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Non-Abelian X-ray Transforms

In this chapter we introduce the non-Abelian X-ray transform and we study
some of its basic properties. At first we discuss the theory in a fairly general
setting for matrix-valued attenuations defined in the whole unit sphere bundle
and then we discuss injectivity results when the attenuation is given by a
connection plus a matrix field (a Higgs field) on the surface. The main result in
this chapter is scattering rigidity up to the natural gauge when the connection
and the matrix field take values in skew-Hermitian matrices. In order to show
this, we establish an injectivity result for the geodesic X-ray transform with
attenuation given by a skew-Hermitian connection and Higgs field. Using the
ideas involved in the proof we also give an alternative proof of the tensor
tomography problem. The skew-Hermitian assumption will be removed in
Chapter 14, which gives a solution of the scattering rigidity problem when
the connection and the matrix field take values in an arbitrary Lie algebra.

13.1 Scattering Data

Let (M,g) be a compact non-trapping manifold of dimension d ≥ 2 with
strictly convex boundary ∂M . Consider a matrix attenuation A as in
Section 5.3, namely, let A : SM → C

n×n be a smooth function. The notation
deviates slightly from previous chapters: in this chapter we write d = dimM ,
and the attenuation is an n × n matrix function.

Consider (M,g) isometrically embedded in a closed manifold (N,g) and
extend A smoothly to SN . Under these assumptions, we have seen in Section
5.3 that A on SN defines a smooth cocycle over the geodesic flow ϕt of (N,g).
Recall that the cocycle takes values in the group GL(n,C) and is determined
by the following matrix ODE along the orbits of the geodesic flow:

d

dt
C(x,v,t) + A(ϕt (x,v))C(x,v,t) = 0, C(x,v,0) = Id.
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278 Non-Abelian X-ray Transforms

In Lemma 5.3.2 we have seen that the function

U+(x,v) := [C(x,v,τ (x,v)]−1

is smooth in SM and solves{
XU+ + AU+ = 0,
U+|∂−SM = Id.

(13.1)

Definition 13.1.1 The scattering data of A is the map

CA = CA,+ : ∂+SM → GL(n,C),

given by

CA,+ := U+|∂+SM .

We shall also call CA,+ the non-Abelian X-ray transform of A.

Remark 13.1.2 Note that for n = 1 we may explicitly write

CA,+ = exp(I (A)),

where I (A) is the geodesic X-ray transform of A. Thus having information on
CA,+ is equivalent to having information on I (A). However, for n ≥ 2 such a
formula is no longer available due to non-commutativity of matrices and hence
we use the name non-Abelian X-ray transform.

Note that CA,+ ∈ C∞(∂+SM,GL(n,C)). We can also consider the unique
solution of {

XU− + AU− = 0,
U−|∂+SM = Id,

(13.2)

and define scattering data CA,− : ∂−SM → GL(n,C) by setting

CA,− := U−|∂−SM .

Both quantities are related by

CA,− = [CA,+]−1 ◦ α. (13.3)

Exercise 13.1.3 Prove (13.3).

Remark 13.1.4 We can interpret the scattering data CA,− as follows. Let
(x,v) ∈ ∂+SM and let b be a vector in C

n. Suppose that b(t) solves the ODE

ḃ(t) + A(ϕt (x,v))b(t) = 0, b(0) = b.

We consider an experiment where we send a vector b from a boundary point
x in direction v and then we measure the vector b(τ(x,v)) on the boundary
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13.1 Scattering Data 279

when b(t) exits M . Since (X + A)(U−b) = 0, the measurement is given
by b(τ(x,v)) = U−(α(x,v))b. Thus knowing CA,− is equivalent to knowing
how vectors evolve under the attenuation A when they travel through M along
geodesics. This interpretation is particularly relevant when A corresponds to
a connection, since then b(t) is just the parallel transport of b with respect to
this connection (see (13.7)).

By (13.3), if the metric g (and hence α) is known then CA,+ and CA,− are
equivalent information. From now on we shall only work with CA,+ and we
shall drop the subscript + from the notation.

We conclude this section by describing some motivation for studying the
non-Abelian X-ray transform. We will consider the special case where the
attenuation is given by

A(x,v) = Ax(v) + �(x),

where A is an n × n matrix of smooth 1-forms in M , and � is a smooth n × n

matrix function on M . We say that A is a connection and � is a Higgs field,
and we write the scattering data as CA,� := CA. See Section 13.3 for more
information on connections. Note that one has A ∈ �1 ⊕ �0 ⊕ �−1, which is
similar to Chapter 12 where we studied the scalar attenuated X-ray transform.

The map (A,�) 
→ CA,� appears naturally in several contexts. For instance,
when � = 0, CA,0 represents the parallel transport of the connection A

along geodesics connecting boundary points. Then the injectivity question
for the non-Abelian X-ray transform reduces to the question of recovering
a connection up to gauge from its parallel transport along a distinguished
set of curves, i.e. the geodesics of the metric g. We may also consider the
twisted or connection Laplacian d∗

AdA, where dA = d + A. Egorov’s theorem
for the connection Laplacian naturally produces the parallel transport of A

along geodesics of g as a high energy limit, cf. Jakobson and Strohmaier (2007,
Proposition 3.3). This data can also be obtained from the corresponding wave
equation following Oksanen et al. (2020); Uhlmann (2004).

When A = 0 and � ∈ C∞(M,so(3)), the non-Abelian X-ray transform
� 
→ C0,� arises in Polarimetric Neutron Tomography (Desai et al., 2020;
Hilger et al., 2018), a new tomographic method designed to detect magnetic
fields inside materials by probing them with neutron beams. The case of
pairs (A,�) arises in the literature on solitons, mostly in the context of the
Bogomolny equations in 2 + 1 dimensions (Manakov and Zakharov, 1981;
Ward, 1988). Applications to coherent quantum tomography are given in
Ilmavirta (2016). We refer to Novikov (2019) for a recent survey on the non-
Abelian X-ray transform and its applications.
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280 Non-Abelian X-ray Transforms

13.2 Pseudo-linearization Identity

Given two A,B ∈ C∞(SM,Cn×n) we would like to have a formula that relates
CA and CB with a certain attenuated X-ray transform. We first introduce the
map E(A,B) : SM → End(Cn×n) given by

E(A,B)U := AU − UB.

Here, End(Cn×n) denotes the linear endomorphisms of Cn×n.

Proposition 13.2.1 Let (M,g) be a non-trapping manifold with strictly convex
boundary. Given A,B ∈ C∞(SM,Cn×n), we have

CAC−1
B = Id + IE(A,B)(A − B), (13.4)

where IE(A,B) denotes the attenuated X-ray transform with attenuation
E(A,B) as defined in Definition 5.3.3.

Proof Consider the fundamental solutions for both A and B, namely{
XUA + AUA = 0,
UA|∂−SM = Id,

and {
XUB + BUB = 0,
UB|∂−SM = Id.

Let W := UAU−1
B − Id. A direct computation shows that{

XW + AW − WB = −(A − B),

W |∂−SM = 0.

By definition of IE(A,B) we have

IE(A,B)(A − B) = W |∂+SM .

Since by construction W |∂+SM = CAC−1
B − Id, the proposition follows.

Remark 13.2.2 Note that the function U := UAU−1
B satisfies{

B = U−1XU + U−1AU,

U |∂−SM = Id.

The identity (13.4) is called a pseudo-linearization identity, since it reduces
the non-linear inverse problem of determining A (up to gauge) from CA into
the linear inverse problem of inverting the X-ray transform IE(A,B) (up to a
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13.3 Elementary Background on Connections 281

natural kernel), where the attenuation E(A,B) depends on A and B. Namely,
CA = CB if and only if

IE(A,B)(A − B) = 0.

We can also phrase this result in terms of a transport equation problem.

Proposition 13.2.3 Let (M,g) be a non-trapping manifold with strictly convex
boundary. Given A,B ∈ C∞(SM,Cn×n), we have CA = CB if and only if
there exists a smooth U : SM → GL(n,C) with U |∂SM = Id and such that

B = U−1XU + U−1AU .

Proof If such a smooth function U exists, then the function V = UUB satisfies
XV + AV = 0 and V |∂−SM = Id. Therefore V = UA and consequently
CA = CB. Conversely, if the non-Abelian X-ray transforms agree, the function
W in the proof of Proposition 13.2.1 has zero boundary value and by Theorem
5.3.6 it must be smooth. Hence U = W + Id is smooth and by Remark 13.2.2
it satisfies the required equation.

Exercise 13.2.4 Consider the Hermitian inner product on the set of n × n

matrices Cn×n given by (U,V ) = trace(UV ∗) where V ∗ denotes the conjugate
transpose of V . Show that the adjoint of E(A,B) with respect to this inner
product is

[E(A,B)]∗U = E(A∗,B∗)U .

Conclude that if both A and B are skew-Hermitian, i.e. A∗ = −A and B∗ =
−B, then E∗ = −E as well.

13.3 Elementary Background on Connections

To make further progress in the study of the non-Abelian X-ray transform on
surfaces we would like to consider attenuations A of a special type, namely
those with Fourier expansion in �−1 ⊕ �0 ⊕ �1. It turns out that this is
equivalent to giving a connection (corresponding to the Fourier modes in
�−1 ⊕�1) and a matrix-valued Higgs field (corresponding to the Fourier mode
in �0). In this section we make a brief interlude to give some background on
connections in a way that is suitable for our setting.

Consider the trivial bundle M×C
n. For us a connection A will be a complex

n×n matrix whose entries are smooth 1-forms on M . Another way to think of
A is to regard it as a smooth map A : TM → C

n×n that is linear in v ∈ TxM

for each x ∈ M .
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282 Non-Abelian X-ray Transforms

Very often in physics and geometry one considers unitary or Hermitian
connections. This means that the range of A is restricted to skew-Hermitian
matrices. In other words, if we denote by u(n) the Lie algebra of the unitary
group U(n), we have a smooth map A : TM → u(n) that is linear in the
velocities. There is yet another equivalent way to phrase this. The connection
A induces a covariant derivative dA on sections s ∈ C∞(M,Cn) by setting
dAs = ds + As. Then A being Hermitian or unitary is equivalent to requiring
compatibility with the standard Hermitian inner product of Cn in the sense that

d〈s1,s2〉 = 〈dAs1,s2〉 + 〈s1,dAs2〉,
for any pair of functions s1,s2. The set of all smooth unitary connections is
denoted by �1(M,u(n)).

Given two unitary connections A and B we shall say that A and B are gauge
equivalent if there exists a smooth map u : M → U(n) such that

B = u−1du + u−1Au. (13.5)

In terms of the derivative dA acting on sections, gauge equivalence means just
that

dA(us) = u(dBs), s ∈ C∞(M,Cn). (13.6)

The curvature of the connection is the operator FA = dA ◦ dA acting on
sections, written more precisely as

FAs = (d + A∧)(ds + As) = (dA + A ∧ A)s,

where we used the properties of the exterior derivative d. Thus FA is in fact a
2-form with values in u(n) given by

FA := dA + A ∧ A.

This can be written elementwise: if A = (Ajk)
n
j,k=1 where each Ajk is a scalar

1-form, then

FA =
(
dAjk +

d∑
l=1

Ajl ∧ Alk

)n

j,k=1

.

If A and B are gauge equivalent as in (13.5), then by (13.6) one has FB = dB ◦
dB = u−1dAu ◦ u−1dAu. This shows that the curvatures of gauge equivalent
connections satisfy

FB = u−1 FA u.
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13.4 Structure Equations Including a Connection 283

Given a smooth curve γ : [a,b] → M , the parallel transport of a vector
w ∈ C

n along γ with respect to the connection A is obtained by solving the
following linear differential equation:{

ṡ + A(γ (t),γ̇ (t))s = 0,
s(a) = w.

(13.7)

The parallel transport operator PA(γ ) : Cn → C
n is defined as

PA(γ )(w) := s(b).

It is an isometry since A is unitary. We also consider the fundamental unitary
matrix solution U : [a,b] → U(n) of (13.7). It solves{

U̇ + A(γ (t),γ̇ (t))U = 0,
U(a) = Id.

(13.8)

Clearly PA(γ )(w) = U(b)w.
A connection A naturally gives rise to a matrix attenuation of special type,

simply by setting A(x,v) := A(x,v). Note that since A is a matrix of 1-
forms, it is completely determined by its values on SM . The scattering data
CA : ∂+SM → GL(n,C) encapsulates the parallel transport of A along
geodesics running between boundary points.

In the next chapter we will be interested in connections taking values in
an arbitrary Lie algebra g. We shall denote the space of such connections as
�1(M,g).

13.4 Structure Equations Including a Connection

In this section we consider an oriented Riemannian surface (M,g) and a
connection A on the trivial bundle M ×C

n. We will regard A both as a matrix
1-form on M , and as a function A : SM → C

n×n with A ∈ �−1 ⊕ �1. Recall
that the metric g induces a Hodge star operator � acting on forms. We claim
that

�A = −VA.

This follows from the computation

VA(x,v) = A(x,v⊥) = − � A(x,v),

where v⊥ is the rotation of v by 90◦ counterclockwise.
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284 Non-Abelian X-ray Transforms

The main purpose of this section is to establish the following lemma that
generalizes the basic commutator formulas in Lemma 3.5.5 to the case where
X is replaced by X + A and X⊥ by X⊥ + �A. Here we understand that A and
�A act on functions by multiplication.

Lemma 13.4.1 The following equations hold:

[V,X + A] = −(X⊥ + �A),

[V,X⊥ + �A] = X + A,

[X + A,X⊥ + �A] = −KV − �FA.

Proof Let us recall the standard bracket relations from Lemma 3.5.5:

[V,X] = −X⊥,

[V,X⊥] = X,

[X,X⊥] = −KV .

Hence the first two bracket relations in the lemma follow from [V,A] =
V (A) = − � A and [V, � A] = −V 2(A) = A. To check the third bracket it
suffices to prove that

� FA = X⊥(A) − X(�A) + [�A,A]. (13.9)

Given a unit vector v ∈ TxM , (v,v⊥) is a positively oriented orthonormal
basis. Thus

�FA(x) = FA(v,v⊥) = dA(v,v⊥) + (A ∧ A)(v,v⊥)

= dA(v,v⊥) + [A(v),A(v⊥)].

But �A(x,v) = −A(v⊥) and hence [�A,A](x,v) = [−A(v⊥),A(v)]. Thus to
complete the proof of (13.9) we just have to show that

X⊥(A)(x,v) − X(�A)(x,v) = dA(v,v⊥).

Let π : SM → M be the canonical projection. Recall that dπ(X(x,v)) = v

and dπ(X⊥(x,v)) = −v⊥. Consider π∗A and note (using the standard formula
for d applied to π∗A) that

d(π∗A)(X,X⊥) = X(π∗A(X⊥)) − X⊥(π∗A(X)) − π∗A([X,X⊥]).

By the structure equations, the term [X,X⊥] is purely vertical, hence it is
killed by π∗A. Next note that (π∗A(X⊥))(x,v) = A(−v⊥) = (�A)(v) and
π∗A(X) = A(v). This shows that

d(π∗A)(X,X⊥) = X(�A) − X⊥(A).
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13.4 Structure Equations Including a Connection 285

Finally, note that

d(π∗A)(X,X⊥) = (π∗dA)(X,X⊥) = dA(dπ(X),dπ(X⊥))

= −dA(v,v⊥).

This concludes the proof.

Given a connection A ∈ �−1 ⊕ �1 we write it as A = A−1 + A1 with
A±1 ∈ �±1. Next we consider the Guillemin–Kazhdan operators η± from
Definition 6.1.4 in the presence of a connection.

Definition 13.4.2 If (M,g) is a Riemann surface and A is a connection, define

μ± := η± + A±1.

Clearly X + A = μ+ + μ−. These operators also satisfy nice bracket
relations.

Lemma 13.4.3 The following bracket relations hold:

[μ±,iV ] = ±μ±, [μ+,μ−] = i

2
(KV + �FA) .

Moreover

μ+ : �k → �k+1, μ− : �k → �k−1.

If A is unitary, one has (μ±)∗ = −μ∓.

Proof We only prove the relation [μ+,μ−] = i
2 (KV + �FA), the rest is left as

an exercise. First we note that

μ± = (X + A) ± i(X⊥ + �A)

2
.

Hence

[μ+,μ−] = i

2
[X⊥ + �A,X + A],

and the desired relation follows from Lemma 13.4.1.

Exercise 13.4.4 Complete the details in the proof of Lemma 13.4.3.

Exercise 13.4.5 Show that X + A maps even functions to odd functions and
odd functions to even functions.

Exercise 13.4.6 Let A be a connection and let � ∈ C∞(M,Cn×n). If
H denotes the Hilbert transform, show that for any smooth function u ∈
C∞(SM,Cn) one has

[H,X + A + �]u = (X⊥ + �A)(u0) + ((X⊥ + �A)(u))0.
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286 Non-Abelian X-ray Transforms

13.5 Scattering Rigidity and Injectivity for Connections

In this section we would like to consider the following geometric inverse
problem: is a connection A determined by CA?

We first observe that the problem has a gauge. Let A and B be two gauge
equivalent connections, so that (as functions on SM)

B = u−1Xu + u−1Au,

where u : M → GL(n,C) is a smooth map with u|∂M = Id. If UA solves
XUA + AUA = 0 with UA|∂−SM = Id, then

(X + B)(u−1UA) = −u−1(Xu)u−1UA + u−1XUA + Bu−1UA = 0,

and u−1UA|∂−SM = Id. It follows that u−1UA = UB and hence

Cu−1du+u−1Au = CA.

Our main goal will be to show the following result.

Theorem 13.5.1 Let (M,g) be a simple surface and let A and B be two unitary
connections with CA = CB . Then there exists a smooth u : M → U(n) with
u|∂M = Id such that B = u−1du + u−1Au.

From Proposition 13.2.3 we know that CA = CB means that there exists a
smooth U : SM → U(n) such that U |∂SM = Id and

B = U−1XU + U−1AU .

Notice the similarity of this equation with our goal, which is to show that

B = u−1du + u−1Au.

In fact if U only had dependence on x and not on v, then U = u, XU(x,v) =
du|x(v) and we would be done. We will accomplish this for a simple surface.

We start by rephrasing our problem in terms of an attenuated X-ray
transform. Showing that U depends only on x is equivalent to showing that
W = U − Id depends only on x. But as we have seen, if CA = CB then W

satisfies the equation

XW + AW − WB = −(A − B) in SM, W |∂SM = 0.

This means that the attenuated X-ray transform IE(A,B)(A−B) vanishes. Note
that A − B ∈ �−1 ⊕ �1.

Hence, making the choice to ignore the specific form of the connec-
tion E(A,B) but noting that it is unitary by Exercise 13.2.4, the proof of
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13.5 Scattering Rigidity and Injectivity for Connections 287

Theorem 13.5.1 reduces to showing the following important injectivity result
for the attenuated X-ray transform with a connection.

Theorem 13.5.2 Let (M,g) be a simple surface and let A be a unitary
connection. Suppose that u ∈ C∞(SM,Cn) satisfies{

Xu + Au = f ∈ �−1 ⊕ �1,

u|∂SM = 0.

Then u = u0 and f = dAu0 = du0 + Au0 with u0|∂M = 0.

The first key ingredient in the proof of Theorem 13.5.2 is an energy identity
that generalizes the standard Pestov identity from Proposition 4.3.2 to the case
when a connection is present. Recall that the curvature FA of the connection A

is defined as FA = dA + A ∧ A and �FA is a function �FA : M → u(n).

Lemma 13.5.3 (Pestov identity with connection) Suppose that (M,g) is
a compact surface with boundary, and let A be a unitary connection. If
u : SM → C

n is a smooth function such that u|∂SM = 0, then

‖V (X + A)u‖2

= ‖(X + A)V u‖2 − (K V u,V u) − (�FAu,V u) + ‖(X + A)u‖2.

Proof We adopt the same approach as in the proof of Proposition 4.3.2 and
define P = V (X + A). Since A is a unitary connection, A∗ = −A and hence
P ∗ = (X + A)V . Let us compute using the structure equations from Lemma
13.4.1:

[P ∗,P ] = (X + A)V V (X + A) − V (X + A)(X + A)V

= V (X + A)V (X + A) + (X⊥ + �A)V (X + A)

− V (X + A)V (X + A) − V (X + A)(X⊥ + �A)

= V [X⊥ + �A,X + A] − (X + A)2 =−(X + A)2 + VKV + �FAV .

The identity in the lemma now follows from this bracket calculation and

‖Pu‖2 = ‖P ∗u‖2 + ([P ∗,P ]u,u)

for a smooth u with u|∂SM = 0.

In order to use the Pestov identity with a connection, we need to control the
signs of various terms. The first easy observation is the following.

Lemma 13.5.4 Assume (X +A)u = f−1 + f0 + f1 ∈ �−1 ⊕�0 ⊕�1. Then

‖(X + A)u‖2 = ‖V (X + A)u‖2 + ‖f0‖2.
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Proof It suffices to note the identities

‖V (X + A)u‖2 = ‖V (f−1 + f1)‖2 = ‖ − if−1 + if1‖2 = ‖f−1‖2 + ‖f1‖2,

‖(X + A)u‖2 = ‖f−1‖2 + ‖f1‖2 + ‖f0‖2.

Next we have the following lemma due to the absence of conjugate points
on simple surfaces (compare with Proposition 4.4.3).

Lemma 13.5.5 Let M be a compact simple surface. If u : SM → C
n is a

smooth function such that u|∂SM = 0, then

‖(X + A)V u‖2 − (K V u,V u) ≥ 0.

Proof Consider a smooth function a : SM → R that solves the Riccati
equation Xa + a2 + K = 0. These exist by the absence of conjugate points,
see Proposition 4.6.1. Set for simplicity ψ = V (u). Clearly ψ |∂SM = 0.

Let us compute using that A is skew-Hermitian:

|(X + A)(ψ) − aψ |2
Cn

= |(X + A)(ψ)|2
Cn − 2 Re 〈(X + A)(ψ),aψ〉Cn + a2|ψ |2

Cn

= |(X + A)(ψ)|2
Cn − 2a Re 〈X(ψ),ψ〉Cn + a2|ψ |2

Cn .

Using the Riccati equation we have

X
(
a|ψ |2

Cn

) = ( − a2 − K
)|ψ |2

Cn + 2a Re 〈X(ψ),ψ〉Cn .

Thus

|(X + A)(ψ) − aψ |2
Cn = |(X + A)(ψ)|2

Cn − K|ψ |2
Cn − X

(
a|ψ |2

Cn

)
.

Integrating this equality over SM with respect to d!3 and using that ψ

vanishes on ∂SM we obtain

‖(X + A)(ψ)‖2 − (K ψ,ψ) = ‖(X + A)(ψ) − aψ‖2 ≥ 0.

We now show an analogue of Proposition 10.2.6 in the presence of a
connection.

Theorem 13.5.6 Let f : SM → C
n be a smooth function. Suppose u : SM →

C
n satisfies {

Xu + Au = f,

u|∂SM = 0.

Then if fk = 0 for all k ≤ −2 and i � FA(x) is a negative definite Hermitian
matrix for all x ∈ M , the function u must be holomorphic. Moreover, if fk = 0
for all k ≥ 2 and i � FA(x) is a positive definite Hermitian matrix for all
x ∈ M , the function u must be anti-holomorphic.
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13.5 Scattering Rigidity and Injectivity for Connections 289

Proof Let us assume that fk = 0 for k ≤ −2 and i � FA is a negative definite
Hermitian matrix; the proof of the other claim is similar.

Let q := ∑−1
−∞ uk . We need to show that q = 0. Since A = A−1 + A1 and

fk = 0 for k ≤ −2, we see that (X + A)q ∈ �−1 ⊕ �0. Now we are in good
shape to use the Pestov identity from Lemma 13.5.3. We will apply it to q,
noting that q|∂SM = 0. We know from Lemma 13.5.4 that

‖(X + A)q‖2 = ‖V (X + A)q‖2 + ‖h0‖2,

for some h0 ∈ �0. Using Lemma 13.5.5 in the Pestov identity implies that

0 = ‖(X + A)V q‖2 − (K V q,V q) − (�FAq,V q) + ‖h0‖2 ≥ −(�FAq,V q).

Thus

(�FAq,V q) ≥ 0.

But on the other hand

(�FAq,V q) = −
−1∑

k=−∞
k(i � FAuk,uk),

and since i � FA is negative definite this forces uk = 0 for all k < 0.

Note that Theorem 13.5.6 allows us to control the negative Fourier coeffi-
cients of u if fk = 0 for k ≤ −2 and if the matrix i � FA is negative definite.
Thus if we start with a solution of (X + A)u = f as in Theorem 13.5.2, we
would like to apply a holomorphic integrating factor to end up with an equation
like

(X + As)ũ = f̃ ,

where f̃k = 0 for k ≤ −2 and i � FAs is negative definite. We can achieve
this by choosing a holomorphic integrating factor related to the area form
of g. This idea, which corresponds to twisting the trivial bundle M × C

n so
that its curvature becomes negative, was introduced in Paternain et al. (2012)
and it also appears in the proof of the Kodaira vanishing theorem in complex
geometry.

We are now ready to complete the proof of Theorem 13.5.2.

Proof Consider the area form ωg of the metric g (in earlier notation we had
ωg = dV 2). Since M is simply connected, there exists a smooth real-valued
1-form ϕ such that ωg = dϕ. Given s ∈ R, consider the Hermitian connection

As := A − isϕ Id.
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Clearly its curvature is given by

FAs = FA − isωgId.

Therefore

i � FAs = i � FA + sId,

from which we see that there exists s0 > 0 such that for s > s0, i � FAs is
positive definite and for s < −s0, i � FAs is negative definite.

Let esw be an integrating factor of −isϕ. In other words w : SM → C

satisfies X(w) = iϕ. By Proposition 10.1.2 we know we can choose w to
be holomorphic or anti-holomorphic. Observe now that us := eswu satisfies
us |∂SM = 0 and solves

(X + As)(us) = eswf .

Choose w to be holomorphic. Since f ∈ �−1 ⊕ �1, the function eswf has
the property that its Fourier coefficients (eswf )k vanish for k ≤ −2. Choose
s such that s < −s0 so that i � FAs is negative definite. Then Theorem 13.5.6
implies that us is holomorphic and thus u = e−swus is also holomorphic.

Choosing w anti-holomorphic and s > s0 we show similarly that u is anti-
holomorphic. This implies that u = u0. Together with the fact that (X+A)u =
f , this gives du0 + Au0 = f .

13.6 An Alternative Proof of Tensor Tomography

In this section we shall use the ideas from Section 13.5 to give an alternative
proof of Corollary 10.2.7 for the case where (M,g) is a simple surface.

Corollary 10.2.7 is an immediate consequence of the next result, which is a
special case of Proposition 10.2.6. Recall that Proposition 10.2.6 was proved
by applying a holomorphic integrating factor for the connection A = r−1Xr

where r = e−imθ . The proof below will use a connection related to the area
form instead, together with a Beurling contraction type argument similar to
the one in Theorem 7.1.2. Both of these proofs were given in Paternain et al.
(2013).

Proposition 13.6.1 Let (M,g) be a simple surface, and assume that u ∈
C∞(SM) satisfies Xu = −f in SM with u|∂SM = 0. If m ≥ 0 and if f ∈
C∞(SM) is such that fk = 0 for k ≤ −m − 1, then uk = 0 for k ≤ −m.
Similarly, if m ≥ 0 and if f ∈ C∞(SM) is such that fk = 0 for k ≥ m + 1,
then uk = 0 for k ≥ m.

https://doi.org/10.1017/9781009039901.016 Published online by Cambridge University Press

https://doi.org/10.1017/9781009039901.016


13.6 An Alternative Proof of Tensor Tomography 291

Below we will use the operators μ± introduced in Section 13.4. Recall that
when A is unitary, one has

(μ±u,v) = −(u,μ∓v) (13.10)

for u,v ∈ C∞(SM) with u|∂SM = v|∂SM = 0. We also recall the commutator
formula from Lemma 13.4.3:

[μ+,μ−]u = i

2
(KV u + (�FA)u). (13.11)

Proof of Proposition 13.6.1 We will only prove the first claim in Proposition
13.6.1, the proof of the second claim being completely analogous. Assume that
f is even, m is even, and u is odd. Let ωg be the area form of (M,g) and choose
a real-valued 1-form ϕ with dϕ = ωg . Consider the unitary connection

A(x,v) := isϕx(v),

where s > 0 is a fixed number to be chosen later. Then i � FA = −s. By
Proposition 10.1.2, there exists a holomorphic w ∈ C∞(SM) satisfying Xw =
−iϕ. We may assume that w is even. The functions ũ := eswu and f̃ := eswf

then satisfy

(X + A)ũ = −f̃ in SM, ũ|∂SM = 0.

Using that esw is holomorphic, we have f̃k = 0 for k ≤ −m − 1. Also, since
esw is even, f̃ is even and ũ is odd. We now define

v :=
−m−1∑
k=−∞

ũk .

Then v ∈ C∞(SM), v|∂SM = 0, and v is odd. Also, ((X+A)v)k = μ+vk−1 +
μ−vk+1. If k ≤ −m − 2 one has ((X + A)v)k = ((X + A)ũ)k = 0, and
if k ≥ −m + 1 then ((X + A)v)k = 0 since vj = 0 for j ≥ −m. Also
((X + A)v)−m−1 = 0 because v is odd. Therefore the only nonzero Fourier
coefficient is ((X + A)v)−m, and

(X + A)v = μ+v−m−1 in SM, v|∂SM = 0.

We apply the Pestov identity in Lemma 13.5.3 with attenuation A to v, so
that

‖V (X+A)v‖2 = ‖(X+A)V v‖2 − (KV v,V v)+ (�FAV v,v)+‖(X+A)v‖2.

We know from Lemma 13.5.5 that if (M,g) is simple and v|∂SM = 0, then

‖(X + A)V v‖2 − (KV v,V v) ≥ 0. (13.12)
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We also have

(�FAV v,v) = −
−m−1∑
k=−∞

i|k|(�FAvk,vk) = s

−m−1∑
k=−∞

|k|‖vk‖2. (13.13)

For the remaining two terms, we compute

‖(X + A)v‖2 − ‖V (X + A)v‖2 = ‖μ+v−m−1‖2 − m2‖μ+v−m−1‖2.

If m = 0, then this expression is non-negative and we obtain from the Pestov
identity that v = 0. Assume from now on that m ≥ 2. Using (13.10), (13.11),
and the fact that vk|∂SM = 0 for all k, we have

‖μ+vk‖2 = ‖μ−vk‖2 + i

2
(KV vk + (�FA)vk,vk)

= ‖μ−vk‖2 − s

2
‖vk‖2 − k

2
(Kvk,vk).

If k ≤ −m − 1 we also have

μ+vk−1 + μ−vk+1 = ((X + A)v)k = 0.

We thus obtain

‖(X + A)v‖2 − ‖V (X + A)v‖2

= −(m2 − 1)‖μ+v−m−1‖2

= −(m2 − 1)

[
‖μ−v−m−1‖2 − s

2
‖v−m−1‖2 + m + 1

2
(Kv−m−1,v−m−1)

]
= −(m2 − 1)

[
‖μ+v−m−3‖2 − s

2
‖v−m−1‖2 + m + 1

2
(Kv−m−1,v−m−1)

]
= −(m2 − 1)

[
‖μ−v−m−3‖2 − s

2
(‖v−m−1‖2 + ‖v−m−3‖2)

+ m + 1

2
(Kv−m−1,v−m−1) + m + 3

2
(Kv−m−3,v−m−3)

]
.

Continuing this process, and noting that μ−vk → 0 in L2(SM) as k → −∞
(which follows since μ−v ∈ L2(SM)), we obtain

‖(X + A)v‖2 − ‖V (X + A)v‖2

= m2 − 1

2
s
∑

‖vk‖2 − m2 − 1

2

∑
|k|(Kvk,vk). (13.14)

Collecting (13.12)–(13.14) and using them in the Pestov identity implies
that

0 ≥ m2 − 1

2
s
∑

‖vk‖2 +
(
s − m2 − 1

2
sup
M

K

)∑
|k|‖vk‖2.
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If we choose s > m2−1
2 supM K , then both terms above are non-negative and

therefore have to be zero. It follows that v = 0, so ũk = 0 for k ≤ −m− 1 and
also uk = 0 for k ≤ −m−1 since u = e−swũ where e−sw is holomorphic.

13.7 General Skew-Hermitian Attenuations

Remarkably, many aspects of the arguments done in the previous sections work
for general attenuations A : SM → C

n×n as long as A∗ = −A. In the next
section we will use these extensions to include a matrix field. We begin with
the Pestov identity. Define

FA := XV (A) + X⊥(A) + [A,V (A)], (13.15)

ϕ(A) := −V 2(A) − A. (13.16)

Note that if A = A ∈ �1 +�−1, one has FA = �FA by (13.9) and ϕ(A) = 0.

Lemma 13.7.1 (Pestov identity) Let (M,g) be a compact oriented Riemannian
surface with boundary. Assume A ∈ C∞(SM,Cn×n) is skew-Hermitian, i.e.
A∗ = −A. If u : SM → C

n is a smooth function such that u|∂SM = 0, then

‖(X + A)V u‖2 − (K V u,V u) − (FAu,V u) + ((X + A)u,ϕ(A)u)

= ‖V (X + A)(u)‖2 − ‖(X + A)u‖2.

Proof If we let G := X + A, then routine calculations as in Lemma 13.4.1
show that

[V,G] = −(X⊥ − V (A)) := −G⊥,

[V,G⊥] = G + ϕ(A),

[G,G⊥] = −KV − FA.

We adopt the standard approach (as in the proof of Proposition 4.3.2) and
define P = VG. Since A∗ = −A we have P ∗ = GV . Using the bracket
relations above we compute that

[P ∗,P ] = GVVG − VGGV

= VGVG + G⊥VG − VGVG − VGG⊥
= V [G⊥,G] − G2 − ϕ(A)G = −G2 − ϕ(A)G + VKV + VFA.

The identity in the lemma now follows from this bracket calculation and

‖Pu‖2 = ‖P ∗u‖2 + ([P ∗,P ]u,u)

for a smooth u with u|∂SM = 0.
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Lemma 13.7.2 Let M be a compact simple surface and A : SM → C
n×n such

that A∗ = −A. If u : SM → C
n is a smooth function such that u|∂SM = 0,

then

‖(X + A)V u‖2 − (K V u,V u) ≥ 0.

The proof of this lemma is exactly the same as the proof of Lemma 13.5.5.
Finally, in Lemma 13.5.4 we may replace A by A without trouble.

We can now interpret the quantities (13.15) and (13.16) as naturally
appearing curvature terms of a suitable connection in SM . Consider the co-
frame of 1-forms {ω1,ω2,ψ} dual to the frame of vector fields {X,X⊥,V }. The
structure equations from Lemma 3.5.5 imply

dω1 = −ψ ∧ ω2, (13.17)

dω2 = ψ ∧ ω1, (13.18)

dψ = Kω1 ∧ ω2. (13.19)

Given A ∈ C∞(SM,Cn×n) with A∗ = −A, we define a unitary connection
A on SM by setting

A := Aω1 − V (A) ω2.

Exercise 13.7.3 If A is a connection in M , show that

π∗A = Aω1 − V (A)ω2.

Lemma 13.7.4 With A defined as above we have

FA = −FA ω1 ∧ ω2 + ϕ(A)ψ ∧ ω2.

Proof Recall that FA = dA + A ∧ A. We compute

A ∧ A = (Aω1 − V (A)ω2) ∧ (Aω1 − V (A)ω2) = −[A,V (A)]ω1 ∧ ω2.

Next note that

dA = X⊥(A)ω2 ∧ ω1 + V (A)ψ ∧ ω1 + Adω1

− XV (A)ω1 ∧ ω2 − V 2(A)ψ ∧ ω2 − V (A)dω2.

Using the structure equations (13.17) and (13.18) we see that

dA = −(XV (A) + X⊥(A)ω1 ∧ ω2 − (V 2(A) + A)ψ ∧ ω2,

and the lemma follows.
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13.8 Injectivity for Connections and Higgs Fields

We now wish to extend the key Theorem 13.5.2 to include a Higgs field. For us
this means an element � ∈ C∞(M,Cn×n) and we may also refer to � simply
as a matrix field. We will assume that � is skew-Hermitian, i.e. �∗ = −�.
The following result generalizes Theorem 13.5.2.

Theorem 13.8.1 Let (M,g) be a simple surface, A a unitary connection and
� a skew-Hermitian Higgs field. Suppose there is a smooth function u : SM →
C

n such that {
Xu + (A + �)u = f ∈ �−1 ⊕ �0 ⊕ �1,

u|∂SM = 0.

Then u = u0 and f = dAu0 + �u0 = du0 + Au0 + �u0 with u0|∂M = 0.

Proof We will prove that u is both holomorphic and anti-holomorphic. If this
is the case then u = u0 only depends on x and u0|∂M = 0, and we have

du0 + Au0 = f−1 + f1, �u0 = f0,

which proves the result.
The first step, as in the proof of Theorem 13.5.2, is to replace A by a

connection whose curvature has a definite sign. We choose a real-valued
1-form ϕ such that dϕ = ωg where ωg is the area form of (M,g), and let

As := A + isϕId.

Here s > 0 so that As is unitary and i �FAs = i �FA− sId. We use Proposition
10.1.2 to find a holomorphic scalar function w ∈ C∞(SM) satisfying Xw =
−iϕ. Then us = eswu satisfies

(X + As + �)us = −eswf .

Let v := ∑−1
−∞(us)k . Since (eswf )k = 0 for k ≤ −2, we have

(X + As + �)v ∈ �−1 ⊕ �0.

Let h := [(X + As + �)v]0.
We apply the Pestov identity given in Lemma 13.7.1 with attenuation A :=

As+� to the function v, which also satisfies v|∂SM = 0. Note that ϕ(A) = −�

and FA = �FAs + �dAs�, where dAs� = d�+ [As,�]. Thus we obtain, after
taking real parts, that
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‖(X + As + �)(V v)‖2 − (K V (v),V (v))

+ ‖(X + As + �)v‖2 − ‖V [(X + As + �)v]‖2

− (�FAs v,V (v)) − Re ((�dAs�)v,V (v)) − Re (�v,(X + As + �)v)

= 0. (13.20)

It was proved in Lemmas 13.5.4 and 13.7.2 that

‖(X + As + �)(V v)‖2 − (K V (v),V (v)) ≥ 0, (13.21)

‖(X + As + �)v‖2 − ‖V [(X + As + �)v]‖2 = ‖h‖2 ≥ 0. (13.22)

The term involving the curvature of As satisfies

−(�FAs v,V (v)) =
−1∑

k=−∞
|k|(−i � FAs vk,vk)

≥ (s − ‖FA‖L∞(M))

−1∑
k=−∞

|k|‖vk‖2. (13.23)

Here we can choose s > 0 large to obtain a positive term. For the next term
in (13.20), we consider the Fourier expansion of dAs� = dA� = b1 + b−1

where b±1 ∈ �±1. Note that �dA� = −V (dA�) = −ib1 + ib−1. Then, since
vk = 0 for k ≥ 0,

((�dA�)v,V (v)) =
−1∑

k=−∞
(−ib1vk−1 + ib−1vk+1),ikvk)

=
−1∑

k=−∞
|k| [(b1vk−1,vk) − (b−1vk+1,vk)

]
.

Consequently, using that v0 = 0, we have

Re ((�dA�)v,V (v)) ≤ CA,�

−1∑
k=−∞

|k|‖vk‖2. (13.24)

We now study the last term in (13.20). We note that vk = 0 for k ≥ 0 and
that (X + As + �)v ∈ �−1 ⊕ �0. Therefore

(�v,(X + As + �)v) = (�v−1,((X + As + �)v)−1).

Recall that we may write X = η+ + η−. Expand A = A1 + A−1 and ϕ =
ϕ1 + ϕ−1 so that As = (A1 + isϕ1Id) + (A−1 + isϕ−1Id) =: a1 + a−1 where
aj ∈ �j . Since As is unitary we have a∗

±1 = −a∓1.
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The fact that (X + As + �)v ∈ �−1 ⊕ �0 implies that

η+v−2 + a1v−2 + �v−1 = ((X + As + �)v)−1,

η+v−k−1 + a1v−k−1 + η−v−k+1 + a−1v−k+1 + �v−k = 0, k ≥ 2.

Note that (η±a,b) = −(a,η∓b) when a|∂SM = 0. Using this and the fact that
� is skew-Hermitian, we have

Re (�v−1,((X + As + �)v)−1)

= Re(�v−1,η+v−2 + a1v−2 + �v−1)

= Re
[
(η−v−1,�v−2) − ((η−�)v−1,v−2) + (�v−1,a1v−2) + ‖�v−1‖2

]
.

We claim that for any N ≥ 1 one has

Re (�v−1,((X + As + �)v)−1) = pN + qN,

where

pN := (−1)N−1Re (η−v−N,�v−N−1),

qN := Re
N∑

j=1

[
(−1)j ((η−�)v−j,v−j−1) + (−1)j−1(�v−j,a1v−j−1)

+ (−1)j−1‖�v−j‖2] + Re
N−1∑
j=1

(−1)j (a−1v−j,�v−j−1).

We have proved the claim when N = 1. If N ≥ 1 we compute

pN = (−1)NRe ((η+ + a1)v−N−2 + a−1v−N + �v−N−1,�v−N−1)

= (−1)NRe
[
(�v−N−2,η−v−N−1) − (v−N−2,(η−�)v−N−1)

+ (a1v−N−2 + a−1v−N + �v−N−1,�v−N−1)
]

= pN+1 + qN+1 − qN .

This proves the claim for any N .
Note that since ‖η−v‖2 = ∑‖η−vk‖2, we have η−vk → 0 and similarly

vk → 0 in L2(SM) as k → −∞. Therefore pN → 0 as N → ∞. We also
have

‖qN‖ ≤ C�

∑
‖vk‖2 +

∣∣∣∣∣∣
N∑

j=1

(−1)j ([a−1,�]v−j,v−j−1)

∣∣∣∣∣∣ ≤ CA,�

∑
‖vk‖2.

Here it was important that the term in a−1 involving s is a scalar, so it
goes away when taking the commutator [a−1,�] and thus the constant is
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independent of s. After taking a subsequence, (qN) converges to some q having
a similar bound. We finally obtain

Re (�v,(X + As + �)v) = lim
N→∞

(pN + qN) ≤ CA,�

∑
‖vk‖2. (13.25)

Collecting the estimates (13.21)–(13.25) and using them in (13.20) shows
that

0 ≥ ‖h‖2 + (s − CA,�)

−1∑
k=−∞

|k|‖vk‖2.

Choosing s large enough implies vk = 0 for all k. This proves that us is
holomorphic, and therefore u = e−swus is holomorphic as required.

We now rephrase Theorem 13.8.1 as an injectivity result for a matrix
attenuated X-ray transform. We let A(x,v) := Ax(v) + �(x) and we let
IA,� := IA be the associated attenuated X-ray transform.

Theorem 13.8.2 Let M be a compact simple surface. Assume that f : SM →
C

n is a smooth function of the form F(x) + αx(v), where F : M → C
n

is a smooth function and α is a C
n-valued 1-form. Let also A be a unitary

connection and � a skew-Hermitian matrix function. If IA,�(f ) = 0, then
F = �p and α = dAp, where p : M → C

n is a smooth function with
p|∂M = 0.

Proof If IA,�(f ) = 0, we know by Theorem 5.3.6 that there is a C∞ function
u satisfying

(X + A + �)u = −f ∈ �−1 ⊕ �0 ⊕ �1,

with u|∂SM = 0. Thus by Theorem 13.8.1, u only depends on x and upon
setting p = −u0 the result follows.

13.9 Scattering Rigidity for Connections and Higgs Fields

In this section we extend the scattering rigidity result for unitary connections
in Theorem 13.5.1 to pairs (A,�), where A is a unitary connection and � is a
skew-Hermitian matrix-valued function. We let CA,� := CA be the scattering
data that is associated with the attenuation A(x,v) = Ax(v) + �(x).

Theorem 13.9.1 Assume M is a compact simple surface, let A and B be two
unitary connections, and let � and � be two skew-Hermitian Higgs fields.
Then CA,� = CB,� implies that there exists a smooth u : M → U(n) such
that u|∂M = Id and B = u−1du + u−1Au, � = u−1�u.
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Proof From Proposition 13.2.3 we know that CA,� = CB,� means that there
exists a smooth U : SM → U(n) such that U |∂SM = Id and

B = U−1XU + U−1AU, (13.26)

where B(x,v) = Bx(v) + �(x). We rephrase this information in terms of an
attenuated X-ray transform. If we let W = U − Id, then W |∂SM = 0 and

XW + AW − WB = −(A − B).

Hence the attenuated X-ray transform IE(A,B)(A − B) vanishes. Note that
A − B ∈ �−1 ⊕ �0 ⊕ �1.

Hence, making the choice to ignore the specific form E(A,B) but noting that
it is unitary by Exercise 13.2.4, we can apply Theorem 13.8.1 to deduce that
W only depends on x. Hence U only depends on x and if we set u(x) = U0,
then (13.26) easily translates into B = u−1du + u−1Au and � = u−1�u just
by looking at the components of degree 0 and ±1.

Remark 13.9.2 Note that the theorem implies in particular that scattering
ridigity just for Higgs fields does not have a gauge. Indeed, if C� = C� where
� and � are two skew-Hermitian matrix fields, Theorem 13.9.1 applied with
A = B = 0 implies that u = Id and thus � = �.

13.10 Matrix Holomorphic Integrating Factors

Unfortunately, it is not possible to extend the proof of Theorem 13.8.1 to the
case of attenuations that are not skew-Hermitian. The main issue is that the
Pestov identity given in Lemma 13.7.1 has a particularly nice form when A is
skew-Hermitian. While it is possible to derive a more general Pestov identity,
new terms appear and there is a priori no clear way as to how to control them.

An alternative approach would be to try to prove the existence of certain
matrix holomorphic integrating factors. Note that the proof of Theorem 13.8.1
uses the existence of scalar holomorphic integrating factors. In this section we
try to explain the main difficulties with this approach and state some recent
results.

We start with a general definition.

Definition 13.10.1 Let (M,g) be a compact oriented Riemann surface and
let A ∈ C∞(SM,Cn×n). We say that R ∈ C∞(SM,GL(n,C)) is a matrix
holomorphic integrating factor for A if

(i) R solves XR + AR = 0;
(ii) both R and R−1 are fibrewise holomorphic.
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There is an analogous definition for anti-holomorphic integrating factors.
The existence of such integrating factors imposes conditions on A. For k ∈ Z

and I ⊂ Z, we will use the notation ⊕k∈I�k to indicate the set of smooth
functions A such that Ak = 0 for k /∈ I .

Lemma 13.10.2 If A admits a holomorphic integrating factor then A ∈
⊕k≥−1�k . If A admits both holomorphic and anti-holomorphic integrating
factors, then A ∈ �−1 ⊕ �0 ⊕ �1.

Proof This follows right away from writing A = −(XR)R−1, since
R−1 is holomorphic and X(R) ∈ ⊕k≥−1�k given the mapping property

X : ⊕k≥0 �k → ⊕k≥−1�k .

The second statement in the lemma follows immediately.

Thus if we wish to use holomorphic and anti-holomorphic integrating
factors, the attenuation A must be of the form A(x,v) = Ax(v)+�(x) where
A is a connection and � a matrix-valued field. The relevance of these types of
integrating factors can be seen in the following proposition.

Proposition 13.10.3 Let (M,g) be a non-trapping surface with strictly convex
boundary such that I0 is injective and I1 is solenoidal injective. Let (A,�) be
a pair given by a connection A and a matrix-valued field �. If (A,�) admits
holomorphic and anti-holomorphic integrating factors, then IA,� has the same
kernel as in Theorem 13.8.2.

Proof Assume that u ∈ C∞(SM,Cn) satisfies u|∂SM = 0 and that one has
(X + A + �)u = −f ∈ �−1 ⊕ �0 ⊕ �1. We wish to show that u = u0. For
this it is enough to show that u is both holomorphic and anti-holomorphic.

Let R be a matrix holomorphic integrating factor for A + �. Since R−1

solves XR−1 − R−1(A + �) = 0, a computation shows that

X(R−1u) = −R−1f .

Since R−1 is holomorphic, (R−1f )k = 0 for k ≤ −2. Thus if we set v =∑−1
−∞(R−1u)k , then v|∂SM = 0 and

Xv ∈ �−1 ⊕ �0.

Using the hypotheses on I0 and I1, we deduce that v = 0 and thus R−1u

is holomorphic. It follows that u = RR−1u is also holomorphic since R is
holomorphic.

An analogous argument using anti-holomorphic integrating factors shows
that u is anti-holomorphic and hence u = u0 as desired.
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We can now state the following question.

Question. Let (M,g) be a simple surface and let (A,�) be a pair, where A

is a connection and � is a matrix field. Do holomorphic (antiholomorphic)
integrating factors exist for (A,�)?

Note that Proposition 12.2.6 gives a positive answer to this question when
n = 1. It suffices to take R := e−w where w is given by the proposition. In the
non-Abelian case n ≥ 2 we can no longer argue using an exponential. While
we can certainly find a holomorphic matrix W such that XW = A + �, the
exponential of W might not solve the relevant transport problem since XW

and W do not necessarily commute.

Exercise 13.10.4 Show that for any W ∈ C∞(SM,Cn×n) we have

eWX
(
e−W

) =
∫ 1

0
e−sW (XW)esW ds.

A positive answer to the question of existence of matrix holomorphic
integrating factors has recently been given in Bohr and Paternain (2021).
However, the answer is based on essentially knowing injectivity first for the
general linear group of complex matrices, so we need an alternative way of
establishing injectivity. We will do that in the next chapter using a factorization
result from loop groups.

We conclude this section by studying the group of all smooth R : SM →
GL(n,C) such that XR = 0 for (M,g) a simple surface. We start with an
auxiliary lemma.

Lemma 13.10.5 Let F : M → GL(n,C) be such that η−F = 0. Then we can
write F as

F = F1 · · ·Fr,

where each Fj : M → GL(n,C) has the property that η−Fj = 0 and |Id −
Fj (x)| < 1 for all x ∈ M and 1 ≤ j ≤ r .

Proof The proof of this lemma is almost identical to the proof of (Gunning
and Rossi, 1965, Lemma on p.194); we include a sketch for completeness.

The set G of all F : M → GL(n,C) with η−F = 0 clearly forms a group.
In fact it is a connected topological group with the supremum norm. Such
groups are generated by any open neighbourhood of the identity. Considering
a neighbourhood of the form

U = {F ∈ G : ‖F − Id‖L∞ < 1},
the result follows.

https://doi.org/10.1017/9781009039901.016 Published online by Cambridge University Press

https://doi.org/10.1017/9781009039901.016


302 Non-Abelian X-ray Transforms

We now prove a certain matrix analogue of Theorem 8.2.2.

Theorem 13.10.6 Let (M,g) be a simple surface and let F : M → GL(n,C)

with η−F = 0 be given. Then there exists a smooth R : SM → GL(n,C) such
that

(i) XR = 0 and R0 = F ;
(ii) both R and R−1 are fibrewise holomorphic.

Proof By Lemma 13.10.5 we may write F = F1 · · ·Fr where each Fj : M →
GL(n,C) is such that η−Fj = 0 and |Id − Fj (x)| < 1 for all x. Hence we
can write Fj = ePj , where Pj : M → C

n×n is such that η−Pj = 0. By the
surjectivity of I ∗

0 , there is a smooth Wj such that XWj = 0, Wj is fibrewise
holomorphic and (Wj )0 = Pj . Now set

R := eW1 · · · eWr .

We claim that R has all the desired properties. Since each eWj is a first integral,
so is R. By construction, each eWj is holomorphic, hence so is their product.
Since

R−1 = e−Wr · · · e−W1,

it follows that R−1 is also fibrewise holomorphic. It remains to prove that
R0 = F . But since R is holomorphic we must have

R0 = (
eW1

)
0 · · · (eWr

)
0.

But for each j , (eWj )0 = e(Wj )0 = ePj = Fj and the theorem is proved.

13.11 Stability Estimate

It is possible to derive a quantitative version of Theorem 13.9.1 and obtain a
stability estimate for the scattering data. This has been carried out in the case
of matrix fields where the inverse has no gauge. The result is as follows.

Theorem 13.11.1 (Monard et al., 2021a) Let (M,g) be a simple surface. Given
two matrix fields � and � in C1(M,u(n)) there exists a constant c(�,�) such
that

‖� − �‖L2(M) ≤ c(�,�)‖C�C−1
� − id‖H 1(∂+SM),

where c(�,�) is a continuous function of ‖�‖C1 ∨ ‖�‖C1 , explicitly

c(�,�) = C1
(
1 + (‖�‖C1 ∨ ‖�‖C1

))
eC2(‖�‖

C1∨‖�‖
C1 ), (13.27)

and where the constants C1,C2 only depend on (M,g).
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The proof of Theorem 13.11.1 initially follows the approach for obtaining
L2 → H 1 stability estimates for the geodesic X-ray transform I as presented
in Theorem 4.6.4. The starting point is the pseudo-linearization formula (13.4)

C�C−1
� = Id + IE(�,�)(� − �).

To prove Theorem 13.11.1 it suffices to show that

‖� − �‖L2(M) ≤ c(�,�)‖IE(�,�)(� − �)‖H 1(∂+SM).

To this end, one has to go carefully through the proof of Theorem 13.8.1
that uses holomorphic integrating factors to control additional terms in the
Pestov identity due to the matrix fields. Taming the holomorphic integrating
factors has a cost that is reflected in the constant c(�,�) given in (13.27). The
details of the proof are fairly involved and the reader is referred to Monard
et al. (2021a). The overall strategy is similar to the proof of Novikov and
Sharafutdinov (2007, Theorem 5.1) for polarization tomography; however, the
main virtue of Theorem 13.11.1 is that there is no restriction on the size of the
fields � and �.

Theorem 13.11.1 paves the way for a statistical algorithm that allows one
to recover � from noisy measurements of C�, more precisely a frequentist
consistency of reconstruction in the large sample limit. See Monard et al.
(2021a) for details.
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