ	

j ∈ [
ηj−1, ηj

]
such that the following holds: if ηj = aj/qj, ηj−1 = aj−1/qj−1, then

λ	
j =




aj − ε

qj
if qj < qj−1,

aj−1 + ε

qj−1
if qj−1 < qj.

We know that for any θ ∈ [
ηj−1, ηj

]
,

q (θ ) =
{

qj−1 if tan θ < λ	
j

qj if tan θ > λ	
j
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Now

Ij =
∫ λ	

j

ηj−1

min
{

1,
1

m2λ

}
min

{
1,

1
q‖mλ‖

}
dλ

1 + λ2

+
∫ ηj

λ	
j

min
{

1,
1

m2λ

}
min

{
1,

1
qj‖mλ‖

}
dλ

1 + λ2

≤
∫ λ	

j

ηj−1

min
{

1,
1

m2λ

}
min

{
1,

1
qj−1‖mλ‖

}
dλ

+
∫ ηj

λ	
j

min
{

1,
1

m2λ

}
min

{
1,

1
qj‖mλ‖

}
dλ

Since α > 0 is fixed and δ is sufficiently small, we can assume that λ ≥ tan (α − δ) ≤
tan (α/2). Let

Jj =
∫ λ	

j

ηj−1

min
{

1,
1

qj−1‖mλ‖
}

dλ +
∫ ηj

λ	
j

min
{

1,
1

qj‖mλ‖
}

dλ

Then

Ij ≤ 1
m2 tan α

2

Jj.

We are done provided we show that

lim
δ→0,ε/δ→0

1
δ

∞∑
m=1

1
m2

rα,δ∑
j=1

Jj = 0.

First observe that for any j,

Jj ≤
∫ λ	

j

ηj−1

dλ +
∫ ηj

λ	
j

dλ = ηj − ηj−1.

Therefore

rα,δ∑
j=1

Jj < ηr − η0

≤ (tan (α + δ) − tan (α − δ)) + (ηr − ηr−1) + (η1 − η0).

Since ηr, ηr−1 are consecutive fractions in FQ their difference ηr − ηr−1 is at most
1/Q < ε. Similarly the difference η1 − η0 is at most ε. Moreover by the Mean Value
Theorem,

tan (α + δ) − tan (α − δ) = 2δ sec2 ξ,

for some ξ ∈ [α − δ, α + δ]. Since α + δ ≤ π/4 for sufficiently small δ we see that
sec2 ξ ≤ 2. Hence

tan (α + δ) − tan (α − δ) ≤ 4δ,
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so that

rα,δ∑
j=1

Jm, j ≤ O (δ).

Denote

Sα,δ,ε = 1
δ

∞∑
m=1

1
m2

rα,δ∑
j=1

Jm,j.

We need to show that

lim
δ→0,ε/δ→0

Sα,δ,ε = 0.

Fix a large number M. Then

1
δ

∑
m>M

1
m2

rα,δ∑
j=1

Jj = O

( ∑
m>M

1
m2

)
= O

(
1

M

)
.

Thus

Sα,δ,ε = SM + O
(

1
M

)

where

SM = 1
δ

M∑
m=

1
m2

rα,δ∑
j=1

Jm,j + O
(

1
M

)
.

If λ ∈ [
λ	

j , ηj
]

then aj/qj − 1/Q ≤ λ ≤ aj/qj since qj + qj−1 > Q. So 1
qjqj−1

≤ 1
Q . Hence

maj

qj
− M

Q
≤ mλ ≤ maj

qj
.

Let Rm,j and nm,j be integers, such that

maj = qjnm,j + Rm,j, |Rm,j| ≤ qj

2
.

So

‖mλ‖ =
∥∥∥∥m

aj

qj

∥∥∥∥ + O
(

M
Q

)
.

Now ∥∥∥∥m
aj

qj

∥∥∥∥ =
∣∣∣∣Rm,j

qj

∣∣∣∣ ≤ 1
2
.
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If qj > M, then qj � |m. So maj

qj
�∈ Z, Rm,j �= 0. Then

‖mλ‖ ≥
∥∥∥∥m

aj

qj

∥∥∥∥ − M
Q

= |Rm,j|
qj

− M
Q

≥ |Rm,j| − M
qj

.

Denote as Type I, the pairs (m,
aj

qj
) for which |Rm,j| ≤ 2M, and as Type II the pairs

(m,
aj

qj
) for which |Rm,j| > 2M. In Type II ‖mλ‖ ≥ M

qj
. If both (m,

aj

qj
) and (m,

aj−1

qj−1
) are

of Type II, then ‖mλ‖qj ≥ M uniformly for λ ∈ [λ	
j , ηj] and ‖mλ‖qj−1 ≥ M uniformly

for λ ∈ [ηj−1, λ
	
j ]. Then

Jm,j ≤
∫ λ	

j

ηj−1

1
M

dλ +
∫ ηj

λ	
j

1
M

dλ

= 1
M

(
ηj − ηj−1

)
.

The total contribution to the sum SM of terms where both (m,
aj

qj
) and (m,

aj−1

qj−1
) are of

Type II is at most

1
δ

M∑
m=1

1
m2

rα,δ∑
j=1

1
M

(
ηj − ηj−1

) = 1
δM

M∑
m=1

1
m2

(
ηrα,δ

− η0
)

= O (δ)
δM

M∑
m=1

1
m2

≤ O (δ)
δM

∞∑
m=1

1
m2

= O
(

1
M

)
.

Hence

Sα,δ,ε = S′
M + S′′

M + O
(

1
M

)
,

where

S′
M = 1

δ

M∑
m=1

1
m2

∑
j

{
Jm,j | 1 ≤ j ≤ rα,δ, and (m, j) is of Type I

}

and

S′′
M = 1

δ

M∑
m=1

1
m2

∑
j

{
Jm,j | 1 ≤ j ≤ rα,δ, and (m, j) is of Type II

}
.
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Then

Jm,j ≤ (ηj − ηj−1) = 1
qjqj−1

.

So

S′
M = 1

δ

M∑
m=1

1
m2

∑
j

{
1

qjqj−1
| 1 ≤ j ≤ rα,δ, and

(
m,

aj

qj

)
is of Type I.

}

Let Iδ = [tan (α − δ) , tan (α + δ)]. Then since 1
qjqj−1

≤ 1
Q , we see that

S′
M ≤ 1

δ

M∑
m=1

1
m2

#
{

j
∣∣∣∣
(

m,
aj

qj

)
is of Type I

}

=
2M∑

r=−2M

M∑
m=1

1
m2Q

#
{

j
∣∣∣∣
(

m,
aj

qj

)
is Type I, Rm,j = r

}

= 1
δ

2M∑
r=−2M

M∑
m=1

1
m2Q

#
{

a
q

∈ Iδ ∩ FQ, ma ≡ r mod q
}
.

For a given r, the number of solutions to

mX ≡ r mod q, 1 ≤ X ≤ q

is (m, q) ≤ m ≤ M. Let ma = r + kq. Then

|k| =
∣∣∣∣ma − r

q

∣∣∣∣ ≤ m
a
q

+ |r|
q

≤ m + 2M ≤ 3M.

So

S′
M ≤ 1

δ

2M∑
r=−2M

3M∑
k=−3M

M∑
m=1

1
m2Q

#
{

a
q

∈ FQ ∩ Iδ, ma = r + kq
}
.

Let

τα,δ,ε,m,r,k =
{

a
q

∈ FQ ∩ Iδ : ma = r + qk
}
.

Then

S′
M ≤ 1

δ

2M∑
r=−2M

3M∑
k=−3M

M∑
m=1

1
m2

∑
a/q∈τα,δ,m,r,k

1
qq′ (15)

where q′ denotes the denominator of the fraction a′/q′ immediately before a/q in FQ.
Let

Wα,M = min
{∣∣∣∣tan α − k

m

∣∣∣∣ | m, k ∈ Z, 1 ≤ m ≤ M, |k| ≤ 3M
}
.
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Recall that tan α is irrational, so we have Wα,M > 0. Let δ < Wα,M/100. Then if a/q ∈
τα,δ,ε,m,r,k, then we claim q ≤ 3M/Wα,M . Indeed let a/q ∈ τα,δ,ε,m,r,k. Then ma = qk + r.
So a/q = k/m + r/mq. But a/q ∈ Iδ. So∣∣∣∣a

q
− tan α

∣∣∣∣ ≤ 2δ <
Wα,M

50∣∣∣∣tan α − k
m

∣∣∣∣ ≥ Wα,M∣∣∣∣a
q

− k
m

∣∣∣∣ = 49
50

Wα,M∣∣∣∣a
q

− k
m

∣∣∣∣ =
∣∣∣∣ r
mq

∣∣∣∣ <
2M

q
.

So,

2M
q

≥ 49
50

Wα,M .

Hence,

q ≤ 100M
49Wα,M

≤ 3M
Wα,M

.

Thus (15) becomes

S′
M ≤ 1

δ

2M∑
r=−2M

3M∑
k=−3M

M∑
m=1

1
m2

∑
a/q∈τα,δ,ε,m,r,k

1
qq′ .

Now q + q′ > Q = [1/ε]. Since q ≤ 3M/Wα,M , we have q′ > 1/2ε. So

S′
M ≤ 2ε

δ

2M∑
r=−2M

3M∑
k=−3M

M∑
m=1

1
m2

3M/Wα,M∑
q=1

1
q

= OM

(
ε

q

)
.

Now q + q′ > Q = [1/ε]. Since q ≤ 3M/Wα,M , we have q′ > 1
2ε

. So

S′
M ≤ 2ε

δ

2M∑
r=−2M

3M∑
k=−3M

M∑
m=1

1
m2

3M/Wα,M∑
q=1

1
q

= OM

(
ε

q

)
.

So S′
m −→ 0 as ε/δ → 0, δ → 0 with M fixed. We conclude that

Sα,δ,ε = O
(

1
M

)
.

Letting M −→ ∞, we see that Sα,δ,ε −→ 0. This completes the proof of the theorem.
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