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Abstract

Long-term in situmonitoring of beach morphology is indispensable for capturing the processes
of foreshore morphological changes, and thus many beach monitoring campaigns have been
conducted globally. Here, we review the various foreshore beach processes attributable to cross-
shore sediment transport, which have been elucidated through long-term beach monitoring.
Historical in situ beachmonitoring has revealedmany daily–annual-scale cyclic foreshore beach
morphological changes and shoreline changes; however, many shorter- and longer-term pro-
cesses remain unresolved, for example, the short-term response to tidal fluctuations and the
long-term response to sea level rise. The cost per area surveyed of state-of-the-art equipment will
gradually decrease over time, and the accuracy, resolution, and volume of information obtained
from the monitoring methods, which are still in the early stages of development, will improve as
research progresses. Continued long-term monitoring and acquisition of previously unmeas-
ured monitoring data through the development of monitoring methods are expected to help
elucidate unresolved beach processes.

Impact statement

Beaches play an important role in disaster prevention by reducing the wave energy reaching land
and protecting hinterlands from wave overtopping and other hazards. Using various methods,
scientists have monitored beach morphology to investigate how and by what mechanism beach
morphology changes. For example, long-term in situ monitoring data of beach morphology,
obtained using methods such as leveling and satellite-based positioning, have provided insight
into beachmorphological processes on various time scales. Temporary erosion caused by storms
and cyclic morphological changes caused by seasonal wave fluctuations have been well studied;
however, certain processes, such as the effects of tidal and wave interactions on beach morpho-
logical change and the response to sea level rise, remain unresolved. High-quality multisite
monitoring data acquired by new surveyingmethods, such as drones and LiDAR (light detection
and ranging), will provide clues that will help elucidate these processes.

Introduction

Sandy beach morphology is changed continuously by waves, currents, and winds. The variability
of beach morphology is one of the important processes in geophysics, and knowledge of the
underlying processes is important for coastal disaster prevention. The foreshore, that is, the
swash zone, is the area that changes most dynamically in response to the wave regime. Erosion of
the foreshore can lead to large-scale shoreline retreat; therefore, foreshore morphology should be
monitored carefully from the perspective of coastal management. To capture the processes
underlying foreshore morphological change, in situ monitoring data of beach morphology are
indispensable, and thus many beach monitoring campaigns have been performed worldwide.

Monitoring of beach morphology, including not only the foreshore but also the upper
shoreface (i.e., the surf zone and shallower than the wave base), is mandatory in investigating
foreshore morphological changes. Especially for long-term beach processes such as shoreline
change due to sea level rise (SLR) and sediment transport caused by extreme storms once every
few decades, the sediment transport and deposition processes between the lower and upper
shoreface cannot be ignored (Anthony and Aagaard, 2020; Harley et al., 2022). Most beach
monitoring campaigns focus on the backshore to upper shoreface zone, while the lower shoreface
is rarely monitored adequately.

Campaigns formonitoring beachmorphology can be divided broadly into two categories. The
first is short-term and high-frequency or high-resolution monitoring, which mainly focuses on
the morphological changes caused by cross-shore sediment transport. We call such campaigns
concentrated monitoring. The monitoring usually involves a single or a limited number of cross-
shore transects, and the beach profile ismeasured to reveal the changes that occur over a period of
a few days to a few weeks during storm and calm wave conditions. Short-term monitoring
campaigns often target foreshore morphological changes that are substantial even over short
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periods. Generally, in such monitoring campaigns, beach profiles
are measured using leveling, RTK-GNSS (real-time kinematic glo-
bal navigation satellite system) (Harley et al., 2011a), and more
recently, LiDAR techniques (Almeida et al., 2013; O’Dea et al.,
2019; Phillips et al., 2019).

The second category is long-term and low-frequency or low-
resolution monitoring, which focuses on morphological changes
caused by both cross-shore and longshore sediment transport. The
monitoring usually involves obtaining a shoreline position of the
entire coast and extensive three-dimensional bathymetry. Morpho-
logical changes due to beach rotation (Klein et al., 2002) and
quantitative imbalance of longshore sediment transport around
jetties, which can occur coastwide on monthly–multiyear scales,
can be obtained. In a situation where external factors such as the
wave regime or the sediment supply from a river could change on
annual–decadal scales (Warrick et al., 2015; Nguyen and Takewaka,
2022), the object of monitoring might be to determine the long-
term morphological changes due to cross-shore and longshore
sediment transport. In some cases, such as in the Netherlands, a
national strategy has promoted continued long-term annual moni-
toring of beach profiles on the national scale (i.e., the Jarkus
program; e.g., Southgate, 2011). Satellite imagery and aerial photos
are often used to observe long-term shoreline changes (Crowell
et al., 1991; Luijendijk et al., 2018), and camera measurements such
as Argus are also used to analyze short-term variations (Holman
et al., 1993; Harley and Kinsela, 2022). Single-beam sonar andmore
recently narrow multibeam sonar mounted on boats are generally
used to produce precise bathymetricmaps over large areas (Barnard
et al., 2011), although the frequency of such monitoring is often as
low as once per year.

On the basis of the above, it would be pertinent to ask whether
there are any long-term high-frequency observations that could
fill the gap between the two types of monitoring campaign. The
answer to that question would be yes. Long-term and high-
frequency monitoring is also important. Even though wave con-
ditions might not change over long periods of time, beaches often
show long-period fluctuations in morphology, suggesting that the
nonlinearity of short-period beach responses could drive long-
term beach changes. However, the nonlinearity is so small that
limited short-term high-frequency observations cannot fully
reveal the underlying processes. Here, we summarize the relation
between the monitoring cost per unit area, and the accuracy and
resolution (or volume of information) of each monitoring
method (Figure 1). The latest technologies such as airborne
LiDAR and multibeam sonar combined with GNSS can provide
large volumes of high-quality data with high accuracy; however,
they are unsuitable for long-term high-frequency monitoring
campaigns owing to their high operational costs. Conversely,
satellite imagery and Argus photos are low cost and are suitable
for long-term observations. However, the information obtained
from such images is often limited to shoreline position, and the
temporal or spatial resolution is not always adequate. Positioned
between the two in Figure 1, RTK-GNSS, leveling, and single-
beam sonar attached to a jet ski are techniques unsuitable for
monitoring of large areas, but they can be used to obtain high-
accuracy data over a limited area. These methods can be used for
long-term high-frequency observations if certain costs are borne.
Recently, automatic observations of the zone from dunes to the
foreshore have been obtained by fixed LiDAR and photogram-
metry using UAVs (unmanned aerial vehicles) (Turner et al.,
2016), which represents a recent major development in beach
monitoring with reduced costs and improved accuracy, although

challenges remain with regard to surveying underwater areas.
There is no doubt that long-term, high-frequency, and high-
resolution in situ monitoring of beach morphology can be real-
ized only at great cost. Consequently, long-term beach profile
monitoring campaigns are very limited worldwide owing to the
constraints of human and financial resources.

Representative beach monitoring campaigns that have obtained
relatively high-frequency (i.e., more than bimonthly) beach profiles
for more than 15 years have been conducted at Narrabeen,
Australia (Short and Trenbanis, 2004; Harley et al., 2011a; Turner
et al., 2016), Moruya, Australia (Thom andHall, 1991; McLean and
Shen, 2006; Tamura et al., 2019), Hasaki, Japan (Banno et al., 2020),
Omotehama, Japan (Kato et al., 2013), Duck, USA (Lippmann and
Holman, 1990; Larson and Kraus, 1994; Nicholls et al., 1998),
Torrry Pines, USA (Ludka et al., 2019), Ocean Beach, USA (Yates
et al., 2011; Splinter et al., 2014), Truc Vert, France (Castelle et al.,
2020), and Porsmilin, France (Bertin et al., 2022). In these long-
term in situ monitoring campaigns, beach profiles along one or
several limited transects are measured using techniques such as
GNSS. Although the depths and elevations of the offshore and
landward boundaries vary among campaigns, most of the moni-
toring campaigns at least cover the foreshore area. Long-term
campaigns that have been conducted bimonthly (or more fre-
quently), which include various beach morphological changes such
as abrupt large erosion during periods of high waves and gradual
accretion during periods of low waves, provide very valuable infor-
mation. Based on such monitoring data, numerical models have
been developed to reproduce the morphological changes of the
foreshore, and associated beach morphological change processes
have been investigated. In this paper, we review the various fore-
shore beach processes that operate on multiple time scales due to
cross-shore sediment transport that have been elucidated through
long-term beach monitoring, and we discuss the scientific know-
ledge that we can expect to obtain in the future through further
development of techniques for monitoring beach morphology and
continued long-term monitoring campaigns.

In studies on foreshore morphological changes, cross-shore
position with a specific elevation is often used as a proxy for beach
morphology (Boak and Turner, 2005). It is called the shoreline
position and is defined with a specific elevation, such as the height
of mean high-water springs (MHWS), which retreats during ero-
sion and advances during accretion. When the morphological
change of an entire foreshore is targeted, multiple reference heights
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Figure 1. Relationship between cost and information of beach survey methods.
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are used for shoreline positions. Thus, shoreline changes and
foreshore morphological changes are almost synonymous in terms
of the definition.

Cyclic foreshore beach processes revealed by observations

The usefulness of long-term high-frequency monitoring data is
highlighted in periodicity analyses of short-term (less than 1 year)
foreshore morphological changes. Spectral analysis revealed cyclic
shoreline changes with 1-year and 6-month cycles at Hasaki, Japan
(Banno and Kuriyama, 2020), which are caused by cross-shore
sediment transport related to seasonal fluctuations in waves
(Eichentopf et al., 2020). Conversely, data recorded at Narrabeen,
where high-frequency morphological changes have also been moni-
tored, showed no clear seasonal variation in the mean shoreline
position (Lazarus et al., 2019). This is probably attributable to the
fact that the incident wave energy at Narrabeen does not show clear
cyclic variation, such as a 1-year cycle, and because of the relatively
large influence of morphological changes induced by longshore
sediment transport such as beach rotation (Harley et al., 2011b;
Harley et al., 2015) associated with seasonal changes in the direction
of incoming waves. In the case of substantial impacts such as long-
shore sediment transport and sediment budget changes, the import-
ance of long-term high-frequencymonitoring data increases because
large volumes of data are required for statistical extraction of the
morphological changes caused by cross-shore sediment transport.

A recent study using a large volume of monitoring data revealed
a foreshore beach process previously masked by variations in other
factors. The process is affected by tidal fluctuations. The study
revealed that a large tidal range during spring tides and king tides
(Flick, 2016) makes erosion of the upper swash zone more likely,
even within the same wave regime (Banno and Kuriyama, 2020).
Several monitoring studies showed that beach elevation of a few
meters above the mean water level was minimal a few days after the
spring tide (LaFond, 1939; Aubrey et al., 1976; Clarke et al., 1984).
However, the effect of the primary underlying beach process could
not be distinguished from other effects, such as waves, because of
limited available data and thus full explanation of the beach process
was not proposed. In relation to this process induced by tidal
fluctuations, sediment transport and the morphological changes
even between a single tide, that is, between rising and falling tides,
might be affected by infiltration and exfiltration of water on the
beach face (Duncan, 1964; Clarke and Eliot, 1987; Butt et al., 2001;
Masselink and Li, 2001; Coco et al., 2004). However, beach pro-
cesses on the hourly scale have not yet been clarified because of lack
of long-term morphological change data monitored at intervals of
less than 1 day, for example, 6 h, which is the time scale of ebb and
flood tides.

Daily–annual-scale foreshore beach processes revealed by
observations

For time scales of less than 1 year, as shown by the seasonal cycle in
the spectra of beach monitoring data, it has long been known that a
shoreline will advance and retreat seasonally owing to seasonal
wave fluctuations (e.g., Shepard, 1950). When waves are calm,
sediment is transported onshore by sheet flow and accreted over
a period of days. Conversely, when waves are large during storms,
erosion can occur in just a few days (sometimes only a few hours)
with sediment transported offshore via suspension. On many
beaches, wave characteristics vary seasonally, and the foreshore

accretes with a well-developed berm during seasons with frequent
periods of calm waves and retreats with a relatively gradual slope
during seasons with frequent periods of high waves.

Equilibrium-based shoreline change models are used widely to
estimate short–long-term accretion and erosion, such as that over
daily–multiyear periods including seasonal variation (Miller and
Dean, 2004; Yates et al., 2009, 2011; Davidson et al., 2013; Turki
et al., 2013;Castelle et al., 2014; Splinter et al., 2014; Banno et al., 2015;
Jara et al., 2015; Dean and Houston, 2016; Vitousek et al., 2017;
Lemos et al., 2018; Chataigner et al., 2020; D’Anna et al., 2020, 2021a,
b; Montaño et al., 2020). A beach will approach a theoretical equi-
librium profile, onwhich no furthermorphological change is caused,
when subjected to the same wave regime for an extended period.
Equilibrium-based shoreline changemodels are based on the concept
of the equilibrium profile determined by waves. In such numerical
models, shoreline change is determined by the imbalance of the
actual position of the shoreline relative to the equilibrium shoreline
position. The advantage of such models is that beaches where sub-
stantial erosion has already occurred will not experience further
notable erosion (Eichentopf et al., 2020). Consequently, the long-
term robustness of equilibrium-based shoreline change models is
high because simulation results tend not to diverge unrealistically but
fluctuate around the equilibrium shoreline position; thus, such
models are often used for long-term hindcasts and forecasts.

Equilibrium-based shoreline change models have been used to
reproduce shoreline changes over periods of several years relatively
well (e.g., Yates et al., 2009; Splinter et al., 2014). The temporal
resolution of the estimated shoreline changes depends largely on
the monitoring data used to calibrate the model; therefore, in many
cases, such simulations are limited to reproduction of only seasonal
change. When using high-frequency beach monitoring data for
calibration, such as the daily data obtained at Hasaki and the
biweekly data acquired at Narrabeen, short-term erosion over a
period of a few days can be estimated (e.g., Davidson et al., 2013;
Splinter et al., 2014; Banno et al., 2015).

Even when using high-frequency shoreline change data for cali-
bration, the estimated temporal resolution might not always be high
depending on the tuning of the model parameters (Montaño et al.,
2020). Parameter tuning can be classified into two methods: minim-
izing the error with respect to the observed shoreline position and
minimizing the error with respect to the amount of shoreline change.
In most studies, the former method is adopted because it is most
likely to reduce the overall error; however, it tends to reproduce
trendswithout reproducing fine-scale high-resolution temporal vari-
ation. The latter method is more likely to reproduce short-term
variations, but it does not account for shoreline position errors;
consequently, the resulting output of estimated shoreline positions
might differ substantially from themeasured shoreline positions.We
have not found any studies that even discuss the above calibration
methods, even though selection of the method adopted depends on
the purpose for which the model will be used.

Annual–decadal-scale foreshore beach processes revealed
by observations

Beach morphological changes over long time scales are often dis-
cussed in the context of global climate change.Using long-termbeach
monitoring data, coastal responses to atmospheric and oceanic vari-
ations such as the El Niño–Southern Oscillation (ENSO), which
varies on the scale of a few years, have been investigated (Barnard
et al., 2015). Beachmorphologicalmonitoring data along 48 coasts of
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the Pacific Rim revealed different responses to the impact of ENSO in
different locations. For example, erosion is greater along the Califor-
nia coast (e.g., Ocean Beach) and Japanese coast (e.g., Hasaki) facing
the Pacific Ocean inwinter when ElNiño events occur, while erosion
is greater inAustralia (e.g.,Narrabeen) inwinterwhenLaNiña events
occur. It has been suggested that the impact on erosion is caused by
waves and sea level variations affected by ENSO. Relationships
between atmospheric and oceanic variations and waves have been
indicated by the high correlation of atmospheric pressure patterns
and climate indices with the variations of waves (Castelle et al., 2017;
Kishimoto et al., 2017), which consequently also influence shoreline
variations (Kuriyama et al., 2012; Robinet et al., 2016). Studies at
Hasaki (Kuriyama et al., 2012) and Truc Vert (Robinet et al., 2016)
showed that 45% and 70% of long-term shoreline variability can be
explained by teleconnections of large-scale atmospheric and oceanic
variability, respectively. Another study reported that the 18.6-year
nodal tidal cycle causes shoreline retreat (Gratiot et al., 2008); how-
ever, the response of beach morphological change to long-term sea
level change with such periodicity has not yet been fully investigated
using a sufficient volume of long-term monitoring data.

The Bruun rule (Bruun, 1962), which determines the probable
amount of future shoreline retreat associated with a shift of the
equilibrium beach profile with SLR, is widely used. In terms of the
concept, a rising sea level is expected to cause foreshore erosion and
offshore sediment transport near the foreshore. It has been high-
lighted that this method enforces many assumptions (Cooper and
Pilkey, 2004) and is susceptible to the setting of parameters such as
closure depth (Udo et al., 2020) and that it might not always match
actual morphological changes (Ranasinghe et al., 2012). In histor-
ical beachmonitoring data, the effect of SLR per unit time on cross-
shore sediment transport is very small in comparison with the
morphological changes caused by wave variations and longshore
sediment transport. Therefore, the validity of the Bruun rule and
the details of actual coastal response to SLR remain unknown. The
effects of SLR on beach morphological changes are currently being
investigated in laboratory experiments that simulate SLR as close as
possible to actual scale, while controlling all other external forces
(Atkinson et al., 2018; Atkinson and Baldock, 2020), and in analysis
of shoreline changes exposed to hypothetical SLR where land
subsidence is important (Nguyen and Takewaka, 2020). The cur-
rent solution is to couple the Bruun rule with an equilibrium-based
shoreline change model. Long-term shoreline predictions have
been simulated using this approach by incorporating the shoreline
retreat predicted by the Bruun rule (Vitousek et al., 2017; D’Anna
et al., 2020, 2021a), and by introducing the Bruun rule directly into
the term representing the equilibrium shoreline position in the
model (Banno et al., 2015; D’Anna et al., 2021b).

Long-term shoreline changes are also expected to occur in
response to long-term changes in wave climate. Therefore, it is
important to determine whether we reproduce long-term shoreline
change on annual–decadal scales using equilibrium-based shore-
line change models. A recent study using multiple equilibrium-
based shoreline change models hindcasted shoreline change over
15 years and predicted blind shoreline change over 3 years for
Tairua beach, New Zealand (Montaño et al., 2020). Long-term
hindcasts (past 22 years) and scenario projections (future 88 years)
of shoreline change have been calculated for Hasaki, Japan (Banno
and Kuriyama, 2014; Banno et al., 2015). In both studies, the
observed long-term shoreline variability (type of long-term trend)
could not be reproduced adequately, leading to deterioration of the
overall reproduction accuracy (i.e., R2 and RMSE (root-mean-
square error)). Whether this observed long-term shoreline vari-
ation is caused by wave climate change or by other processes

remains a matter of debate, but current shoreline change models
are limited in terms of their skill in reproducing and predicting
long-term shoreline variation. In forecasting applications,
equilibrium-based shoreline change models use unique parameters
determined from observational data. Thus, the simulated shoreline
position tends to be near the mean shoreline position, and repro-
ducibility and prediction skill are diminished when forced with
nonstationary wave conditions over time (Ibaceta et al., 2020), such
as wave climate changes due to global warming. It has also been
suggested that beach response could be affected in the long-term by
substantial erosion due to extreme storms (Kuriyama and Yana-
gishima, 2018). Although foreshore morphological change is also
affected by the effects of wave breaking by longshore bars
(Kuriyama and Banno, 2016), which move and develop on a multi-
year scale (Ruessink et al., 2003, 2007), these effects are not intro-
duced into equilibrium-based shoreline changemodels. In practice,
there is a dilemma regarding incorporation of the effects of long-
shore bars into shoreline change models because prediction of
longshore bars has yet to be fully accomplished. Although
process-based models such as XBeach (Roelvink et al., 2009) and
DELFT3D (Lesser et al., 2004), which include calculations of wave
deformation and dissipation, are effective in simulating detailed
coastal processes, producing long-term forecasts over periods of
more than a fewmonths remains challenging (Hanson et al., 2003).
Nevertheless, application of process-based models to long-term
forecasting has been studied (Davidson, 2021). An approach to
long-term forecasting in response to wave fluctuations and SLR,
which combines a process-basedmodel and a probabilistic method,
has also been studied (Ranasinghe et al., 2012; Dastgheib et al.,
2022). Currently, a reasonable simple solution is to account for the
uncertainties in hindcasts and forecasts by Monte Carlo simula-
tions (Banno and Kuriyama, 2014) or by ensembles of multiple
models (Montaño et al., 2020). Original wave monitoring and
prediction data also contain uncertainty, and the uncertainty of
wave data should be considered, for example, using Monte Carlo
simulations (Chataigner et al., 2022) or ensembles of wave condi-
tions (Vitousek et al., 2021).

As described above, reasonably adequate knowledge of fore-
shore morphological changes on time scales of a few days to a few
years has been obtained from long-term beach monitoring data.
However, we need further monitoring data to investigate foreshore
morphological changes on time scales shorter than a day and longer
than several years.

Monitoring future

The development of monitoring methods will provide new insights
into beach morphological changes and processes. The cost per
surveyed area of state-of-the-art equipment such as LiDAR will
gradually decrease through technological innovation and more
efficient manufacturing, and the accuracy, resolution, and volume
of information obtained from monitoring method using satellite
imagery and Argus photos will improve as research progresses. In
recent years, miniaturized LiDAR scanners that can bemounted on
UAVs have reduced the cost of using large airborne platforms.
Efficient collection of beach morphological data by combining
sonar with autonomous underwater vehicles and other remotely
operated vehicles is also expected to be adopted for long-term
monitoring in the future. Additionally, estimation of bathymetry
using satellite techniques, such as synthetic aperture radar imagery
(Pleskachevsky et al., 2011; Capo et al., 2014) and inverse estima-
tion of bathymetry from video recordings of waves (Matsuba and
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Sato, 2018), have recently been investigated, and the resolution and
accuracy of such approaches will improve over coming years. It is
expected that long-term ultra-high-frequency monitoring data will
become more readily available in the future following these devel-
opments, and we anticipate that easier acquisition of such data will
allow enhanced monitoring of beach morphology.

For example, if beach profiles were observed over a long period
at intervals of several hours using automatic instruments such as
LiDAR with a green laser (e.g., Pastol, 2011), it might be possible
to quantify the effects of tides on beach morphological changes
during flood and ebb tides, as suggested by Phillips et al. (2019)
and Banno and Kuriyama (2020). Moreover, XBeach (Roelvink
et al., 2009), which is used mainly to simulate short-term mor-
phological changes, could be used to consider the effects of wave
run-up infiltration and groundwater effluent on the morpho-
logical changes of sandy beaches, expanding on previous work
that used XBeach to study similar effects on gravel beaches
(XBeach-G; McCall et al., 2015). Elucidation of detailed processes
through high-frequency beach monitoring could greatly advance
these modeling efforts, potentially improving not only the repro-
ducibility of short-term morphological changes, but also the
reproducibility of long-term morphological changes that repre-
sent the integration of the former.

Considering the risk of coastal disasters, temporary erosion
following a single storm event should also be estimated in addition
to estimation of seasonal shoreline variations. Therefore, it is
necessary to increase the temporal resolution of shoreline changes
estimated by models using monitoring data with the highest pos-
sible temporal resolution. Moreover, if long-term observation data
with high temporal resolution were available for many beaches, the
practicality of research on shoreline prediction would be greatly
enhanced. One of the future developments of equilibrium-based
shoreline change models, through application with as much beach
monitoring data as possible, will be to accumulate knowledge to
permit generalization of the model parameters that are currently
estimated site-specifically for each beachwheremonitoring data are
available. For example, the relationship between sediment grain size
and model parameters might also lead to generalization of model
parameters (Yates et al., 2011; Splinter et al., 2014), which would
allow prediction of short-term erosion on beaches where monitor-
ing data are not necessarily abundant.

Together with improved data quality (increase in data acquisi-
tion frequency, resolution, and volume of information) and quan-
tity (increase in the number of beaches monitored), it is also
essential that long-term morphological data continue to be
obtained. We need long-term monitoring data of beach morpho-
logical change on beaches where SLR is significant to distinguish
the effects of SLR on morphological changes from complex beach
morphological changes caused by various other factors such as
waves. We will experience a clearer and more extreme beach
response to ongoing dynamic SLR and changes in wave climate
in coming decades. With the monitoring data expected to be
obtained in the future, we will be able to rapidly advance verifica-
tion of the Bruun rule, which has currently been discussed only as a
concept, and elucidation of long-term factors and processes of
beach fluctuation that are not yet fully understood.

Conclusions

This paper broadly summarized the findings of foreshore morpho-
logical change through historical long-term and high-frequency
monitoring of beach profiles. Morphological changes on the time

scale of a few days to a few years can now be reproduced by
equilibrium-based shoreline change models using waves as the
driving force, which has been achieved thorough the availability
of monitoring data and extensive study in recent years. However,
because of lack of beach monitoring, we still do not have sufficient
knowledge of the morphological changes that occur over periods
shorter than a day, which might be affected by tides, and those that
occur over periods of a decade, which are closely related to SLR and
wave climate changes. Recently, data acquired during several long-
term beach monitoring campaigns, for example, that at Narrabeen
(Turner et al., 2016), have been released to the public under the
concept of open data (Ludka et al., 2019; Castelle et al., 2020; Bertin
et al., 2022). It is expected that more and more beach monitoring
data will become available in the future, and that the use of open
data will greatly advance our understanding of foreshore beach
processes. Long-term and high-frequency monitoring of beach
morphological changes is also expected to be conducted for more
beaches following the development of monitoring methods. As
larger volumes of monitoring data become available for use in
future studies, we expect not only improvement of physics-based
models, but also marked development of statistical models, such as
deep neural networks, which have progressed remarkably in recent
years (Goldstein et al., 2019). Through various studies using moni-
toring data, we expect to gain more comprehensive understanding
of beach processes on various time scales, resulting in development
of prediction technology for beach morphological changes with
high accuracy and high certainty that will help in the effort to
maintain long-term beach stability and durability.
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