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Abstract

This paper deals with a minimax control problem for semilinear elliptic variational inequal-
ities associated with bilateral constraints. The control domain is not necessarily convex.
The cost functional, which is to be minimised, is the sup norm of some function of the state
and the control. The major novelty of such a problem lies in the simultaneous presence
of the nonsmooth state equation (variational inequality) and the nonsmooth cost functional
(the sup norm). In this paper, the existence conditions and the Pontryagin-type necessary
conditions for optimal controls are established.

1. Introduction

In this paper, we consider an optimal control problem in which the state y is governed
by a controlled semilinear elliptic bilateral variational inequality

y e t

v<y<+ m a, (11)
(Ay —fix, y, u))(y - <p) < 0 in ft,

(Ay — / (x, y, u))(y — \j/) < 0 in ft,

and the cost functional is taken to be

J(y, u) = esssupL(j:, y(x), uix)), (1.2)

where A is an elliptic differential operator and (y, u) is a pair satisfying (1.1).
One of the motivations for the above problem is given as follows. Consider

the deformation of a membrane constrained by two obstacles. We would like to
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design the shape of the membrane so that the largest deviation of the perpendicular
displacement y from the desired position, say yd, is minimised. In this case, we
could take L(x, y, (p, u) = \y — yd(x)\2- Since the problem consists of minimising a
"maximum", it is usually referred to as a minimax control problem.

Minimax control problems seem to arise more naturally in applications than the
standard problem involving integral cost, especially when one is attempting to min-
imise the maximum deviation from the desired goal. However such problems have not
been thoroughly studied (especially for infinite-dimensional systems). The minimax
control problem for ordinary differential equations has been studied by several authors
(see [2, 11]) and the Pontryagin maximum principle for finite-dimensional minimax
problem was derived in [2]. The first infinite-dimensional version of the Pontryagin
principle for the minimax problem was presented in [14] with the state equation being
a second-order semilinear elliptic partial differential equation. Different aspects of
optimal control problems for variational inequalities have been discussed by many
authors (see for example [1, 6, 9]). However, to the best of our knowledge, minimax
control problems for variational inequalities have never been discussed before. The
nonsmoothness of the cost leads to more complicated necessary conditions for mini-
max control problems and this is one of the reasons for the lack of investigation thus
far.

With respect to the control domain and the data involved, we make the following
assumptions.

(HO The region SI C K" is bounded with C11 boundary 3fi; U is a Polish space (a
separable complete metric space) and ty = {u: £2 -> U\u(-) is measurable}.

(H2) Operator A is defined by

Ay(x) = -

with oiy € Cl(Q), atj = a ; i , 1 < i,j < n, and for some X > 0,

(H3) The function / : fix R x U -> K has the following properties:/ (•, y, u) is
measurable on fi, and/ (x , •, u) is in C'(R) with/(x, •, •) andfy(x, •, •) continuous
on i x (/. Moreover, there exists a constant K > 0, such that — K < fy < 0 on
Q x K x U and [f (x, 0, u)\ < K on Q. x U.

(H4) The function L: £2 x OS x U -*• K satisfies the following: L(-,y,u) is
measurable on Q, L(x, •, u) is in C ( K ) with L(x, •, •) and Ly(x, •, •) continuous on
l x ( / , and for any R > 0, there exists a constant KR > 0, such that \L\ + \Ly\ < KR

on Q x [ - /? , R] x U.
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Under' (H2), the operator A is associated with a positive symmetric bilinear form

~ aij(x)Diy(x)Djz(x)dx.

Given <p, \J/ e W2-" (Q) (Vp > 2) with <p < 0 < V on 8Q, we set

K = {z e //0'(£2)|<p < z < V a.e. in ft}.

If y solves (1.1), then

y e K (1.3)

and, for any z e K, (z — y)+ ((z — y)~, resp.) can differ from 0 only where y — \j/ is
< 0 (y — <p is > 0) and therefore Ay — f > 0 (Ay — f < 0). Thus, by the divergence
theorem,

a(y,Z-y)- f(x,y,u)(z-y)dx
Jn

= f(Ay-f)(z-y)dx
Jn

= f(Ay-f)(z-y)+dx- [ (Ay - f)(z - y)~ dx >0, V* e K. (1.4)
Jn Jn

On the other hand, any y e H2(£l) satisfying (1.3) and (1.4) must be a solution of
(1.1). In fact, fixing any D c Q and denoting by [xn) a sequence of functions from
C~(£2) satisfying 0 < Xn 5 1. Xn -*• XD (characteristic function of D) a.e. in £2, we
can insert z = y + xn(<P — y) and z = y + Xn(^ — y) in (1.4) in turn and obtain

/ (Ay -f)Xn(<P~y)dx > 0 and / (Ay -f)Xn(i' - y)dx > 0,
Jn Jn

hence also

I (Ay -f)(<p-y)dx > 0 and / (Ay -f)(\jr - y)dx > 0
JD JD

after passing to the limit as n -> oo. By the arbitrariness of D, we arrive at (1.1).
The above discussion yields a weak formulation of the variational bilateral prob-

lem (1.1).

DEFINITION 1.1. Suppose u e "1/. A function y e //o'(£2) is called a weak solution
of the variational bilateral problem (1.1) if

\a(y,z-y)> j f(x,y(x),u(x))(z~y)dx, Vz e K. (1" }
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Any element u e % is referred to as a control. Any pair (y, u) e HQ(Q) X <%
satisfying (1.5) is called a feasible pair and the corresponding y and u will be referred
to as a feasible state and control, respectively. The set of all feasible pairs is denoted
by si. Clearly, under (Hi)-(H4), <fy coincides with the set of all feasible controls and
for each u e &, there is a corresponding unique feasible state y (see [13]) and the
cost functional (1.2) is well-defined. Hereafter, we always assume (H1MH4). Thus
we can write J(y, u) as J(u) without any ambiguity.

Our minimax control problem can now be stated as follows.

PROBLEM (M). Find a feasible control u e %, such that

J{u) = inf J(u) = J. (1.6)

If such a u exists, we call it an optimal control. Accordingly, the corresponding
state y and the feasible pair (y, it) e si will be called an optimal state and pair,
respectively.

2. State equation

2.1. A W2tP-estimate of state Let us start with a basic W2p-estimate of state.

PROPOSITION 2.1. Let (H1HH3) hold and (y, «) e si. Then for any p > 2,

\\y\\w) < Cp, (2.1)

where Cp is a constant independent of the control variable u.

To prove (2.1), we define

0, 0 < t < +00,

-t\ -l/2<r<0,

r+1/4, -00 < r <-1/2 ,

0, -co < t < 0,

t2, 0 < t < 1/2,

/ - 1/4, 1/2 < t < +00,

(2.2)

(2.3)

and introduce a family of approximations to the state equation (1.5):

f(x,yr,u) in £2,
(2.4),
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It can be shown that, for any given u e % and r > 0, (2.4)r is uniquely solvable
in W2-"(Sl) n WQ-"(Q) (see [7]). The set of all pairs (y,, u) e //o'(fi) x ^ satisfying
(2.4), will be denoted by &/r.

The estimate (2.1) results from the following two lemmas.

LEMMA 2.2. Let (H1MH3) hold and (yr, u) e $fr. Then, for any p > 2,

\\rfi(yr-(p)\\uia)<Cp, (2.5)

Cp (2.6)
and consequently

Cp, (2.7)

Cp is a constant independent ofr>0 and u e W.

PROOF. Define, for t e R, B(t) = |/?(f)| '-20(r) and T ( 0 = |y( r ) | " - 2 y(0- Then
we have

B(t) < 0 and T(r) > 0 Vr € R, (2.8)

B(t) = 0 Vr > 0 and T(f) = 0 Vr < 0, (2.9)

B'{t) = (p-l)\P(t)\p-2P'(t)>0 and r'(/) = ( p - l ) | y ( 0 r V ( 0 > 0 (2.10)

and, as p > 2 and £(0) = y(0) = 0,

B(yr - q>), T(yr - yjr) e W0' < '

where /?' = p / ( p — 1) < p is the conjugate number of p .
Multiplying (2.4),. by B(yr — <p) and integrating by parts, noting also that (2.9)

implies fi(yr — <p)y(yr — if) = 0 a.e. in Q, we obtain

a(yr,B(yr-<p)) + r [ \/3(yr-<p)\i>dx= ff(x, yr, u)B(yr - <p)dx. (2.11)
Jn Jn

From (2.8), (2.10) and the monotony of / (x, •, M), we see that

f f(x,yr,u)B(yr-(p)dx< I f (x,<p,u)B(yr - <p)dx (2.12)
Jn Jn

and
a(yr - <p, B(yr - <p)) > 0. (2.13)
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Then, from (2.11)—(2.13) and Holder's inequality, we have

r\\P(y, - <P)\\P
Lna) < [fix, V, u)B(yr -<p)dx- a(cp, B(yr - <p))

Ja

= f\f(x,(p,u)-A<p]B{yr-cp)dx
Jn

Thus, using (H3), we get the desired estimate (2.5). The estimate (2.6) can be obtained
similarly, and (2.7) follows immediately from (2.5), (2.6) and the standard elliptic
{/-estimate (see [7]).

LEMMA 2.3. Let (H1MH3) hold, (yr, u) e sfr and (y, u) e srf. Then, as r -> oo,
yr -*• y weakly in W2-" (f2) and strongly in WQ" (f2).

PROOF. By (2.7), we may assume that, as r —• oo, yr -> y* weakly in W2-p(Q)
and strongly in Wj (J2) for some y*. It suffices to verify that

(2.14)

since the uniqueness will ensure that y* = y.
First, it follows from (2.4)r that, for any z e K,

V, ^ - yr) ~ f (x, yr, u)(z - yr) dx
Jn

= -r [ [fi(yr -v) + Y(yr - *)](z - yr) dx>0
J

(note that fi(yr — <p) can differ from 0 only when yr < <p < z and y(yr — i/f) can differ
from 0 only when yr > \j/ > z). Then the lower semicontinuity yields

a{y*,y*)<\jma(yr,yr)<a(y*,z)- [f(x,y*,uKz-y*)dx VzeK. (2.15)

Next, for any r\ e HQ(Q) with r) > 0 a.e. in £2, we have from (2.4)r that

f(x, yr, u)r,dx - a(yr, r=-\j
because the terms in { } are bounded. Then, with the help of the dominated convergence
theorem,
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hence

Piy* ~ <P) + Y(y* ~ f) = 0 a.e. in J2 (2.16)

due to the arbitrariness of r). By the definition of /}(•) a n d y ( ) , (2.16) implies that
y* € K. This, together with (2.15), proves the feasibility of (2.14).

2.2. Continuous dependence of the state on the control In the control set %, we
define the distance, called Ekeland's distance, as

d(u, v) = m({x e Q\u(x) jL v(x)}) VK, u e f ,

where m denotes the Lebesgue measure. We can show that {$/, d) is a complete
metric space (see [9]).

The following result is concerned with the continuity of the state y with respect to
the control u under the above metric.

PROPOSITION 2.4. Let (H,)-(H3) hold and (y, u), (yk, uk) e si (k = 1, 2 , . . . ) . / /
d(uk, u) -*• 0, then for any p > 2, \\yk - y\\w*-na) ~* °-

PROOF. From Proposition 2.1, we know that, for some subsequence yk -*• y*
weakly in W2'p(£2), strongly in Wr

0
1-p(fi). Clearly

(pipe) < y*(x) < yj/(x) a.e. x € Q. (2.17)

Note that

< 11/ (•• y*(0. «*(•)) - / (•. y*(0. «(-))IL2
(n) + 11/ (•. y»(0. «(•))

-/(•./(•),«(-))lli.'(0,

< C{</(uft, M)1/2 + ||y* - y*||t»(n)} -> 0.

Passing to the limit in (1.5), in which u and y are replaced by uk and yk respectively,

we obtain

aiy\z-y*)> [fix, y\x), «(
Jn

- y*)dx Vz € K.

This, combined with (2.17), means that y* is a solution of (1.5). By the uniqueness,
we must have that y* = y and the whole sequence {yk} converges to y strongly
in Wo1-"(£2).
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23. Some reductions For the sake of convenience, let us make some reductions
(just as in [14]).

First of all, by scaling, we may assume that

m(Q) = 1. (2.18)

Next, from the W2''-estimate of state and Sobolev's embedding, it follows that y
is uniformly bounded and independent of u e ̂ . Thus, by (H4), we may assume
without loss of generality that

\L(x,y,u)\ < M V(ij,u)ef!xlxf/. (2.19)

Set

By (2.19), we know that

0 < < L(x, y, u) < < 1 V(x, y, u) 6 Q. x OS x U.
2M + 2 2M + 2

Since minimising J (u) is equivalent to minimising

J(u) = esssup L(x, y(x), u(x)),

we may, again without loss of generality, assume at the beginning that

0 < a < L(x, y, u) < b < 1 V ( X J , M ) e f i x E x (/ (2.20)

for some constants a and b. We will retain assumptions (2.18) and (2.20) for the rest
of this paper.

3. Existence of optimal controls

This section is devoted to the existence of optimal controls. Let us first recall the
following.

DEFINITION 3.1 (see [3, 9]). Let Y be a Banach space and Z be a metric space. Let
A: Z —• 2r be a multifunction. We say A possesses the Cesari property at z 6 Z, if
f]s>0 cbA(Os(z)) = A(z), where co E stands for the closed convex hull of the set E
and Oi (z) is the S-neighbourhood of the point z. If A has the Cesari property at every
point z e Z, we simply say that A has the Cesari property on Z.
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DEFINITION 3.2. Let £2 C K" be some Lebesgue measurable set and U be a Polish
space. Let A: Q —> 2U be a multifunction. The function u: £2 -> U is called a
selection of A ( ) if u(x) e A(x) a.e. A: € Q. If such a u is measurable, then « is called
a measurable selection of A ( ) .

The following gives the existence of measurable selections.

LEMMA 3.3 (see [8]). Let A: Q —> 2U be measurable taking closed set values.
Then A ( ) admits a measurable selection.

We refer the readers to [9, pp. 100-101] for the proof of Lemma 3.3.
To establish the existence of an optimal control for Problem (M), we first introduce

the following set: A(x, y) = {(£, i)) e R2 | ? > L(x, y, u),r)=f (x, y, w), u e U)
and make the following assumption.

(H5) For almost all JC e Q, the mapping y i->- A (x, y) has the Cesari property on K.

THEOREM 3.4. Let (H,)-(H5) hold. Then Problem (M) admits at least one optimal
control « € l

PROOF. The proof is essentially similar to that given in [4]. Here, we only give an
outline.

Let {uk} c % be a minimising sequence satisfying

J(uk)<J+l/k. (3.1)

By the Mazur theorem, (H5), and the measurable selection theorem (Lemma 3.3), we
can find a feasible pair (y, ic) e si', such that

L(x,y(x), u(x)) < T{x) a.e. x 6 £2, (3.2)

where

L(x) = Hm £,(*) a.e. x e Q (3.3)
y-i-oo

and

1 £ U * - ( • • yi+J (•)- ui+j (0) (3.4)
I>I

with

> y = l Vy (3.5)

and (>(+y, «,+y) 6 ̂  for every /, j .
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Now, from (2.18), (3.1), (3.4) and (3.5), it follows that, for any ; and p > 1,

Uj Wvm < Uj ll/.~(n> < £ertf/(«/+;) < 52*9 \J + JIT7) - J + T"

This yields

: J Vp > 1. (3.6)
y-oo

Consequently, by (3.2), (3.3), (3.6) and Fatou's lemma, we obtain

J(u) < \\L\\L*,(a) = lirn ||L|| t, (n) < lirn̂  lim U\\u<.a) < J-

This means that u is an optimal control of Problem (M).

4. Regularisation

Note that, in discussing Problem (M), our difficulty is twofold: both the state
equation and the cost functional are nonsmooth. Thus it is natural that both of them
should be regularised.

4.1. Approximation of the state In Section 2, we introduced a family of approx-
imate equations (2.4)r and denoted by $4r the set of all pairs (yr, u) e //J (£2) x ^
satisfying (2.4)r. Here we will prove a useful convergence result for the approximate
states.

PROPOSITION 4.1. Let (H1HH3) hold and let [ur] C % be any sequence, (yr, ur) e
sfr and ( / , ur) 6 srf. Then, for any p > 2,

lim \\yr — / | | w>.ptn, = 0. (4.1)

PROOF. By Proposition 2.1 and Lemma 2.2, we have that, for any p > 2,

Il)'rlliv2'>(n) + ll/llwiccn) — Cp (4.2)

with Cp independent of r > 0. Thus, we may assume that, for some subsequence,
yr -> y strongly in //„' (£2) and

H/llw'(n)nL°°(n) < C with C independent of r > 0. (4.3)

The same argument as that used in the proof of Lemma 2.3 shows that y < y < \f/
a.e. in Q.
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Now, letting zr = yr v (p A ty, we have z, ->• y strongly in //„' (Q), and consequently,

IIZr-y,||j/Di(n)->0. (4.4)

Recalling that yr and yr solve (2.4)r and (1.5) respectively, we have

- *>) + y Ov - VOK>v - yr) dx

+ f f(x,yr,ur)(yr-y
r)dx (4.5)

Jn
and

a{yr,zr - / ) > / " / ( JC , yr, Mr)(zr - yr)dx. (4.6)

By the monotonicity of/ (x, •, u), /$(•) and y ( ) we see that

[f (JC, yr, iir) - / (JC, yr, «r)](yr - yr) rfx < 0,
(4.7)

/ P(yr — <P)(yr — yr) dx > 0 and / y(yr — VOOv — yr) dx > 0.
Jn Jn

Here, we have used the fact that yr > <p > yr when yr < <p, and yr < ty < yr when
yr > \jr. From (4.3)-(4.7), we may deduce that

a(yr - yr, yr - yr) < a(yr, zr-yr)- \ fix, / , ur)(zr - yr) dx
Jn

which implies

H m | | ) v - / | | w . ( n ) = 0. (4.8)

Moreover, by Lions' interpolation theorem (see [10]), we have the following lemma
(see Lemma 4.2 below), which, together with (4.2) and (4.8), results in (4.1).

LEMMA 4.2. Suppose p > 2, {wr} is bounded in W2-p(Q)and linv+oo II u>r II//• («)=()•
Then lim^oo ||iur|| W'p(cn = 0.

4.2. Approximation of the cost functional We shall now introduce a regularisation
of the cost functional. We first recall a well-known real analysis result.

LEMMA 4.3. Let £2 be bounded and w e L°°(S2). Then

lim
r-»oo
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The above lemma suggests that we can regularise our cost functional (1.2) by using

) V M 6 ^ , (4.9)

where r > 1 and (yr, u) 6 sfr.
We will see that the functional Jr() is continuous on (W, d) and is a reasonable

regularisation of our nonsmooth cost functional 7 ( ) .

l i m ^ ^ [Jr(ur) - ||L(-, / ( • ) , ur(-))\\Lr(n)] = 0;
limM 0 O [J(ur) - \\L(; yr(-), ur(-))\\L-«i)] = 0,

PROPOSITION 4.4. Let (R^-iE^) hold. Then we have the following:

(i) For any fixed r > 1, Jr(u) is continuous on ($/, d)\

(ii) For any given u e <%/, lim,.^,*, J,{u) = J(u).

Before proving the above proposition, we state a lemma, which can be easily
obtained from Proposition 4.1. This lemma will play an interesting role below.

LEMMA 4.5. Let (Ht)-(H4) hold. Then, for any sequence {ur} C W, we have

(i)

(ii)

where (yr, ur) e &/ and (yr, ur) e &/r.

PROOF OF PROPOSITION 4.4. (i) Let (yr, u), (yr,k,uk) e sf, (k = 1 ,2 , . . . ) and

d(uk, u) —*• 0. By the continuity of the approximate state yr with respect to the
control M under Ekeland's metric d(-, •), we know that, for any p > 2,

\\yr.k - yAwia) ^ 0.

Take p > n. By Sobolev's embedding, we have \\yr<k — )v||L»=(n) -*• 0. Thus we get

\Muk)-M
< C[\\y,,k - yrh-m+diuk, ")1 / r l -> 0 (k - • oo).

(ii) We have that u e % and (>>, M) e si'. Since

|y,(u) - J(u)\ < \jr(u) - ||L(-, y(-), u(-))lli.'(O)l + III^O. y(0 . «(-))lk'(0) - ^(«)l

and (recalling Lemma 4.3)

lim||L(-,y(-),«(-))lli'(O) = ^(«), (4-10)
r-too

our conclusion is an immediate consequence of Lemma 4.5.

We point out that the convergence in (4.10) is not uniform in u e *2f. Nor is the
convergence in (ii) of Proposition 4.4.
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43. Convergence theorem Before going further, let us make an additional assump-
tion:

L(x,y, u) is continuous on Q x I x U and there exists a nondecreasing
continuous function a>: [0, +oo) —> [0, +oo) with co(0) = 0, such that

\L(x, y, u) - L(x, y, u)\ < w(\i -x\ + \y-y\)

V(x,y, u), ( i , j , i i ) e f i x l x U.

In what follows, we denote Jr = infuê . Jr(u).
Our main result in this section is the following convergence theorem, which will

be essential for deriving the optimality conditions later.

THEOREM 4.6. Let ( I^HH,) and (H*;) hold. Then

lira Jr = J. (4.11)
r-*oo

To prove Theorem 4.6, we need the following lemmas.

LEMMA 4.7. Let ( H , ) - ^ ) and (H*) hold. Then, for any (yr, «) e si, and a e R,
there exists (yr, u) e srfr satisfying

[x e Q\u(x) / M(^:)} C D (4.12)

and

L(x , yr(x), u(x)) < a + co(Cm(D)1/n + \\yr - y,U-ia)) a.e. xeQ (4.13)

where D = {x e Q\L(x, yr(x), u(x)) > a], C is a constant independent of a, r

and u, and a>() is the (uniform) modulus ofL given in (H6).

PROOF. First, we may let 0 < m(D) < 1 (recall m(Q) = 1), since (4.13) is trivially
true when m(D) = 0. Let S > 0 be such that

m(D) < m(fl,(0)) < 2m(D), (4.14)

where Bs(x) denotes the open ball centred at x with radius 8. Then we can choose
xi e £2, such that |J,>i BS(XJ) D SI. By (4.14), we know that for each i > 1, there
exists an xt € Bs(Xj) \ D. For such jc,-, we have L(xt, yr(xi), M(JC,-)) < «•

Now we define

I u(x) x € £2 \ D,

u(xt) x e D H [BS(X,) \ U ; :
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and let (yr, u) € afr.
Clearly, (4.12) holds. For any x e Q \ D, we have

L(x, yr(*)< "(*)) = L(x, yr(x), u(x))

<a + eo(\yr{x) - yr(x)\) <a+ a)(\\yr - yr|

FOTX 6 D D [BtQc,) \ Uj='i Bs(xj)l we have (note (4.14))

L(x, yr(x), u{x)) = L(x, yr(x), u{xt))
<a + co(\x - xt\ + \yr(x) - yr(i,)l)

<a + o(Cm(Dy/n + \\yr - yr\\L^n)).

Hence (4.13) follows.
In the above, we have used the fact that, for p > n, by (4.2) and Sobolev's

embedding, llydlcun) 5 II>v|| w*p(n) < Cp with Cp being independent of r and u.

LEMMA 4.8. Let (I^MH,) and (Ha) hold. Then, for any sequence {ur} C %',

lim Jr(ur) > J. (4.15)

PRCX>F. Suppose that (4.15) does not hold. Then, for some e > 0 and some
subsequence (still denoted by itself) {ur} C ^ , we have Jr{ur) < J — 2e, Vr > r0.
Let (vr, ur) € sfr and Dr = \x e Q\L(x, yr(x), ur(x)) > J - e}. Then

J-2s> Jr(ur) > / y/

Thus

(4.16)

According to Lemma 4.7, there exists (5v, ur) e ^ r , such that

d(ur, ur) = m{x 6 Q\ur(x) £ u(x)) < m(Dr) (4.17)

and L(*, yr(jc), iir(x)) < J -e + Gj(Cm(Dr)
1/'1 + Hy, - yr||t-(O)) a-e- x e f2. This

implies

'" + II h-yr II /.»(«))• (4-18)

From the standard L2-estimate, we can deduce that \\yr — yAl^m 5 Cd{iir, ur)
l/2.

Notethat,by(4.16H4.17),

r/2
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Using Lemma 4.2, we further obtain (for p > n)

\\yr - y,IU-(o) < lly, - yr\\w^(n) -* 0. (4.19)

Combining (4.16), (4.18H4.19), we get

Ilm" ||L(-, y,(.), 2,O)lk«<0) < / - e. (4.20)
r->oo

On the other hand, by Lemma 4.5 (ii), we have

lim ||L(., yr(.), 5,(-))lk-(n) > Jun[||£.<-, yr(-), «r(-))llt-(O) - -/(«r) + / ] = J.
r->oo r-+oo

This contradicts (4.20). Hence (4.15) holds.

PROOF OF THEOREM 4.6. Let ur e W be such that J(ur) < J + l/r and let
(yr', ur) e si'. By Holder's inequality, we have (recall m(Q) = 1)

) < ^(«r) < .7+ I / *
It then follows that

Thus, by Lemma 4.5 (i), we get

ITm Jr < J. (4.21)

On the other hand, for any r > 1, one can find ur e W such that Jr(ur) < Jr + l/r.
Hence, by Lemma 4.8, we have

]im Jr > lim Jr(ur) > J. (4.22)

Finally, (4.11) follows from (4.21) and (4.22).

5. Necessary conditions

Now we are in a position to prove the following Pontryagin principle for Prob-
lem (M).

THEOREM 5.1. Let (HiMH*) and (H^) hold and (y, ii) e &/be an optimal pair for
Problem (M). Then there exist z 6 Whp'(Q.) with p' = p/(p - 1) e (1, n/{n - 1))
and X, ji, e L°°(Q)*, such that

I Az — fY(x,y, u)z = XLv(x, y, ii) + a in Q,
' (51)

z\an=0
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and

z(x)f(x, y(x), u(x)) = min z(x)f(x, y(x), u) a.e. x € Qo (5.2)
ueUoM

where

Jfio = [x e n |L(*. y(x), 5(JC)> < / } ,

( [/„(•*) = {« € £/|L(JC, y(x), u)<J) xett,

l a > 0 . (5.3)

Moreover, in the case m(£l0) > 0, for any 0 < a < m(S20)» there exists a measur-
able set Sa C fto with m(5(r) > a, such that

X(5B) = 0. (5.4)

We note that in general, the above k is only a finitely additive measure and is not
necessarily in JZ(Q.). If X happens to be in ^(Q), then there exists a measurable set
S c f i o with m(£20 \ 5) = 0, such that k(S) = 0. This means that the support of k is
disjoint with JV

PROOF. Given r > 1 and ar = (Jr(u) -Jr + l /r)1 / 2 > 0, from Proposition 4.4 (ii)
and Theorem 4.6, we see that

ar - • 0. (5.5)

Since Jr(u) is continuous on (fy, d) (recall Proposition 4.4 (i)) and

Jriu) <Jr+ a] = mf yr(ii) + a),

by Ekeland's variational principle (see [5]), there exists a ur 6 f , such that

d(ur, u) < ar, (5.6)

-ard(u, Ur) < yr(«) - yr(«r) v« e «r. (5.7)

Assume C20 ^0 (otherwise, there is nothing to prove, see Remark 2 below) and let
s > 0 be such that Sls = [x € fi | L(x, y(x), u(x)) < J - s] ^ 0. Then denote

Us(x) = {ue U\L(x, y(jc), «) < 7 - ^}

and define
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It is clear that r , : Q —> 2U is measurable and takes closed set values. Thus, by
Lemma 3.3, there exists a measurable selection v e ^ . In what follows, we denote
by ys the set of all such selections, that is, % — {v e ^\v{x) £.!%(*) a.e. x e Q).

Now, let (yr, ur) e sir and v e % be fixed. By using the technique of spike
variation (see [4, Proposition 4.2]) we know that, for any p e (0,1), there exists a
measurable set Ep c £2 with m(Ep) = pm(Q) = p, such that if we define

«?(*) =

and let (yf, u"r) e j!?r, then

lim

\ur(x), if x e Si \ (E» n S2S),

I v(x), if x € Ep n Sls

= 0

and yP = yr + pwr + 9f with limp_>o(l|0r''llvt"''(fi)/P) = 0- where wr satisfies the
following:

Awr + [r[P'(yr - <p) + y'(yr -^)-fy(x, yr, ur)}wr

= \f(x,yr,v)-f(x,yr,ur)]xa, in S2,

wrUn = 0 .

Taking u = uP in (5.7) and letting p -> 0, we obtain

U « ) i ( ) ]

where

L(x,yr(x), ur(x))\

:,yr(x),v(x))Y-

0) (5.8)

(5.9)

(5.10)

Let zr € Wj (fi) be the solution of the following system:

y'(yr - . yr, ur))zr

= XrLy(x,yr,ur)

ZrUn = 0.

in (5.11)

Then we may deduce from (5.8) that

[zr(f(x,yr,v) -f(x,yr, ur)) + hr]dx > -ar. (5.12)
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In what follows, we shall obtain our final conclusions by making some estimates
and taking the limits in (5.11)-(5.12).

First, by (2.18) and (2.20), the function kr(x) > 0 satisfies

f K(x)dx > \ f(L(x,yr, ur))
rdx = Jr(ur) > a (5.13)

Jn JriUr)'-1 Ja

and by Holder's inequality,

IIMi.'<ii> = [ K(x)dx < \\Xr\\Lr,^m = 1. (5.14)
Jn

Thus we may assume

I A.r —> A. weakly star in L

krLy(-, yr(-), <pr(-), wr(0) ->• M weakly star in L°°(fi)*.
Clearly, by (5.13), k satisfies (5.3).

Let Ss(t) € C ' (K) be a family of smooth approximations to sign t, satisfying the
following: S's(t) > 0, Vr € R, and

1 i f r > 5 ,

0 if t = 0,

- 1 if t < -S.

Multiplying (5.11) by Ss(zr), integrating it over £2, and letting 8 -> 0, we obtain

\\r[P'(yr — <p) + Y'iyr - Vr)]2rllz.>(n) ^ C||A.r||ti(n) < C. (5.15)

Then, applying the standard estimate for an elliptic equation in L1 (see [12]) to the
system (5.11), we get

I IZr l l^ ( n )<C (5.16)

and, using (5.11), we further get

\\r[fi'(yr -<P) + Y'iyr - VOkrllw->sia> < C (5.17)

where p' = p/ip - 1) e (1, n/(n - 1)).
In all the above estimates (5.15)—(5.17), the constant C is independent of r > 1.

Hence we may let, extracting some subsequence if necessary,

I zr -»• z weakly in Wlp'(S2), strongly in LP'{Q.),

r[P'(yr-<P) + Y(yr-il')]Zr-+9 weakly star in W-'-'
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Let (yr, ur) e &/. By (5.5)-(5.6) and the continuity of the state on the control, we
have, for any p > 2,

\\yr - y\\w>*w ^ o (5.18)

and

ii yr — yiin".p(n) —• u P-iyj

where the convergence ||>v — yr\\ w<p(Q) -* 0 (see (4.1)) has been used.
Passing to the limit in (5.11), we see that z solves (5.1) with

Let Sr = \Jr — J\ + a>(\\yr — ;y||L°°(n)), where co() is the (uniform) modulus of
continuity for L given in (1^). By (5.19) and Theorem 4.6, it is easy to get Sr -> 0
(as r ->• oo). Then, by the definition of hr(-) (see (5.10)), we have

f uf ^ ^ Jr(Ur) f (L(x,yr(x),v(x))\r
I hr(x) ax < / ax

b f /L(x,y(x), v(x)) + i

" ~r Ja, \ lr
^b/j-S+Sf\ _^ Q ^ ^ ^ ( 5 2 Q )

r \ J — br /

because 8r ->• 0 and s > 0 is fixed.
Hence we take limits in (5.12) to obtain

f z\f(x,y,v)-f(x,y,u)]dx>0 Vvefs,s>0. (5.21)
Jn,

The desired conclusion (5.2) thus follows (see Lemma 5.2 below).
Finally, using an argument analogous to that in [9] (with some necessary modifica-

tions), we can prove (5.4).

LEMMA 5.2. Equation (5.2) follows from (5.21).

PROOF. Let

H(x, u) = z(x)f(x, y(x), u) x eQ, ue U.

We see that, by (H3), for any x € £2, H{x, •) is continuous on U.
As U is separable, there exists a countable dense set Ud = {«,, i > 1} C U. For

each Uj e Ud and £2i/7 c n0, we denote

hjj(x) = [H(x, Uj) — H(x, u)]xnul(x) x e n.
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Since hy (•) e L'(£2), there exists a measurable set Dtj c £2 with m(D,y) = m(£2),
such that any point in D,y is a Lebesgue point of hy, namely,

l«5 Z7F73TT / Vv «) - hV (*>] ̂  = 0

Let Do = C\ij>i Du- T n e n m(D0) = m(£2).
To obtain (5.2), it suffices to prove that, for each * e £20 ft Do and v e Uo(x),

H(x,u(x))< H(x,v). (5.22)

Given such an x e £20 H Do and v e i/0(x), by the definitions of £20 and f/o(jc), and
the density of Ud, we can choose an integer j > 1 and a subsequence (still denoted
by itself) {«,} C Ud, such that

I X 6 £2,/;, V € f/i/yCx), «,- € Uw{x),
.. (5.23)

hm u, = u.
/-•oo

For any w, chosen above, we define

v ["(£) f €n\(B,( jc)
U' I «i | e B,(JC) n £21/7 V5>0.

We may easily check that vs e ^i/ ; . Taking J = l/j and u = vs in (5.21), we have
IB <X) hij (f )^? — 0. Dividing by 5 > 0 and sending S —> 0, we obtain /iy (JC) > 0.
That means H(x, ii(x)) < H(x, M,), Vi. Hence, from (5.23) and the continuity of
H(x,u)inue U, (5.22) follows.

The proof of the Pontryagin principle is complete.

REMARK 1. If L is independent of u, £l0
 a°d U0(x) can be replaced by £2 and U,

respectively. As a matter of fact, in this case, we have hr = 0 and we can carry out
the proof without considering £2̂  and % etcetera.

REMARK l.lfz^ 0, then (5.2) gives a necessary condition for the optimal control
M. Whereas if z = 0, then (5.2) is trivial. In this case, (5.1) tells us that

JiL,(jc,)iIfi) + /l = O. (5.24)

This gives (implicitly, if L is independent of u) a necessary condition for u. Due to
(5.3), (5.24) is nontrivial.

Also, if/n(£20) = 0, (5.2) tells us nothing. But, in this case, we must have

L(x,y(x),u(x)) = J a.ejc e £2.

This has already given us some information about the optimal pair (y, u).
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