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1. Introduction

A system or family (Ay :yeN)of sets Ay, indexed by the elements of a set N,
is called an (a, b)-system if | N | = a and | Ay \ = b for y e N. Expressions such
as "(a, < b)-system" are self-explanatory. The system (Ay:yeN) is called a
A-system [1] if Ali(~\Ay = ApC\AB whenever n,y,p, creiV; /i ^ y; p ¥= o- If we
want to indicate the cardinality | JV| of the index set N then we speak of a A(|JV|)-
system. In [1] conditions on cardinals a, b, c were obtained which imply that
every (a, b)-system contains a A(c)-subsystem. In [2], for every choice of cardinals
b, c such that

b ^ 2; c ^ 3; b + c ^ Ko

the least cardinal a = f&(b, c) was determined which has the property that

every (a, < b)-system contains a A(c)-subsystem.

Let b+ be the least cardinal greater than b. It is easy to see that the following
two statements are equivalent:

every (a, < b+)-system contains a A(c)-subsystem,

every (a, fc)-system contains a A(c)-subsystem.

In the present note we prove a best possible theorem (Theorem 1) on the
size of the largest A-subsystem that can be found in every (m+, m)-system (Ay:
yeN) which satisfies | A^ O Ay | < n for /i, y e N; \i # y. Here m ^ Ko, and n is
a given cardinal, n < m. In proving this theorem the authors have received valu-
able help from A. Hajnal.

We now introduce a condition on systems of sets which is less exacting than
that of being a A-system. The system (Ay: yeN) is called a weak A-system (wk
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A-system) if

whenever n,y,p,(reN; \i ^ y, p ¥= o-
To avoid misunderstandings we shall henceforth replace the term "A-system"

by "strong A-system (st A-system). Clearly, every st A-system is also a wk A-sys-
tem, and the system ({1,2}, {1,3}, {2, 3}) is weak but not strong. In Theorem 2
we give an implication in the opposite direction. For cardinals a,b,c, let the relation

(1) (a,fc)->wkA(c)

mean that every (a, fo)-system contains a wk A(c)-subsystem, and similarly for the
relation

(2) (a ,6) -s tA(c) .

The negation of a relation involving an arrow -* is obtained by writing -/-> instead
of ->. The symbol wk A by itself denotes the class of all wk A-systems, and
similarly in other cases, such as stA(c).

In Section 5 we prove a number of results on A-systems. In Section 7 we
give a complete discussion of the relation (1) for a, b 2; Ko. In this discussion, as
well as in some of our theorems, we shall assume the generalised continuum
hypothesis (GCH).

2. Terminology and notation

Roman capitals denote sets, and A <= B denotes inclusion in the wide sense.
For every system (Ay :yeN) and M c N, we put AM = U (? e M)Ay. The system
(Ay: y e N) is called an (a, b)-system if | N | = a and | Ay | = b for all y e N. The
class of all (a, fo)-systems is denoted by Q(a, b). For every set A and every cardinal
r we put

[Aj={XczA:\x\=r}.

For cardinals a, c, d, r the partition relation

means that whenever A and D are sets; \A\ = a;\D\ = d; [AY — u (XeD)Ix

then there is a set A' e[/4]cand an element k of D such that [4']r<= 7A. For
every cardinal m we put m+ = min{n: n> m}. If m has the form p+ then we
put m~ = p, and in all other cases m~ = m. By co(m) we denote the least ordinal
X such that | X | = m. For every ordinal a, put a = {X: X < a} , and for every
cardinal m put m_ = co(m). If m ^ Ko, then the symbol cf(m) denotes the least
cardinal c such that m = H(yec)my for some cardinals my<m. The function
cf is the cofinality function. Instead of (cf(m))+ we write cf+(m), and similarly
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in other cases. For objects x, y the symbol {x, y} ̂  denotes the set {x, y} and at
the same time expresses the condition that x =£ y. If d is a cardinal then the
symbol (Ay: y e N)d denotes the system (Ay :yeN) and expresses the condition
that \AI1 dAy\ — d for {fi,y}± <= N. Symbols like (̂ 4,,: yeN)<d have the obvious
meaning.

We use the obliterator A ; its effect consists in deleting from a well-ordered
sequence the element above which it is placed. Other uses of A will be self-explan-
atory. If x = (x0, • • •,xk) and y = (y0, ••• ,yk) are sequences of the same length k,
and x / y, then there is an ordinal i < k, denoted by x o y, such that Xj = ys

(j < i); X; ^ yt. We shall occasionally use that

{j<k:(xo,---,Xj) = (yo,---,yj)} = xo y + I,

{j<k: (x0, -,xj) = (y0, — ,yj)} = xo y.

If (S, —$) is an ordered set and n is an ordinal; x0, ••• ,xn e S, then the sym-
bol {xo,---,xn}< denotes the set {x0, •••,*„} and expresses the condition that
x^-^Xj, for [i<y < n. A set A c S is said to be cofinal in (S, —$) if U (xEA)
[y e S: y =̂  x} = S. It is well known that if a 5; Ko and tp (S, — )̂ = co(a), then
cf (a) is the minimum of the cardinals of the sets A which are cofinal in (S, —^).
Finally, a symbol such as ((^4,,),,^N,B) denotes the family (Dx: XeL), where
L = Nu{p} ; p$N; Dx = Ax for XeN, and Dp = B.

3.

THEOREM 1. Let m, n be cardinals; m ^ X0;n < m. Let &= (Ay:yeN)<ne
Q{m + ,m).

(i) / / m" = m then the system 3F has a st A(m+)-subsystem;
(ii) If m" > m and GCH holds, then !F has a st A(p)-subsystem for every

p<m;
(iii) the proposition (ii) becomes false if the hypothesis p < m is replaced

by p ;£ m.

REMARKS, (a) A. Hajnal made valuable contributions towards proving
Theorem 1.

(b) It is well known that, for every m ^ Ko, the relation m" = m holds if
and only if 1 ;S n < cf (m) (assuming GCH).

4. Discretization sequences

Let !F = (Ay: y e N) be a given system. A discretization sequence (d-se-
quence) of J5" is any sequence (JV0,••• , ^ ) s u c h that k = CO(\N\+) and, for each
k<k, the set Nx is maximal with the properties

NX<=N-NX; (Ay-ANji:yeNx)0.
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Thus No is maximal such that JV0 <= N; (Ay: yeN0)0. Next,

iVj is maximal such that Nt cz N — No; (Ay — ANo: y eN^Q;

N2 is maximal such that N2 <= N — (No u JVt); {Ay — ANo u Nl: y e N2)o,

and so on. Let us put ANX = Sx for every ordinal X < k, and ANp = Sp for every
cardinal p < | k | .

LEMMA 1. Let (N0,---,Nk) be a d-sequence of(Ay:yeN).

(3) There is k0 < k such that {?. < k: Nx # 0 } = k0;

(4) if X < k; {n,y}* c Nx, then A^r\Ay^ SA;

(5) if X<k; neN-Nx±1, then A

(6) if X<k; fieN-N^, then \SxnA,,\ ^ \X\.

PROOF OF (3). Let X < n < k; Nx = 0 . Then, by definition of N^, we have
Nll = 0 . Also, | k| > | N | .

PROOF OF (4). /!„ n Ay -Sx = (A,,- Sx) n (Ay - Sx) = 0 by definition of Nx.

PROOF OF (5). The relation (Ay — Sx:yeNxvj {/i})0 is false by the maximality
of Nx. Hence there is y e Nx such that (A^ ~ Sx) n (^y - Sx) # 0 . Then A,, n

PROOF OF (6). Let K < X. Then /xeN - Nx<= N -NK+l and, by (5), there
isx K e ANk nAli — SK.lfK'<KthenxKe AN — ANk- a AN — {xK.}. Hence
| SA o A^ | ^ | {x0, • • •, xx} # | = | X\. This proves Lemma 1.

PROOF OF THEOREM 1.

Proof of (i). Let (N0,---,Nk) be a ^-sequence of &. Then k = co(m++).

CASE 1. There is Ken with \NK\ = m+. Then there is K 0 = min{K: en: \NK\

= m + } . Then |S K 0 | ^ nmm - m. Put P = {yeNKo: \Ay HS K o | ^ n}; Q = NK0

-P.

CASE la. | p | = m + . Then, for yeP, there is Bye[Ay r\SK0]". Then
[SK 0]"| ^ m" = m<\p\, and there is {//, y j ^ c P such that
Aj n Ay | ^ | B^ n By | = | JB^ [ = n > | A^ n ^4y | which is a con-B^ = By. Then

tradiction.

CASE lb. | P | ^ m. Then | Q | = m + ; | ^ n SKo \ < n (y e Q). Since | [S K J < n

^ ZO < «)'»' ^ nm" = m, there is D e [S K J < n and Q' e [Q] m + such that Ayn S
= D for all y e Q'. Then, by Lemma 1(4), AVLC\Ay = D for {/i, y} # e g ' and so

04 - } > e e ' ) e s t A ( m + ) .

KO
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CASE 2.

Lemma 1(6),
Then

NK | ^ m (Ken). Then | JVn| g nm = m; \N — Nn\ = m + . By
Ayr\Sn\ ^ n (y e JV - Nn). Choose 5 r e " for y eN-Nn.

\{By:yeN-Nn}\^ | [ S J " | ^ (mm)" = m < |JV - JVn|,

and there is {/*, y} ^ c JV — iVn such that B^ = By. Then

which is a contradiction. This proves (i).
Before proving (ii) we establish a lemma.

LEMMA 2. Let

n < m ^ K o ; m" > m; \s\ = m; \N\ = m+;

X y e [ S ] m (ye iV) .

Assume GCH. T/ien f/iere ;s AT swcft that \XllC\Xy\>n.

PROOF OF LEMMA 2. n 2: cf(m). There is a respresentation S = T 0 U ••• u f ,

such that t = »(cf(m)); | rA | = mA < m (A < f). Let y e JV. Then there is Xy < t
such that | Xy n Tx \ > n. For otherwise we obtain the contradiction

m = \Xy\g, I (A < 01 Xy n Tx | ^ | f | n < m.

Now there is Me[JV]m+ and A' such that Ay = A' (yeM) . Then

\XynTx.\>n ( yeM) .

Since [7Y] > n | ^ 2mx' < m +, there is {//,?}* «= M with X,, n TA- = XyO Tr.
Then I . n l , ] ^ |Xu n X y n TA. | = | X,, n Tx. \ > n.

PROOF OF THEOREM 1 (ii). Let (N0,---,Nk) be a d-sequence of (Ay:yeN).
Then k = a>(m + +). Let Sx and Sp have their previous meaning.

CASE 1. |jVm| ^ m. Then |JV-JVm| = m + ; \Sm\ S m. By Lemma 1(6),
| Sm n Ay I >: m (y e N - JVm). By Lemma 2, there is {n, y}# c JV - JVm such
that

which is false.

CASE 2. | jVm| = m + . Then there is Ao = minjAe^n: |A/"A| = m + } . Then

\AynSXo\ ^ \SXo\ Sm (yeN).

CASE 2a. There is M e [^Ao]m+ s u c h t h a t I Ay n sx0 \ = m (yeM). Then, by
Lemma 2, there is {fi, y} # c M such that
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|(4,nsjn(Aynsj\ > n>\AllnAy\.

This is a contradiction.

CASE 2b. There is M e [NXo]
m* such that | Ay n SAo | < m (y e M).

Then there is M ' e [ M ] m + such that the cardinal | ^ v n S A o | is constant for
yeM', say \Ay nSXo\=q {yeM'). There are sets Xy,By such that ( ( - X ^ A T M ^ O

and | By | = p + <j = />0, say (y e M'), where By = ( A , n S J o ) U l 7 (y e M'). Then
(By: yeM')efi(^po

+ + ,po)» a n d by [1], Theorem I, there is M" a M' such that
(By: y E M") e st A(po +) • Then (yl? O SAo: y e Af") e st A(/>o + ) and, by Lemma 1,
(Ay: yeM")est A(po+)- This proves Theorem 1 (ii).

PROOF OF THEOREM 1 (iii). It suffices to find a system

{Ay: y e N) < cf(m) e Q(m +, m)

which has no st A(m)-subsystem. Put A: = co(cf(m)). There are cardinals mx such
that m0,••• ,mk < m = m0 + ••• + w t . Put

N = {y = (Vo» "•,?*): 7A

Then {By: y e N) E Cl{H mx,\ k\). We have n mx = m + ; I fc| = cf(m) < m. Let
| X , | = m (yeN) and ((Xy)y eJV, B ^ o , and put Ay = 5y u ATy (y e JV). Then
(v4y: ) |eJV)eQ(m+,m). Let {fi,y}^ c AT. Then there is x0 = /<o y, and we have

| 4 , n / [ y | = \{BltUXll)n{ByUXy)\ = \BunBy\ = | A 0 | < \k\ = c f ( m ) .

Now let A/ c A? and {Ay: y e M) e st A. Then (By: y e M) e st A. But then there is
At < fc such that no y = XlandBlir\By = {(p0, ••• ,px): X ̂  / l ^ f o r a l l f ^ y j ^ c M.
Here pxernx{X < Xt), and p0, ••• ,pXi are independent of \x,y. Therefore

^ mXl

and the proof of Theorem 1 is completed.

5. Some special Theorems

THEOREM 2. Let {Ay:yeN)ev/kA. Assume that

(i) \Ay\ S n<K0 for yeN,

(ii) | Au O Ay | = k for {n,y}+cN,

(iii) \N\>l+nQ.
Then {Ay:yeN)estA.

PROOF. Let y0 e N. By (i) and (ii),

\{AynAyo:yeN-{yo}}\^®.
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Hence, by (iii), there are sets M, D with MelN - {yo}]"+1 and D e [Ayo']
k such

that AlinAyo = D for

CASE 1. There is yi^N — {y0} with D £ v4yi. Then, for every fieM, we

have -4,, O/4 y i # Z), and there is x^eA^ n A y i — D . Then

and there is {p, a) # <= M with xp = xff. Then xp e Ap O Aa = D which is a contra-
diction.

CASE 2. D c Ay for all yeN - {y0} . Then A , n / l , = J) for {(i,j},cJV
and the theorem follows.

Definitions: (Ay: y e N) is called a system without repetition if /!„ # y4y for
{/i, y} ± c N. For n < Ko, denote by g(n) the largest integer such that there exists
a (g(n),n)-system without repetition which has no wk A(3)-subsystem. Let h(n)
be denned similarly but with repetitions allowed.

It is easy to see that #(1) = 1; g(2) = 5; g(3) ^ 10. D. Hanson proved that
0(3) = 10.

THEOREM 3. For all n with 0< n<^0,

(i) h(n) = 2g(n), (ii) g(n + 1) ^ 2g(n).

COROLLARY. g{n) ^ 5.2" ~2 for n ^ 2.

PROOF OF (i). If (/41,/12, •••,/lx) is a(g(n), n)-system without repetition which
has no wk A(3)-subsystem, then (A 1, • • •, Ax, A !,-•-, Ax) is a (2g(n), n)-system, with
repetition, and again without wk A(3)-subsystem. Hence h{n) ̂  2g(n). If, for
some n, we have h(n) > 2g(n) then there is a ( > 2g{ri), n)-system without wk A(3)-
subsystem. Such a system contains at least g(n) + 1 distinct members, and these
form a system whose existence contradicts the definition of g(n). Hence (i).

PROOF OF (ii). There is a (g(n), n)-system (Ay :yeN) without repetition and
without wk A(3)-subsystem. Let xyX be any 2g(ri) distinct objects, for y e N and X e 2
which do not belong to AN. Then it is easily verified that

(Ayu{xyX}:yeN; Ie2)

-is a (2g(n),n + l)-system without repetition and without wk A(3)-subsystem. This
proves (ii).

THEOREM 4. Let a > 0 and 1 ̂  n ^ Ko. Then there is an (a", n)-system
{Ax: xeX)<n which has no wk A(a+)-subsystem.

PROOF. Put X = {x = (x0,---,xn): xo,---,xnea};

Ax = {(xo,-,xy):yen} (xeZ) .
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Then (Ax: xeX)<neSl(a",n). If {x,y}* c X then

l ^ n ^ l = \{(xo,---,xy):y<x o y}\ = xo y<n.

Let X' <= X and (Ax: x e X ' ) e wk A. Then there is m < n such that xo y = m
for {x, y}# <= X', and hence | X' | = | {xm: x e X'} | ^ a . The theorem follows.

THEOREM 5. Let a be a non-zero ordinal, and put dx = 2 | a | . Then there
is a (dx,Kx)-system (Ay: y eiV)<Not without wk A(3)-subsystem. In particular, we
have (da, XJ +* wk A(3). / / (j) 21*' ^ X, /or j8 < a, (ii) N« = | a | , then we can
stipulate that, in addition, \AN\ = Ka.

REMARK. The condition (i) is a weak version of the generalized continuum
hypothesis, and the condition (ii) is equivalent to a>x = a and is known to hold
for some a.

PROOF. Let the letter k denote elements of 2, and the letters /?, y, 5 elements
of a. Let | x a o , - , A , ) | = N,+ 1 for all p,X0,-,Xfi, and

-,?.p):pea; A 0 , - ,A,e2) 0 .

Put JV = { ( A 0 ) - , l a ) : A 0 , - , ^ 6 2 } and ,4(2O) ••• ,XX) = U (/? < ,
f o r ( A 0 ) - , ; a ) 6 N . Then | N | = 2 " ' ; j ^ ( A 0 ) . . . J a ) | = E (/? < «)«,+ , = Ka.
Now suppose that {(Ao, • • •, ^ ) , (A ,̂ • • •, A^, (AJ, • • •, 1^)}# <= JV. Put p = A o A'.
Then 14(A) n 4 ( A ' ) | = 2 ( ? < p ) X y + i ^ K p < X a . Put a = Xo k";x = X'o X".
Change the notation, if necessary, so that p ^ f f ^ i . Then

p < T; I A(X) n^(Af) | ^ Kp < N p + ! ^ Kt = S (y

Hence the (21"1, KJ-system (A(A): A e iV)<Nsr has no wk A(3)-subsystem. Now sup-
pose that (i) and (ii) hold. Then

| U(AeJVM(A)| = | U(P<oc;Xo,-,Xl)e2)X(Xo,-,X0)\

1 = Ka; \N\ = 2W = 2*".

Hence, on changing the notation slightly, we obtain a (2N", KJ-system(^4M:
without wk A(3)-subsystem, and now | AM | = X,.

THEOREM 6. Let a = 'H.m. Then (i) assuming GCH, there is an (a + ,K 0 >
system (Ax: XeL)<iio with \AL\ ^ a; (ii) no (a + ,tto)-system (Bx: XeL)<V! with
|.Bjr,j ^ ct has a wk A(a+)-subsystem; (Hi) if GCH holds then
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REMARKS. The result (i) is due to A. Tarski. For the convenience of the
reader we give a proof. In Section 7, Case 1 b2al, we prove (Km+,, No) -H> wkACH^),
a relation which is stronger than (iii).

PROOF OF (i). Let L be the set of all sequences A = (/0, • • •, /„) such that ly e coy

for y<co. Put Ax = {(/0, •••,/„): n < co} for XeL. Then (Ax: AeL)en (a + ,K 0 ) ;

---J»)'-t*<co; ly e <oy for y < fi) \ = I (^ < « ) [ ] (? y

If {A, A'}# c L then there is y0 = A o A', and we have | J4A n A .̂1 = y0 + 1 < Ko.

PROOF OF (ii). Let the (a+,K0)-system (Bk: A G L ) < N O satisfy \BL\ ^ a. Let

(B;.: AeL')ewk A for some L'e [ L ] " \ Choose {A'J."}^ c L'. Then \BX. nBr,\
= p<K0. Choose Dxe[Bx~]p+1for XeL. Then|{DA: A eL'} | ^ | B t | < |L ' | and
therefore there is {p, o}± c L' such that Dp = Da. Then

i I ^ \D,\ = p+l

which is the required contradiction.

6. Some Lemmas

It is convenient to use the function \j/(a) = \ {x: x ^ a} | , where a ranges
over cardinals. Thus, ^(KJ = Ko + | a | .

Throughout the rest of this paper we use the following notation for two
fixed cardinals:

Furthermore, GCH is assumed without reference being made to this fact.

LEMMA 3. Let a > cf(a). Then (a, b)++ wk A(a).

PROOF. If n = co(cf(a)) then there are cardinals ay with

a o , - - - , d n < a = a o + ••• + dn.

Choose sets By with \By\ = b (y < n) and (Bo, • • •, fin)0, and put DyX = By for

y < n and Xeay. Then (£>yA: y < n; A e ay) eQ(a, b). Let Dy c ay(y < n);

(DyA: y < n; A e Dy) e wk A(c).

CASE 1. There is y0 < n such that j X>Vo | ^ 2 . Choose {<T,T}# C Dyo. Then
| Dyoa O D,,0I | = b > 0. Hence Dy = 0 for y e n - {y0}, and so

c = E (y < n) | D71 = | Dyo | ^ ayo < a .

CASE 2. | Dy | < 2 for y < n. Then X (y < n)\ Dy\ ^ | n \ = cf(a) < a.

LEMMA 4. Let b < cf(c). Then (c + , b) -* st A(c+).
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PROOF. In [2], p. 471, the function s(x, y) was defined for all cardinals x, y
such that x S 2 ; j ^ 3;x + y ^ K 0 , b y putting

s(x,y) = sup{ l(yex)yo--yy: y0,-, ym(x)<y}.

We have

M ^ X(yeb+)c = b+c = c ^ s(b + ,c+).

Here, the first inequality follows from | y | ^ b < cf(c), and the second inequality
from b > 0. By [2], Theorem IV,

fA(b+,c+) = s+(b\c+),
and therefore

LEMMA 5. Let a = a~ = cf(a) > fe. 7%en (a, fc) ^ st A(a).

PROOF. s(ft+,a) ^ K y G b ^ a ^ l ^ I,(yeb+)a = b+a = a;

s(b + ,a) ^ sup {a0: «o < «} = a -

Hence s(b+,a) = a. We now prove/A(ft+,a) = s(fe+,a). We want to apply [2]
Theorem IV (a) (iii). To do this we must prove

(i) Ko ^ b+ <cf(a) ^ a~ = a;

(ii) if sup {a0
6: a0 < a} = d then d = cf(d) > a/1 for a t < a .

Now, (i) is true. Also,

sup {OQ: a<> < a) = SUP {ao ^ + : ao < a } ^ «

g sup {OQ: «O < a}; sup {OQ: o0 < « } = « = cf(a).

Finally, let at < a. Then a\ ^ aî fc"1" < a. This proves (ii), and we have, by [2],
a) = s(b\a) = a; (a, < b+) -» st A(a); (a, b) ̂  st A(a).

LEMMA 6. Lef a = cf(a);f(n,y)e 2 for l u < y e a + . 7%en r/iere is an (a+,a).-

system (Fy:ye^+) such that, for [i<yea+,

\F,nFy\ < a iff(n,y) = 0

= a iffQi,y) = l.

PROOF. 1. We begin by showing that, given any (a,a)-system (Ay: yeN)<a,
there is a set T (called a (< a)-transversal of the system) such that
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We may assume N = a. Then there are elements xy, for y e a , such that
xysAy-(ALu{x0, ••• ,xy})(yea). We may put T = {xy: y £ a } # . For, letjuea.
If <![ e T n ^ , then there is y e a such that £ = xy e Ay — Ay. Also, ^ e i r Hence

^ ^ 7, so that 1 ^ | r n ^ | g | { x o , . - , x , } | = | / f + l | < a .

2. Choose a system (5a/ ):aefl+ : j?ea)oeQ(a + , a ) . We now choose sets Bll,
for n e a + , by the following procedure. Let ^0 e a+ , and suppose that BQ, •••,.#„„
have already been defined in such a way that

?„ is a ( < a)-transversal of the family

We show that

(") ((Sxp: a S Ho; Pea), B0,-,Sj<a.

Let n < fi0. Then

BM <= U (a g /*; /Jea) S ^ U B , = S ^ U ^ , say.

By induction over ^,we deduce that B,, c SM+l!<I (/i< /x0).

(i) Let a ^ /i0; jS e a; y < n0. If a g y, then | Sa/S C\By | < a by (*) with
^ = y. If a > y, then | Sa/, n By | ^ | Sap n Sy+±ia\ = 0 since a $ y + 1.

(ii) Let p < <r < n0. Then | B^ n BCT | < a by (*) with \i = <x. This proves (**).
Now let B^ be a (< a)-transversal of the family (**). Put Sx = \J(Pea)Safi

(aea+) ;

Then it follows, by induction on n, that

B^ c U (a ^ ft; jSea) Sa/) = U (a g

£„ = U (a ^ ^ n B , = U (a ^ ji)4«, ( ^ a + ) . Since |Sa/, |
ea+; jSea), we have |Xa/I| = a (a g A^ea+)-Put Fv = Sy U U(A«<y;
= \)An (y e a+). Then Sy^Fy<= S^^ (y e a+);

Now let Ai<y ea+. Iff(n,y) = 1 ^ ^ ^ . ^ K ^ |
^ 1^1 = a. Now suppose /(A*, y) = 0. Then Ffln Fy = (S^U U (a < n; f(<x,fi)
= l)Axll)n(Syu U(P<y; f(P,y) = l)At1). We note that SfinSy = 0; if
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f(P,y) = 1 then 0 # ft and hence Slir\APycSlinSf = 0. If a < n, then
Aail n Sy <= Sx n Sy = 0 ; i f a # 0, then AXfl O ^ c Sa O Ŝ , = 0 . All this shows
thatF^ni^c UioKf^A^riA^cB^Byi |F,,n.Fv| g \BllCBy\<a. This
proves Lemma 6.

LEMMA 7. Let a = cf(a). 77ien (a+,a) ++ wk A(a+).

PROOF. By [3], a+ ++(a+)\. Hence there is a function/: [a+]2+*2 such that,
whenever M <= a+ and / i s constant on [M]2, then |JVf| <a + . By Lemma 6, there
are sets Fy such that |F y | = a for y ea+ and, for n <yea+, \Flt(~\F1\<a if
/ 0 . ?) = 0; | FM O Fy | = a i f /O, ?) = 1. Then the (a+, a)-system (FT: y e a+) has
no wk A(a+)-subsystem.

LEMMA 8. Let a -> (c)J(t). T/ien (a, fe) -> wk A (c).

PROOF. Let (/I,,: y e N) e Q(a, b). Then

By Hypothesis there are M and b0 such that Me[N] c ; ft0 ̂  fe; |/4(Jn^4r| = fc0

for {n,y}* c M - T h e n

LEMMA 9. Le/ a > a " . T/ien (a+,a) -> wkA(a).

PROOF, (/'(a) = iKa~) = a~ < a • Hence, clearly, a -*• (a)J(o) and therefore, by
the "stepping-up lemma" of [3], a+->(a)lM. Now Lemma 8 yields (a+,a)-*
wkA(a).

LEMMA 10. Let (a,fc)-H'wkA(c). Then (a',b') +* wkA(c') ifa^a';b^ b'\

REMARK. This lemma will be applied without reference.

PROOF. There is an (a, fc)-system (Ay:yeN) without wkA(c)-subsystem.
Choose sets By such that Ay <= By and \By\ - b' for y eN, and ((By - ^,,),eiv,
AN)0. Let N' e \_NJ' .Then the (a', b')-system (By:yeN') has no wk A(c')-subsystem.

LEMMA 11. 0K&), b) +> wk A(3).

PROOF. Put N = a u {<»o. •" . ^ } ;

^ r = y u{<: (opy Z £ < co^y + 1)} (yeJV).
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Then the OKfc),&)-system (Ay:yeN) has no wk A(3)-subsystem. For if
?. A}< <=N then

= \n\<\y\ = \AynAx\.

LEMMA 12. Let b = b~. Then (b+,b) ++wkA(b).

PROOF.Put JV = {y = (y0,•••»?«,,): To,'" »?«>,£2};

^T = { (Vo, - ,7J :Ae6} (yeJV).

Then (4 / . yeJV)efi(b+,b). Assume that there is M e [ N ] 6 such that (Ay: y eM)p

for some p . Let {ju,y}# <=. M. Then p = |4 M Oyl v | = \/ioy\<b; fioyep+. Put
<7 = c»(p+). Then | {(y0 >- ,ya): (y0, - , g e M for some y , , - ,?„,} j ^ 2''"
= p++ < b = | M | , and there is {ju,y}# <= M such that (ji0, ••• ,fia) = (y0, •••,%).

On the other hand, if A = /io y then 2 < <r; y.x ¥" 7i, which is a contradiction.

LEMMA 13. Let b = tK&). T^en (b+,b)+^wkA(3).

PROOF. CASE 1. ft = 0. The conclusion follows from the case a — 2; n = Ko

of Theorem 4.

CASE 2. J3 > 0. For k < f} and y0, ••• ,y A e2 , choose a set X(y0, ••• , ^ ) with
\X(yo,-,h)\ = « i + i , such that ( X ( y o , - , y A ) : 2 < j3; yo,-,y*G2)o. Put A7

= U ( A < / 0 Z ( y o , - , y J for y = (yo,-,y/i); y o , - , ^ e 2 . Then \A,\ =
I ( l < / J ) K , + 1 = ^ = b . W e h a v c | { y o , - , y , ) : yo,-,%e2}\ = 2 ^ = | j S | +

= b+,,Let (li,y,p)* and (A,,,AvAp)ewkA(3). Put /io y = T.

We note that {A: Qt0,• • •.fix) = (?o»-" .W}= 1±_1 • Hence 14^ O 4 y |
= | U (A < T + l)X(y0, •- ,yx) | = 2(A < T + 1)KA+1 = N t + 1 = K/(oy+1. There-
fore x = fioy = iiop = yop, and {y.x, yz, p,) ̂  which is impossible. This proves
Lemma 13.

LEMMA 14. Let cf(d) = Ko. Then (d+,K0)-H'WkA(d).

PROOF. There are cardinals dx such that d0, •••,da < d = d0 + ••• + da. Put

X = {x = ( x o , - - - , i J

4X = {(x o ." - .*J : A < w} (xeJSC). Then ( 4 , : xeX)eQ(d+,K0). Let L c X and
(Ax: x e L) e wk A. Then there is a< cu such that | A c n 4 J , | = < T + l ; x o j ; = <T
for {x,y}# <= L. Then \L\ — | {xff: x e L } | ^ da<d which proves Lemma 14.

LEMMA 15. Let cf(d) = K4

PROOF. There are cardinals dx such that d0> -• ,de>s < d = d0 + ••• + Jma. Let
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X = {x = {xo,---,xei^:xyedy (y<ca/)}. For xeX and X < co6, let | B(x0,
•••,xx)\ = KA+1, and (B(x0,---,xx): k <(o6; xyedy (y<X))0. Put

for xeX. Then \x\ = d0--- 4 , = d+; \AX\ = I(A < (O6)KX+1 = «„ , , so that
(Ax: x e X) e Q(d+,Ha6). Let L <=X and (Ax: x eL)ewkA. Then there is a < co6

such that x o y = a for {x, y}± c L . Hence [L | = | {xa: aeL) | g da< d, which
completes the proof.

LEMMA 16. Let 0<d = d~ < Kfflpi. Then d(d) < NB.

PROOF. We have d = K, for some (5 < «„ . Since d = d~ we conclude that
d= Z(7i<^)K,; cf(rf) ^ | (5 |<Kn.

For the last two lemmas we need the following definitions: Consider a sys-
tem J*" = (Ay: y eN). We call & an (a,b, ^ d)-system if J^6fl(a,fc) and (Ay:
yeN)Sd . An (a, b, < rf)-system is defined similarly. For every set A and every
cardinal d we put

^(A,d) = {yeN:\AnAy\ = d}.

LEMMA 17. Let 3F be an (a,b, g d)-system; a = cf(a) > bd\ \A\*=b;

\^{A,d)\ = a. Then & has a wkA(a)-subsystem.

PROOF. We have | [A~\d | = bd < a = cf(a). Hence there is an (a, fc)-subsystem
3?' = G4y:ye./V')of J^ and a set Z such that \x\ = d and A c\Ay = X iyeN').
Then, for {fi, y] * <= N', we have d = | X | ^ | A,, n Ay | ^ d, and ̂ ' is a wkA(a)-
system.

LEMMA 18. Let ^ = (Ay: yeN) be an (a,b, g d)-system, such that

for every yeN. Suppose that a = cf(a). Then & has an (a,b, < d)-subsystem.

PROOF. Assume N = a. We can construct inductively ordinals yp for pea
such that, for each pea, ype(N - U (a < p)3F(Ay,d)) - {y0,• • •,?p}. Then
(Ay : pea) is an (a,b, < <Q-system.

7. Discussion of the wk A-relation

We consider two fixed infinite cardinals a, b, where
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and we shall determine all cardinals c such that the wkA-rdafion

(7) - (a,6)->wkA(c)

is true. There is a least cardinal (j>(a, b) in 3 ^ $(a, b) ^ a+ such that (7) holds
if and only if c< <j>(a,b). We shall determine <j>(a,b). If <j)(a,b) = 3 then (7)
only holds completely trivially, i.e. for c ^ 2 , whereas </>(a,b) = a+ means that
(7) holds for all values of c which are at all admissible, which are the cardinals
c ^ a.

Our results show that, for all a, b.

4>{a,b)e{2>,a-,a,a + } .

In our discussion We shall write <j> instead of <j)(a, b). We remind the reader that
throughout this section we assume GCH.

CASE 1. a > b+.

CASE la. a > a~ > a~~. We prove that <f> = a + . We can write a = a0
++,

and then we have OQ + = a =§ b+ +; a0 S: b. By [2], Theorem 1 (ii), with a, b
in [2] replaced by a j , a0 respectively, we have (ao

+ + ,ao)-» s tA(ao + ) . Hence
(a, b) -»• st A(a).

CASE lb. a> a~ = a~~.

CASE lb l . b <cf(a~). Then $ = a+. Indeed, by Lemma 4, (a, 6)-+stA(a).

CASE Ib2. b ^ cf(a"). Let a0 < a~. Put at = max{ao,b}. Then (a*"1"^!)
-*stA(aJ" + ) by [2] . Hence (a,b)-»-stA(a0) (a0 < a" ) .

CASE Ib2a. cf(cr) = c f - (a - ) .

CASE Ib2al. cf(a") = Ko. Then <j> = a~. For, by Lemma 14, (a, Ko)
) and therefore (a,b)+->wkA(a~).

CASE Ib2a2. cf(a~) > Ko. Then (j> = a~. For, we have, by Lemma 15,
(a, cf(a"")) 4+ wk A(a ~) .

To see this, put cf(a") = K5. Then 8 is a positive limit ordinal; N3 = cf(Xa).
If 3<<ue then K.5 = I.(d0 < d)Kin; cf(N,) ^ - | 5 | < K a , which is false. Hence
5 = cod. By Lemma 15, withd = a~, we have(a,K0)il)4-»wkA(a~),i.e. (a, cf(a~))
+->wkA(a~). This implies (a, fr)++wkA(a~).

CASE Ib2b. cf(a~) > cf - (a") . Then cf(a~) has the form XA + 1.

CASE Ib2bl. K^ + l ^ 6. Then </> = a". For, by Lemma 15, ( a . X ^ ^ )
++wkA(a"), which implies (a,b)+>wkA(a~).
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CASE Ib2b2. K ^ , > b. We show that <£ = a + . We use the notation J%4, d)
introduced before the statement of Lemma 17. We assume that the (a, 6)-system
!F has no wk A(a)-subsystem, and we have to deduce a contradiction. Since & is
an (a, b, ^ ft)-system, it follows that there is a least cardinal d such that ^ has
an (a, b, ^ ^-subsystem. We have 0 < d ^ b. We may assume that !F itself is
an (a,b, g d)-system. Then !F has no (a,b, j£ e)-subsystem, for every e < d. Let
& = (Ay:y£N)Sd. Let yoeAT and \&(Ayn,d)\ = a. Since bd g, b" = b* <a,
it follows from Lemma 17 that & has a wk A(a)-subsystem, which is a contra-
diction. Hence | &(Ay, d) | < a for y e JV. Then, by Lemma 18, J5" has an (a, b, < d)-
subsystem. We may assume that & = (Ay: y e N)<d is itself an (a, b, < rf)-system.
If d = e+, then & is an (a, b, ^ e)-system, which contradicts the minimality of d.
Hence 0<d = d~gb< KmA+1 and, by Lemma 16, cf(rf) < KA+1 .

We shall now construct a modified rf-sequence. There is a maximal set Noc N
such that (/4r: 7 e No)o. Then 0 < | No | < a. Let 0 < a e a. Suppose that, for
each p<a, we have already defined a set Npe[N]<a, where Np^0, such
that, putting Sp-ANt, we have |^ , ,nS p | <rffory e Np; A^ n Ayc= Su for {fi,y} * <= Np.
Suppose, furthermore, that, for each p < 0, the set Np is maximal such that the
above stated conditions hold, i.e.: if ye N — Np, then either Ay c Sp, or there
is fieNp — {y} with A^ n Ay 4: Sp. We shall now define A^, and in such a way
that all these conditions hold for p = a. Put Sa = /4Ni,. Then \Sa\ ^ |cr|a~fcff
= a". Well-order Sa by a relation -^ , so that tp(Sff,-^) ^ aj(a"). Put N*
= {y e N: j Ay n Sff | ^ d} . We now prove | N* | < a. Assume \N*\ = a. For
each y e JV*, denote by g(y) the initial section of (Ay n Sff, -^) of type ca(d). If
{^,y}^ cAT* then, by (Ay:yeN)<d, we have | ^ n ^ y | < r f , and hence g(ft)

. There is an initial section T of (Sa,-^)such that [ T[ < a~ and |{yeiV*:
T } | = a. For: if |S f f | < a~ then we put T = Sa. Now let |S^J = a~.

We have c((d) < KA+I = cf(a~). For each ye AT*, the set (g(y),-^>) has a cofinal
subset of cardinal cf(d). This subset is not cofinal in (S f f , ^ ) . Hence g{y) is not
cofinal in (Sa,^), and there is xy eSa such that g(y) c {xeSa:x-^,xy}. In view
of a = cf(a), there is x* e Sff such that | {y e N*: xy = x*} | = a . Then we may
put T = {xe Sa: x ^,x*}. This completes the definition of T. Now we have
I [T ] d | ^ 2 | r | g a". Hence there is X <= T such that \{yeN*:g(y) = X}\ = a.
But then (Ay: yeN*; g(y) = -y)^,!, which contradicts the relation (Ay: yeN)<d.

We have thus proved | N* | < a. Let yeN — N*. If Ay c Sff then we have
b = \Ay\ = \Ay C\Sa\<d t* b which is false. Hence yeN—N* implies Ay <£ Sa.
Let JVff be maximal such that Na<=N - N* and (Ay- Sa:ye Na)0. Then Na # 0
It follows that if y eAT,, then Ay 4: Sff, and if {^,y}^ <= iVff then ^ n ^ y <= Sff.
Also, if yeN—Nf and |^4r O Sp| < d, then there is fieNa with AllC\Ay<£ Sa. In order
to complete the inductive definition of N0,N,,--- we must now show that \Na\ < a.
Assume that | Na | = a. Corresponding to every yeNa> there is ey < d suqh that
I Ay n Sa I = ey. Then there is e < d such that \{y e Na: ey = e}\ = a. For we
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have | {ey: yeNa}\^d^b<a~. Put N' = {y e Na: | Ayn Sa | = e}, so that

| AT'| = a. If {/x,y}# cN', then | ^ O ^ y | = | ^ O A, n Sa\ g | ^ n S.\ = e.
Hence (A.,: yeJV%,,e£2(a,b) which contradicts the minimum property of d.
This proves | Na | < a, and the inductive definition of Np for p ea is accomplished.
We have b+ < a, and therefore we can choose y e Nw(h+y For each peb+ there
is np e Np such that v4Mp O/4y 4: Sp = ANp. We can choose zpe A^ c\Ay- ANp.
If T < p then zt e Au_ r\Ay c ^ ^ c: ANf>. Hence zp / zt for T < p £ b + ;

which is the required contradiction.

CASE lc. a — a~.

CASE lcl . a = c/(a). Then <j> = a + . For, by Lemma 5, (a,b) -»s( A(a).

CASE 1C2. a > cf(a). Then <j> = a. For, by Lemma 3, (a,b)+->wkA(a). Let
a0 < a and put c^ = max{a0,b). Then, by [2 ] , (af+, a,)-* stA(a!+ + ) . Hence
(a,b)->stA(a0) ( a o < a ) -

CASE 2. a = fc + .

CASE 2a. b = | j? | . Then 0 = 3. For, by Theorem 5, (2^U)+>wkA(3).
Hence (a, b) H-» wk A(3).

CASE 2b. b>\p\.

CASE 2bl. b > b~. Then 4> = a. For, by Lemma 7, (a,b)-)->wkA(a). Also,
by Lemma 9, (a, b) -> wk A(b).

CASE 2b2. fc = fc-.Then^ = a". For, by Lemma 12,(a,b)++wkA(b).Now,
let bo<b. Then, by [3], b->(bo)lw, and Lemma 8 gives (b,b) -» wkA(b0).
Hence (a, b) -* wk A(b0) (f>0 < b).

CASE 3. a = f>.

CASE 3a. b = | / ? | . Then 0 = 3. For, by Lemma 11, (a,6)-i->wkA(3).

CASE 3b. 6 > | ^ | .

CASE 3bl. b>b~. If b~ = cf(b") then, by Lemma 7, (b,6
and if ft" > cf(fc~) then, by Lemma 12, (b, b~)++ wk A(b"). Thus, in either case,

CASE 3bla. & - > & - - . Then <j) = a. For we have 0 = jS0 + 1 = p\ + 2 for

Now Lemma 8 gives (a, 6) -» wk

CASE 3blb. b~ = 6 " . Then, by Lemma 12, (fc,fc-)+^wkA(b-) and hence

https://doi.org/10.1017/S1446788700019091 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700019091


[18] Intersection theorems for systems of sets III 39

CASE 3blbl . \j/{b~) = ft". Then <j> = 3 . For, by Lemma 13, (ft, b~)+*
wk A(3). Hence (a, b) +•» wk A(3).

CASE 3blb2. i^(ft-) < ft". Then 0 = a~. For, let fto<ft-. Then ft -»
(^o)«6) a n d , by Lemma 8,

(a,ft)-+wkA(ft0) ( f t o < f r " ) .

CASE 3b2. ft = ft-. Then 0 = a . For, by Lemma 12, (ft+,ft)-i->'WkA(ft),and
hence (a, ft) ++ wk A(ft). Let ft0 < ft. Then ft -> (bo)$m and, by Lemma 8,

(a,ft)^wkA(ft0) ( f t o <f t ) .

CASE 4. a < ft.

CASE 4a. ft = | p | . Then 0 = 3 . For, by Lemma 11, (i^ft), b)++ wk A(3) and
hence (a,ft)+->wkA(3).

CASE 4b. ft > 10 \.

CASE 4bl. a ^ 2m. Then 0 = 3 . For, by Theorem 5, (2|p|,ft)+*wkA(3) and
therefore (a,ft)+->wkA(3).

CASE 4b2. a > 2*0+m. Then \p\< 21"1 < a.

CASE 4b2a. a — a~. Then <f> = a . For, by Lemma 12, (a + ,a)-+ wkA(a),
and therefore (a,ft) ++ wkA(a). Let ao<a. Then a-»(ao)Ko+|fl|> an<^ Lemma 8
gives (a, ft) -> wk A(a0) (a0 < fl).

CASE 4b2b. a> a~.

CASE 4b2bl. a~ >a". Then 0 = a. For: | 0 | < 2 l ^ l < a ; fl~+*(a~)io+|/i|;
a -* {a~)\(b)'-> (fljft)-» wkA(a~). By Lemma 7, (a ,a~) +-> wk A(a). Since a " < a
< ft, we deduce (a, ft) ++ wk A(a).

CASE 4b2b2. a~ = a~~. Then 0 = a~. For, Lemma 12 yields (a,a~)+*
wkA(a") , and hence (a,ft)++wkA(a-). Let ao<a~. Then a~ —*(ao)NO+|/»|'
« -»(«o)J((.); (a, ft) -> wk A(a0) (a0 < a ~ ) .

CASE 4b3. 2^ < a ^ 2Ko+| / l1. Then 0 = 3 . For, we have j» < w and a = X x .
By Lemma 13, (K1,K0)+^wkA(3). Hence (a,ft)+^wkA(3).

This concludes the dicsussion of the relation (a, ft) -> wk A(c) for infinite car-
dinals a, ft.
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