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GEOMETRICAL ASPECTS OF THE SYSTEM \Vv\2=x(v), V2v=P(v)
AND APPLICATIONS TO THE NONLINEAR WAVE

EQUATION

by G. CIECIURA and A. M. GRUNDLAND

(Received 20th September, 1985)

1. Formulation of the problem

Let E be n-dimensional (n ̂  2) real vector space with a nondegenerate symmetric scalar
product (.\.y.ExE-rR1 with an arbitrary signature (p,n—p). Let us consider a second
order partial differential equation (P.D.E.) of the form:

V2v = <f>(v,\Vv\2), (1.1)

where 0 is a given function of two variables, v is an unknown function (defined on an
open subset 0c=£), |Vu|2: = (Vu|Vi;) is the square of the gradient Wv of the function v
and V2, denotes the Laplace-Beltrami operator.

For simplicity we assume that all considered functions, maps and manifolds are of the
class C°°. All our considerations are of a local character. In a more rigorous formulation
germs of functions (mappings, manifolds) should be used instead of functions (mappings,
manifolds).

Let us consider a class of solutions of (1.1) with the property that |Vu|2 is constant on
each level of the function v, that is

(1.2)

Obviously, in this case V2u may also be expressed by v; i.e.

On the other side, if a given function u (defined on a certain domain of the space E)
satisfies the system:

(1.3)

(that is, when |Vu|2 and V2u can be expressed by u) then every function v obtained from
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u by the invertible transformation u->v: = v(u) has the same property:

)

v = v"(«)ao(u) + V(u)0o(u) = :/*(»).

System (1.3), where a0, j?0 are treated as arbitrary (not fixed) functions, characterizes
the congruence of the levels of the function u.

Inserting v = v(u) into (1.1) we obtain, by virtue of (1.4), the following second order
O D E .

«0(u)v"(u) + /J0(u)v'(«) = ^(v(«), ao(u)v'(«)2). (1.5)

Thus from every solution u of the system (1.3) we can generate (by integrating (1.5)) a
two-parameter family of solutions of (1.1).

There are two well known examples of such a procedure. If we set u(x) = (q\x) (plane
wave solutions), where qeE is a constant vector, then ao(u) = |g|2, /?0(u)=0, so (1.5) has
the form:

\q\2v"(u) = 4>(v(u),\q\2v'(un (1.6)

For u(x) = N/ + (x|x) (spherically symmetric solutions) we have ao(u)= + l, P0{u) =
±n — l/u, and (1.5) has the form:

M), ±V'(«)2). (1.7)

(Note that the notion of the spherical symmetry is here understood as symmetry with
respect to the group 0(p, n — p), not only O(n)-symmetry as it is usually treated.)

Let us introduce the following definitions: Function u, defined on the domain 0 c £ ,
will be called isotropic at the point xoe0 if |VM|2=0 in a certain neighbourhood 0Xoc=0
of the point x0. If not it will be called nonisotropic at the point x0.

In this paper, the general form of isotropic and nonisotropic solutions of (1.1) with
the property (1.2) will be given. Examples (solutions of nonlinear field equations)
illustrating the described procedures can be found in [1-5].

2. Nonisotropic solutions

We have the following:

Theorem 1. Suppose v:Ez30->Rl is a solution o/(l.l) satisfying the condition (1.2). Let
us assume that v is nonisotropic at the point xoe0. Then in a certain neighbourhood
OXocO of the point x0 the function v may be described as a composite function, v = v(u),
where W.E-+R1 is of one of the following forms:

u{x)=\(Px\x)+(q\x) (
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where PeL(E,E),qeE and P* = P(i.e. P is symmetric with respect to (.].)), P2=0, \q\2 = :
£= + 1 and Pq=O.

u{x) = yJE{P(x-a)\x-a),

where PeL(E,E) is a non-zero orthogonal projector (P* = P2 = P), aeE and e= +1.
The function v is a solution of the O.D.E. (1.5), which has the form:

ifu is of the form (2.1)(i) or

(u), £v'(u)2),

where r: = rankPe{l,2,...,n}, ifu is of the form (2.1)(ii).

Remark 2.1. Functions u defined by (2.1)(i) or (2.1)(ii) satisfy the equations (1.3) with
ao(u) = £ = ± l and /?0(«) = 0 or po(u) = e(r—l)u respectively. Thus equations (2.2) are
a special case of (1.5).

Remark 2.2. The class of solutions described by the Theorem 1 contains, in
particular, plane waves and spherically symmetric solutions. They are of the type (i) with
P = 0 and of the type (ii) with P = 1 respectively. The remaining (ii)-type solutions are
cylindrically symmetric.

Remark 2.3. Sometimes in applications another equivalent form of equations (2.1)
can be useful. To obtain it, let us consider a subspace /: = imPe£, then IL =
(imP*)x = kerP since P is symmetric.

For the case (i), condition P 2 =0 implies lczIL, i.e. / is an isotropic subspace. Then for
any basis (qu...,qr) of / we have (<jf,|<2;)=0. Let us put Px=£i=i(p'|*)<?,-, where p'eE.
Since kerP = /x we have p'e{I±)± = I and thus pi=Yj=iP'Ja.p where ||p'J|| is a non-
singular and (by P = P*) symmetric matrix. Change of the basis (qt) transforms the
coefficients piJ to coefficients of a bilinear form. Thus (qt) may be chosen in such a way
that pii=eid

ii,ei= ±1 . Moreover Pq = 0 is equivalent to qelx, i.e. (q\qi) = O. Hence we
have

= 0, (qt\q) = 0, e,= ± 1 for i,j=\,2,...,

In turn, for the case (ii) P2 = P implies I@I1 = E, i.e. / is a non-singular subspaqe. Il
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(q!,...,qr) is an orthonormal basis of the subspace /, then we have

) ( )
(«i|«;) = My> ei= + 1 fo r i, J=l, .--,r , e= ±1 .

Remark 2.4. It follows from the Witt Lemma, that the maximal dimension of
isotropic subspaces IcE is min(p, n—p), where (p,n—p) is the signature of (. |. )• Thus if
£ is Euclidean space (i.e. p = n), then solutions of the type (i) occur only with P = 0, i.e.
they are plane waves.

Let us study in more detail the case of Minkowski space, when p= l . Assume, that E
is of the form E = E1QEm,m: =n— 1, where E ^ / ? 1 , £m are Euclidean spaces of
dimension 1, m respectively. The symbol 0 denotes that E is the Cartesian product
Et x.Em, in which the scalar product of two vectors x=(x°,x), y = (y°,y) is defined by
(x\y):=x°-f-x-y.

Under this assumption, formulae (2.3) can be written in the more explicit form:

"Jih Jim*
I 1 — p I

a2

u(x)=—(xo-a°-e1-x)-e-x, (rankP=l),

1/2

u(x) =
Kiir

Hence ^ e ! , . . . ^ , denote versors in space Em. Moreover those among them which
appear explicitly in each formulae (2.4)(i)0, (2.4)(i)1 and (2.4)(ii) are assumed to be
mutually orthogonal. Parameter /?(/?2 =f= 1) can also take the value + oo. For example, in
this case formula (2.4)(i)0 reduces to u(x)= +ex.

The number £ = +1 (the same which occurs in O.D.E. (2.2)) is determined in the
following way: £ = sgn (1 — /?2) in the case (2.4)(i)0, £= — 1 in the case (2.4)(i)x; in the case
(2.4)(ii) £ has the sign of the expression under the symbol | • |1/2.

Formulae (2.4) can be obtained from (2.3) by an appropriate choice of the vectors
q,qt. Namely, taking q in the form q=(l,fie)/\l - /? 2 | ! / 2 we get (2.4)(i)0; the cases
q=(l,0) and q=(0, e) correspond to the choices /?=0, and /? = oo respectively. To obtain
(2.4)(i)! we take ql=a(l,e1) with a^=0 and 9=(0,e) + 6(l,e1); then a°:=-b/a2. For
(2.4)(ii), one needs to insert into (2.3)(ii), q^ilje^/ll-p2^12 (or ^ = ( 0 , ^ ) for j?=oo)
and ql=(0,e1) for l < i ^ r .

Remark 2^. If (f> depends on v only, i.e. <f>=g(v), then (2.2) has the form v"(u) + r—
l/uv'(u)=g(v). Such O.D.E.s (called Emden-type equations) were investigated in [6]
for some classes of the function g.
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Outline of the proof of Theorem 1. Assume that v satisfies (1.1) and (1.2). If we put
v = v(u), where function v(•) is a solution of the O.D.E.

V ' ( M ) 2 = |<X(V)|,

then from the transformation rule (1.4) we obtain:

|Vu|2 = e,

(2.5)

(2.6)

where e = sgn a(t>) = ± 1 and /?0(') is an arbitrary function of one variable. We define
/ : = — V2u and X: = Vu and D: = —VX. X is a vector field and D is a tensor field of
the type (}). It is well known [7] from the theory of symmetric polynomials, that
for coefficients zk of the characteristic polynomial of the tensor D we have the rela-
tion det(D — /U) = :Xos*<nTk(~X)"~k and therefore zk may be expressed by quantities
ok: =tr (Dk):

1

~k\

1 0

2

0

0

k-\

for k=l,2,...,n. (2.7)

The condition (2.6)l means that (X\X) = e. From the definition we conclude (X\Y) = VYu
and DY= —VYX for an arbitrary vector field Y. First we show that

This condition means that integral curves of the field X are geodesies, parametrized by
an affine parameter [8]. Indeed, because of the symmetry of the Levi-Civita connection
we have

Thus, using Vy(
for arbitrary Y, hence

-VY(X\X)=(X\IX, YJ)=(X\VXY-VYX)

0 = 0 and the Leibniz rule we obtain that (VxX\Y)=0

VXX=— DX = 0; (2.8)

so O=V(VXX) = VX{VX) + VX VX, that is VXD = D2. Thus by simple induction with
respect to k ̂  0 we obtain:
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But V x / = -Vx(P0(u)) by virtue of (2.6)2, and VXU = |VH|2=£, SO Vxf= -£#,(u). Hence
by induction for k^0:(Vx)

kf = - e * ^ " ) - Therefore < r , = - ^ / ( / - l ) ! ^ ' " 1 ' for Z^l,
so it follows from (2.7) that xk can be expressed as a function of u

r1=z1(u),T2=z2(u),...,Tn = Tn(u) (2.9)

Let us notice that, what is a well known fact in differential geometry of surfaces [8,9],
the coefficients xl,...,tn-l may be interpreted as curvatures (i.e. principal invariants of
the second fundamental tensor) of the levels of the function u. Indeed let us consider the
tensor D\Lc where Zc denotes C-level of function u. Since D=—VX and n:=X\^c is
a normal field of unit vectors on Zc, then D|Sc acting on the vectors tangent to
Zc coincides with the second fundamental tensor of hyperplane Zc. In turn (2.8) means
that D|jc vanishes on a vector normal to Sc. Hence tn=det(D) = 0 and values of
the functions T1,...,rn_1 are equal to principal invariants of the second fundamental
tensor of the level passing through a given point. Thus (2.9) says, that curvatures
T1 = T 1 ( C ) , . . . , T B _ 1 = T I I _ 1 ( C ) are constant on every level Zc.

The general form of hypersurfaces, whose curvatures are all constant is described in
[1]. Namely we have:

Lemma. Suppose £ cz E is a hypersurface of dimension m = n—l having at every point
x e E a normal unit vector n(x) with \n(x)\2 = e= + 1. Then all curvatures xl,...,xm of
hypersurface £ have constant values if X is [at least locally) the level of the function u of
the form (2.1)(i) or (2.1)(ii).

We have proved that the level £c(C:=u(x0)) passing through the given point x0

satisfies the assumptions of the lemma. Then Zc is (locally) a level of the function «,
where u is of the form (2.1)(i) or (2.1)(ii). As we noticed in Remark 2.1, function u is also
a solution of (2.6) ,. But it follows from the Hamilton-Jacobi theory that for two
solutions u,u of (2.6) 1 having a common level we must have (at least locally) u =
±w + constant. O.D.E. (2.5) is invariant under the transformations u-*u + constant.
(The method of characteristics applied to the problem |VM|2= + 1, U\Z = C, gives the
following result: u(x) — C+ (distance of point x from surface Z) for x sufficiently close to
£). So it may be assumed that u and « coincide, that is u is of the form (2.1)(i) or
(2.1)(ii). So it may be assumed that u = u is of the form (2.1)(i) or (2.1)(ii). This ends the
proof of Theorem 1 since equations (2.2) are a consequence of (1.5) (c.f. Remark 2.1).

3. Isotropic solutions

According to the definition from Section 1, the isotropic solution of (1.1) is a solution
satisfying the condition |Vu|2 = 0. In the case of a positive defined metric, (i.e. when E is
an Euclidean space), the solution of the problem is evident: |Vi;|2 = 0 implies u=consFant,
so isotropic solutions are constant functions v = v0 with v0 satisfying <£(t>0,0) = 0.

Except for this trivial case we have found all the isotropic solutions of (1.1) only for
spaces with the metric of signature (l,n —1), i.e. when £ is a Minkowski space. It turns
out that (1.1) possesses nontrivial (i.e. non-constant) isotropic solutions only for the very
special case <f>(v,O) = O. More precisely we have:
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Theorem 2. For the function v defined in some neighbourhood of the point x0 of
Minkowski space E the following conditions are equivalent:

(a) |VD|2 = 0, V2D = 0; (3.1)

(3.2)

for a certain function /?;

(c) v may be defined in the implicit form by the equation:

v = F((q(v)\x-x0)), (3.3)

where F is a function of one variable and v^fq(v)eE is a one-parameter family of non-zero
isotropic vectors (i.e. such that \q(v)\2 = 0).

Remark 3.1. The rather surprising fact that (b) implies (a) simply means that j? = 0 is
the compatibility condition for the system (3.2).

Remark 3.2. Let us consider the more general case of arbitrary signature (p,n—p) of
the metric ( . | . ) . Suppose that for veR1, (ql(v),...,gr(u)) is a basis of an isotropic
subspace I(v)cE of dimension r^min(p,«—p) and F( . , . . . , . ) is a real function of r
variables. Then the equation

v = F((q1(v)\x-x0),...,(q
r(v)\x-x0)) (3.4)

(which is a generalization of (3.3)) defines in a neighbourhood of x0, in implicit form,
the function x->v(x). Differentiating (3.4) we obtain

and thus |V.u|2=0. By successive differentiation we obtain

2£F,i(«ji|VI;) 2 t F,tF,jtf\q>)

1-Y F,,tf'|x-x0) 1 -

since (qi\qJ) = 0 implies {qi\qi)= — {tf\<()- Then the function v is a solution of P.D.E.
system (3.1).

This observation could suggest that Theorem 2 can be generalized for the case of an
arbitrary signature (p,n—p), by replacing (3.3) with (3.4). However, this generalization is
not true as can be easily seen from the Example 2.

Remark 33. The characteristic peculiarity of function v, which may be described in
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the form (3.4), is that each level Ec of the function v is the cylinder:

F((ql(C)\x-x0),...,{qr(C)\x-x0)) = C,

profiled by the level of F and with (ql(C),...,gr(C)>i as the generating subspace. For
the simplest case, r= 1, (3.4) reduces to (3.3) and the cylinders become the hyperplanes.

In the theory of quasilinear P.D.E., solutions of the form (3.4) are known as
nonplanar simple waves [10]. In particular (3.3) defines the so-called Riemann waves.

Remark 3.4. Using the notation of Remark 2.4 we assume E = ElQEm. Then iso-
tropic vector q(v) can be (after suitable normalization) written in the form q(v)=(l,e(v)),
where e(v) e Em is a versor. So (3.3) takes the form.

v = F(x° - x°0 - e(v) • (x - x0)), e(»)2 = 1, (3-5)

Outline of the Proof of Theorem 2. Implication (a)=>(b) is obvious; (c)=>(a) was
proved in Remark 3.2. Thus it remains to prove that (b)=>(c). It follows from (3.2) that
(in Cartesian coordinates) ££,/),„,v=i£a"£''v';>oyii;>0v = O> where ||g"v|| denotes the inverse
matrix ||^v|| of the scalar product (.|.) hence from V|Vu|2 = 0 (i.e. YA,n=i8X"v>*v>vi'=ty'
with the assumption sgn(.|.) = (l,«—1), it can be deduced by algebraic considerations,
that v,liv = v,llfiv + v,vfll where f$n denotes coefficients of some covariant vector. Therefore
Vv has constant direction on the levels of function v. So S/v = <f>- q(v) where q(v) is an
isotropic vector and (f> is a function defined in a neighbourhood of x0. But then we have

l+(j)(q(v)\x-x0)

which means that v remains constant on each level of the function (q(v)\x—x0). So (3.3)
holds.

Example 1. Let n = 3 and (x°, x',x2) denote Cartesian coordinates in E such that
\x\2 = (x°)2-(xl)2-(x2)2. Then formula

x°
v: =

where x1 = rcos<f>, x2 = rsin0, denotes a multivalued function outside the light cone,
satisfying (3.1). It can be easily checked, that in the neighbourhood of an arbitrary point
XQ, x^ rocos^o , x2 = r0 sin<f>0 (outside the light cone), the equation (3.5) with
e(u):=(cosv,sini;) and F(z): =<j>0 + arc cos z + x%/r0 describes the single-valued branch of
function v.

Example 2. We shall now construct a solution v for the system (3.1), which can not
be written in the form (3.4), for the case when E=E2QE3, which has signature (2,3).
Let R1 sp-*q{p)eE be a curve such that

= 0, (3.6)
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and q(p), q(p), q(p) are linearly independent vectors for each peR1. For example the
curve g(p): = (e2(p), e3(p)), where e2(p): =a(cos p/a, sin p/a)e£2 , e3(p): =(cosp,sinp,
yJa2 — l)eE3 (with a2>\), satisfies the above conditions. (Note that such a curve q{p)
does not exist for the case of signature (l,n—1).) Moreover, let p-*l{p)eR1 be a
function satisfying conditions A(0) = 0, A(0) = 0. Then the system of equations:

v = (q(p)\x)-X(p)

defines in the implicit form (in the neighbourhood of x = 0), functions x-*v(x), x->p(x)
such that v(0)= — A(0), p(0) = 0. Moreover, differentiating (3.6) we have

p), Vp= . m , , V W . | 4 ( P ) | , (3.8)

Thus, by virtue of (3.6), the function v satisfies (3.1).
Assume that v can be described by the implicit equation (3.4). In Remark 3.2 we

found that Vue/(i>): = (q\p),...,qr{p)s). Thus, by (3.8), q(p)el(v). But (3.8) also implies,
that Vv and Vp are linearly independent, so v and p are functionally independent. Hence
q(p)el(v) implies q(p) and q(p)el(v). But dim/(u) = r ^ min (2,3) = 2 due to the isotropy
of I(v). This is in contradiction with the assumption that q(p), q(p), q(p) are linearly
independent, so the function v cannot be written in the form (3.4).

Remark 3.5. For a long time there has been much interest in localized solutions of
the nonlinear wave equation V2v=g(v) in Minkowski space, with signature (1,3). The
procedure given by us reduces the problem of finding static, spherically symmetric
solutions of the wave equation to the Emden equation [11]

2
v"(u)+-v'(u)=g{v). (3.9)

u

In the literature [12] one can find existence theorems for the solution of (3.9) with
property v'(0) = 0 and lim,^^ v(u) = 0 for the right hand side of the form

g(v) = sin v, g(v) = cosv, g(v) = sinh v,g(v) = cosh v,

g{v) =exp v, g(v) = v", g{v) = 3

For some solutions their Taylor expansions were found and others are given in the
tables [12].
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