AN EXISTENCE THEOREM FOR ORDINARY DIFFERENTIAL EQUATIONS IN BANACH SPACES

Bogdan Rzepecki

We prove the existence of bounded solution of the differential equation y' = A(t)y + f(t, y) in a Banach space. The method used here is based on the concept of "admissibility" due to Massera and Schäffer when f satisfies the Caratheodory conditions and some regularity condition expressed in terms of the measure of noncompactness α .

We prove the existence of bounded solution of the differential equation y' = A(t)y + f(t, y) in a Banach space. The method used here is based on the concept of "admissibility" due to Massera and Schäffer [5] when f satisfies the Caratheodory conditions and some regularity condition expressed in terms of the measure of noncompactness α . Our result is closely related to the results of Szufla [7].

Throughout this paper J denotes the half-line $t \ge 0$, E a Banach space with norm $\|\cdot\|$, and L(E) the algebra of continuous linear operators from E into itself with induced norm $\|\cdot\|$. Further, we will use standard notation and some of the notation, definitions and results from the book of Massera and Schäffer [5].

Received 28 June 1984. The author is grateful to Professor S. Szufla for several helpful conversations.

Copyright Clearance Centre, Inc. Serial-fee code: 0004-9727/84 \$A2.00 + 0.00.

```
Let us denote:
```

by L(J, E) - the vector space of strongly measurable functions from J into E, Bochner integrable in every finite subinterval I of J, with the topology of the convergence in the mean, on every such I;

by $B(J, \mathbb{R})$ - a Banach function space, provided with the norm $\|\cdot\|_{B(\mathbb{R})}$, of real-valued measurable functions on J such that

- (1) $B(J, \mathbb{R})$ is stronger than $L(J, \mathbb{R})$,
- (2) $B(J, \mathbb{R})$ contains all essentially bounded functions with compact support,
- (3) if $u \in B(J, \mathbb{R})$ and v is a real-valued measurable function on J with $|v| \leq |u|$, then $v \in B(J, \mathbb{R})$ and $||v||_{B(\mathbb{R})} \leq ||u||_{B(\mathbb{R})}$, and
- (4) if v_n (n = 1, 2, ...) are real-valued measurable functions on J such that $\lim_{n \to \infty} v_n(t) = 0$ for almost all $t \in J$ and $|v_n| \le u$ with $u \in B(J, \mathbb{R})$, then $\lim_{n \to \infty} ||v_n||_{B(\mathbb{R})} = 0$;

by $B^*(J, \mathbb{R})$ - the associate space to $B(J, \mathbb{R})$, that is, the Banach space of measurable functions $u : J \to \mathbb{R}$ such that

$$\|u\|_{B^{*}(\mathbb{R})} = \sup\left\{ \int_{J} |v(s)u(s)| ds : v \in B(J, \mathbb{R}), \|v\|_{B(\mathbb{R})} \leq 1 \right\} < \infty ;$$

by B(J, E) (respectively $B^*(J, E)$) - the Banach space of all strongly measurable functions $u : J \rightarrow E$ such that $\|\|u\| \in B(J, \mathbb{R})$ (respectively $\|\|u\| \in B^*(J, \mathbb{R})$) provided with the norm $\|\|u\|_{B(E)} = \|\|\|u\|\|_{B(\mathbb{R})}$ (respectively $\|\|u\|_{B^*(E)} = \|\|\|u\|\|_{B^*(\mathbb{R})}$); by C(J, E) - the vector space of all continuous functions from J to E endowed with the topology of uniform convergence on compact subsets of J.

Assume that $A \in L(J, L(E))$. Let E_0 denote the set of all points of E which are values for t = 0 of bounded solutions of the differential equation y' = A(t)y. Suppose that E_0 is closed and has a closed complement, that is, there exists a closed subspace E_1 of E such that E is the direct sum of E_0 and E_1 .

Let P be the projection of E onto E_0 , and let $U: J \to L(E)$ be the solution of the equation U' = A(t)U with the initial condition U(0) = I (the identity mapping). For any $t \in J$ we define a function $G(t, \cdot) \in L(J, L(E))$ by

$$G(t, s) = \begin{cases} U(t)PU^{-1}(s) & \text{for } 0 \le s \le t , \\ -U(t)(I-P)U^{-1}(s) & \text{for } s > t . \end{cases}$$

Assume in addition that there exists a constant C > 0 such that, for any $t \in J$, $G(t, \cdot) \in B^*(J, L(E))$ and $\|G(t, \cdot)\|_{B^*(L(E))} \leq C$.

Let α denote the Kuratowski measure of noncompactness in E, the properties of which may be found in [2] and [3]. Suppose $f: J \times E \rightarrow E$ is a function which satisfies the following conditions:

- l°. for each $x \in E$ the mapping $t \mapsto f(t, x)$ is strongly measurable, and for each $t \in J$ the mapping $x \mapsto f(t, x)$ is continuous;
- 2°. $||f(t, x)|| \le m(t)$ for all $(t, x) \in J \times E$, where $m \in B(J, \mathbb{R})$;
- 3°. for any $\varepsilon > 0$, $t_0 > 0$ and bounded subset X of E there exists a closed subset Q of $[0, t_0]$ such that mes $([0, t_0] \setminus Q) < \varepsilon$ and

$$\alpha(f[I \times X]) \leq \sup\{g(t) : t \in I\} \cdot h(\alpha(X))$$

for each closed subset I of Q, where g and h are functions of J into itself, g is measurable, h is non-decreasing and

$$\sup\left\{\int_{J} |G(t, s)| g(s) ds : t \in J\right\} \cdot h(t) < t$$

for all t > 0.

Under the above hypotheses our result reads as follows.

THEOREM. For each $x_0 \in E_0$ with sufficiently small norm there exists a bounded solution of the differential equation

$$y'(t) = A(t)y(t) + f(t, y(t))$$

on J such that $Py(0) = x_0$.

Proof. The result can be proved by the fixed point theorem given in
[6] as Theorem 2.

According to Theorem 4.1 of [4] there is a constant M > 0 such that every bounded solution of y' = A(t)y satisfies the estimate $||y(t)|| \le M||y(0)||$ for $t \in J$. Pick $r > C||m||_{B(\mathbb{R})}$ and assume that

$$x_0 \in E_0$$
 with $||x_0|| \leq M^{-1} (r - C ||m||_{B(\mathbb{R})})$

Denote by K the set of all $y \in C(J,\,E)$ such that $\|y(t\,)\| \leq r$ on J , and

$$\|y(t_1) - y(t_2)\| \leq r \left| \int_{t_1}^{t_2} \|A(s)\| ds \right| + \left| \int_{t_1}^{t_2} m(s) ds \right|$$

for t_1, t_2 in J. Define a mapping T as follows:

$$(Ty)(t) = U(t)x_0 + \int_J G(t, s)(Fy)(s)ds$$

for $y \in K$, where (Fy)(t) = f(t, y(t)).

Let $y_0 \in K$. By the Hölder inequality

$$\| (Ty_0)(t) \| \le M \| U(0)x_0 \| + \int_J \| G(t, s) \| m(s) ds$$

$$\le M \| x_0 \| + C \| m \|_{B(\mathbb{R})} \le r$$

on J . Since $T\!y_0$ is a solution of the equation $y\,'=A(\,t\,)y\,+\,F\!y_0^{}$, we have

$$\| (Ty_0) (t_1) - (Ty_0) (t_2) \| \leq \left\| \int_{t_1}^{t_2} \| A(s) (Ty_0) (s) + (Fy_0) (s) \| ds \right\|$$

for $t_1, t_2 \in J$. Thus $Ty_0 \in K$. Evidently,

$$||(Tu)(t)-(Tv)(t)|| \leq C||Fu-Fv||_{B(E)}$$
 for $u, v \in K$.

Now, from this and from 2° , (3) and (4), we conclude that T is continuous as a map of K into itself.

Let us put $\Phi(Y) = \sup\{\alpha(Y(t)) : t \in J\}$ for any nonempty subset Yof K; here Y(t) stands for the set of all y(t) with $y \in Y$. By the corresponding properties of α , $\Phi(Y_1) \leq \Phi(Y_2)$ whenever $Y_1 \subset Y_2$, $\Phi(Y \cup \{y\}) = \Phi(Y)$ for $y \in K$, and $\Phi(\overline{\text{conv }} Y) = \Phi(Y)$. If $\Phi(Y) = 0$ then $\overline{Y(t)}$ is compact for every $t \in J$; therefore Ascoli's theorem implies that \overline{Y} is compact in C(J, E).

Assume that Y is a nonempty subset of K with $\Phi(Y) > 0$. We shall prove that $\Phi(T[Y]) < \Phi(Y)$.

Let $t \in J$ be fixed. Let $\varepsilon > 0$ be arbitrary. Since $\lim_{n \to \infty} \|\chi_{[t,\infty)}^{m}\|_{B(\mathbb{R})} = 0$, so $C\|\chi_{[a,\infty)}^{m}\|_{B(\mathbb{R})} < \varepsilon$ for some $a \ge t$. Further, let $\delta = \delta(\varepsilon) > 0$ be a number such that $\int_{A} \|G(t,s)\|_{m}(s)ds < \varepsilon$ for each measurable $A \subset [0, a]$ with mes $(A) < \delta$. By the Luzin theorem there exists a closed subset Z_{1} of [0, a] with mes $([0, a] \setminus Z_{1}) < \delta/2$ and the function g is continuous on Z_{1} .

Let $X_0 = \bigcup\{Y(s) : 0 \le s \le a\}$. It follows from 3° that there exists a closed subset Z_2 of [0, a] such that $\operatorname{mes}\left([0, a]\setminus Z_2\right) < \delta/2$ and $\alpha(f[I \times X_0]) \le \sup\{g(s) : s \in I\} \cdot h(\alpha(x_0))$ for each closed subset I of Z_2 .

Define $A = ([0, a] \setminus Z_1) \cup ([0, a] \setminus Z_2)$ and $Z = [0, a] \setminus A$. For any given $\varepsilon' > 0$ there exists a $\eta > 0$ such that if $|s'-s''| < \eta$ with $s', s'' \in [0, t] \cap Z$ or $s', s'' \in [t, a] \cap Z$, then $\|G(t, s')-G(t, s'')\| < \varepsilon'$ and $|g(s')-g(s'')| < \varepsilon'$. Now we devide the interval [0, a] into 2n parts:

$$t_0 = 0 < t_1 < \ldots < t_n = t < \ldots < t_{2n} = a$$

with $t_i - t_{i-1} < \eta$. Denote by I_i (i = 1, 2, ..., 2n) the set $[t_{i-1}, t_i] \setminus A$. Moreover, let

$$c_1 = \sup\{ |G(t, s)| : s \in Z \}, c_2 = \sup\{g(s) : s \in Z \},$$

and let p_i , r_i be points in I_i such that

$$[G(t, p_i)] = \sup \{[G(t, s)] : s \in I_i\}$$

and

$$g(r_i) = \sup\{g(s) : s \in I_i\}$$

It is not hard to see that if H is a continuous mapping from a compact subinterval I to L(E) and W is a bounded subset of E, then $\alpha(\bigcup\{H(s)W : s \in I\}) \leq \sup\{\|H(s)\| : s \in I\} \cdot \alpha(W)$. Hence

$$\alpha \left(\bigcup \left\{ G(t, s) f[I_i \times X_0] : s \in I_i \right\} \right) \leq \left[G(t, p_i) \bigcup \left\{ g(r_i) \cdot h(\alpha(X_0)) \right\} \right]$$

for i = 1, 2, ..., 2n.

Applying the integral mean value theorem, we get

$$\begin{split} \alpha\Big[\Big\{\!\int_{Z} G(t, s)(Fy)(s)ds \, : \, y \, \in \, Y\Big\}\!\Big] \\ &\leq \alpha\Big[\sum_{i=1}^{2n} \max\{I_i\}\overline{\operatorname{conv}}\{\bigcup\{G(t, s)f[I_i \times X_0] \, : \, s \, \in \, I_i\}\}\Big] \\ &\leq h\left(\alpha(X_0)\right) \, \cdot \, \sum_{i=1}^{2n} \|G(t, p_i)\|g(r_i)\max\{I_i\} \\ &\leq h\left(\alpha(X_0)\right) \, \cdot \, \sum_{i=1}^{2n} \int_{I_i} \left(\|G(t, p_i)-G(t, s)\|g(r_i) + \|G(t, s)\|g(s)ds \right) \\ &\quad + \|G(t, s)\|\|g(r_i)-g(s)\|+\|G(t, s)\|g(s)ds \\ &\leq h\left(\alpha(X_0)\right) \, \cdot \, \left[\alpha(e_1+e_2)\varepsilon' + \int_{Z} \|G(t, s)\|g(s)ds\right] \, . \end{split}$$

Since Y is almost equicontinuous and bounded, we can apply Lemma 2.2 of [1] to get

$$\alpha(X_0) = \sup\{\alpha(Y(s)) : 0 \le s \le a\} \le \Phi(Y) .$$

Consequently

454

$$\begin{split} &\alpha\big(T[Y](t)\big) \\ &\leq 2 \int_{A} \left\| G(t, s) \| m(s) ds + h\big(\alpha \big\{S_0\big\}\big) \int_{Z} \left\| G(t, s) \| g(s) ds + 2 \int_{\alpha}^{\infty} \left\| G(t, s) \| m(s) ds \right\| \\ &< 2\varepsilon + h\big(\Phi(Y)\big) \int_{Z} \left\| G(t, s) \| g(s) ds + 2C \| \chi_{[\alpha,\infty)} m \|_{B(\mathbb{R})} \\ &< 4\varepsilon + h\big(\Phi(Y)\big) \int_{Z} \left\| G(t, s) \| g(s) ds \right\| . \end{split}$$

This proves

$$\alpha(T[Y](t)) \leq h(\Phi(Y)) \cdot \sup\left\{ \int_J \|G(t, s)\|g(s)ds : t \in J \right\}$$

for each $t \in J$, and our claim is proved.

The set K is closed and convex subset of C(J, E). Thus all assumptions of our fixed point theorem are satisfied; T has a fixed point in K which ends the proof.

References

- [1] A. Ambrosetti, "Un teorema di esistenze per le equazioni differenziali negli spazi di Banach", *Rend. Sem. Mat. Univ. Padova* 39 (1967), 349-360.
- [2] K. Deimling, Ordinary differential equations in Banach spaces (Springer-Verlag, Berlin, Heidelberg, New York, 1977).
- [3] R. Martin, Nonlinear operators and differential equations in Banach spaces (John Wiley & Sons, New York and London, 1976).
- [4] José Luis Massera and Juan Jorge Schäffer, "Linear differential equations and functional analysis", Ann. of Math. (2) 67 (1958), 517-573.
- [5] José Luis Massera, Juan Jorge Schäffer, Linear differential equations and function spaces (Pure and Applied Mathematics, 21. Academic Press, New York and London, 1966.
- [6] Bogdan Rzepecki, "Remarks on Schauder's fixed point principle and its applications", Bull. Acad. Polon. Sci. Sér. Sci. Math. 27 (1979), 473-480.

 [7] S. Szufla, "On the boundedness of solutions of non-linear differential equations in Banach spaces", Comment. Math. 21 (1979), 381-387.

Institute of Mathematics, A. Mickiewicz University, Matejki 48/49, 60-769 Poznań, Poland.

456