
J. Fluid Mech. (2023), vol. 960, A30, doi:10.1017/jfm.2023.147

Reinforcement learning of control strategies for
reducing skin friction drag in a fully developed
turbulent channel flow
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Reinforcement learning is applied to the development of control strategies in order to
reduce skin friction drag in a fully developed turbulent channel flow at a low Reynolds
number. Motivated by the so-called opposition control (Choi et al., J. Fluid Mech.,
vol. 253, 1993, pp. 509–543), in which a control input is applied so as to cancel the
wall-normal velocity fluctuation on a detection plane at a certain distance from the wall,
we consider wall blowing and suction as a control input, and its spatial distribution
is determined by the instantaneous streamwise and wall-normal velocity fluctuations at
distance 15 wall units above the wall. A deep neural network is used to express the
nonlinear relationship between the sensing information and the control input, and it is
trained so as to maximize the expected long-term reward, i.e. drag reduction. When only
the wall-normal velocity fluctuation is measured and a linear network is used, the present
framework reproduces successfully the optimal linear weight for the opposition control
reported in a previous study (Chung & Talha, Phys. Fluids, vol. 23, 2011, 025102). In
contrast, when a nonlinear network is used, more complex control strategies based on the
instantaneous streamwise and wall-normal velocity fluctuations are obtained. Specifically,
the obtained control strategies switch abruptly between strong wall blowing and suction
for downwelling of a high-speed fluid towards the wall and upwelling of a low-speed
fluid away from the wall, respectively. Extracting key features from the obtained policies
allows us to develop novel control strategies leading to drag reduction rates as high as
37 %, which is higher than the 23 % achieved by the conventional opposition control
at the same Reynolds number. Finding such an effective and nonlinear control policy
is quite difficult by relying solely on human insights. The present results indicate that
reinforcement learning can be a novel framework for the development of effective control
strategies through systematic learning based on a large number of trials.
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1. Introduction

Turbulent flows are ubiquitous in our daily life and determine the performances and the
energy efficiencies of various thermo-fluids devices (Brunton & Noack 2015). In most
engineering flows, turbulence is bounded by a solid surface, and their interaction plays
a crucial role in generation and maintenance of near-wall turbulence, and associated
momentum and heat transport between fluid and solid. Even over simple geometries such
as a smooth flat wall, however, turbulence exhibits complex behaviour due to its nonlinear
and multiscale nature, so that prediction and control of turbulent flow remain challenging.

In this study, we consider the control of a fully developed turbulent channel flow, which
is one of the canonical flow configurations. Since near-wall turbulence is responsible
for the increase in wall skin friction, a tremendous amount of effort has been devoted
to reducing the skin friction drag. In general, flow control strategies can be categorized
into passive and active schemes (Gad-el Hak 1996). The passive scheme does not require
power input for control, and its typical example is a riblet surface (Dean & Bhushan 2010).
In contrast, the active scheme requires additional power input for control, and it can be
further classified into predetermined and feedback controls. The former applies a control
input with a predetermined spatio-temporal distribution regardless of an instantaneous
flow state. This makes a control system simple since no sensing of a flow field is required.
Despite its simplicity, it is known that the predetermined control achieves relatively high
drag reduction rates, and various control modes, such as spanwise wall oscillation (Jung,
Mangiavacchi & Akhavan 1992; Quadrio & Ricco 2004), streamwise travelling wave of
wall blowing and suction (Min et al. 2006; Lieu, Marref & Jovanović 2010; Mamori,
Iwamoto & Murata 2014), and uniform wall blowing (Sumitani & Kasagi 1995; Kametani
& Fukagata 2011), have been proposed.

In contrast, the feedback control determines a control input based on a sensor signal
obtained from an instantaneous flow field, therefore it enables a more flexible control.
Meanwhile, due to the large degrees of freedom of the flow state and also the control
input, optimizing a feedback control law is quite challenging. Therefore, existing control
strategies have often been developed based on researchers’ physical insights. A typical
example of a feedback control is the so-called opposition control (Choi, Moin & Kim
1994; Hammond, Bewley & Moin 1998; Chung & Talha 2011), where local wall blowing
and suction is applied so as to cancel the wall-normal velocity fluctuation at a certain
height from the wall. The sensing plane is called a detection plane, and its optimal height
has been reported as y+ = 15 in a wall unit (Hammond et al. 1998). The relationship
between the wall-normal velocity on the detection plane and the control input has been
assumed commonly to be linear a priori, and its optimal weight coefficient was found to
be approximately unity (Choi et al. 1994; Chung & Talha 2011). It should be noted that
optimization of these parameters in the control algorithm has mostly been done through
trial and error, and such an approach is quite inefficient even for a simple control algorithm
where the relationship between the sensor signal and the control input is assumed to be
linear.

There also exists another approach to develop efficient feedback control laws. Optimal
control theory is a powerful tool to optimize a control input with large degrees of freedom
by explicitly leveraging mathematical models of a flow system such as Navier–Stokes
equations and mass conservation. Specifically, the spatio-temporal distribution of a control
input is determined so as to minimize a prescribed cost functional. The cost functional
can be defined within a certain time horizon, so that the future flow dynamics is taken
into consideration in the optimization procedures. Optimal control theory was applied
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Reinforcement learning for turbulence control

successfully to a low-Reynolds-number turbulent channel flow by Bewley, Moin & Temam
(2001), and it was demonstrated that the flow can be relaminarized. One of the major
drawbacks in optimal control theory is that it requires expensive iterations of forward
and adjoint simulations within the time horizon in order to determine the optimal control
input. By assuming a vanishingly small time horizon, suboptimal control theory (Lee,
Kim & Choi 1998; Hasegawa & Kasagi 2011) provides an analytical expression of the
control input without solving adjoint equations, but its control performance is not as
high as that achieved by optimal control theory, suggesting the importance of considering
future flow dynamics in determining the control input. Another issue is that there exists
a severe limitation in the length of the time horizon employed in optimal control theory
due to inherent instability of adjoint equations (Wang, Hu & Blonigan 2014). Specifically,
the maximum time horizon is approximately 100 in a wall unit (Bewley et al. 2001;
Yamamoto, Hasegawa & Kasagi 2013), which is quite short considering the time scale of
wall turbulence. In particular, this limitation becomes critical at higher Reynolds numbers
where large-scale structures play important roles in the dynamics of wall turbulence (Kim
& Adrian 1999).

In recent years, much attention has been paid to reinforcement learning as a new
framework for developing efficient control strategies in various fields, such as robot control
(Kober, Bagnell & Peters 2013) and games (Silver et al. 2016). In reinforcement learning,
an agent decides its action based on a current state. As a consequence, the agent receives
a reward from an environment. By repeating this interaction with the environment, the
agent learns an efficient policy, which dictates the relationship between the state and
the action, so as to maximize the total expected future reward. In this way, the policy
can be optimized from a long-term perspective. In addition, by combining reinforcement
learning and deep neural networks, deep reinforcement learning (Sutton & Barto 2018)
can deal naturally with a complex nonlinear relationship between sensor signals and a
control input. We note that there already exist several studies applying machine learning
techniques for reducing skin friction drag in a turbulent channel flow. For example, Lee
et al. (1997) first applied neural networks to design a controller to suppress a certain
physical quantity of interest in the short term, i.e. after one time step. More recently, Han
& Huang (2020) and Park & Choi (2020) applied convolutional neural networks to predict
the wall-normal velocity fluctuation at the detection plane to reproduce the opposition
control (Choi et al. 1994) based on wall measurements only. However, the reinforcement
learning distinguishes itself from those other machine learning techniques in the sense
that it provides a framework to develop novel control strategies that are effective in the
long term. It is therefore no surprise that reinforcement learning is gaining more and more
attention for its applications to fluid mechanics. Recent attempts and achievements are
summarized in several comprehensive review articles (Rabault et al. 2020; Garnier et al.
2021).

Previous studies cover a variety of purposes, such as drag reduction (Koizumi, Tsutsumi
& Shima 2018; Rabault et al. 2019; Rabault & Kuhnle 2019; Fan et al. 2020; Tang et al.
2020; Tokarev, Palkin & Mullyadzhanov 2020; Xu et al. 2020; Ghraieb et al. 2021;
Paris, Beneddine & Dandois 2021; Ren, Rabault & Tang 2021), control of heat transfer
(Beintema et al. 2020; Hachem et al. 2021), optimization of microfluidics (Dressler et al.
2018; Lee et al. 2021), optimization of artificial swimmers (Novati et al. 2018; Verma,
Novati & Koumoutsakos 2018; Yan et al. 2020; Zhu et al. 2021) and shape optimization
(Yan et al. 2019; Li, Zhang & Chen 2021; Viquerat et al. 2021; Qin et al. 2021). In terms
of drag reduction considered in the present study, Rabault et al. (2019) considered control
of a two-dimensional flow around a cylinder at a low Reynolds number. They assumed
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wall blowing and suction from two local slits over the cylinder, and demonstrated that
a control policy obtained by reinforcement learning achieves 8 % drag reduction. Tang
et al. (2020) discussed Reynolds number effects on the control performance at different
Reynolds numbers, namely 100, 200, 300 and 400, and also showed the possibility of
applying the obtained control policy to unseen Reynolds numbers. Paris et al. (2021)
optimized the arrangement of sensors employed for controlling two-dimensional laminar
flow behind a cylinder. Their sparsity-seeking algorithm allows us to reduce a number of
sensors down to five without sacrificing the control performance. Ghraieb et al. (2021)
proposed a degenerated version of reinforcement learning so that it does not require the
information of the state as an input. This allows us to find effective open-loop control
policies for both laminar and turbulent flows around an aerofoil and a cylinder. Fan
et al. (2020) demonstrated experimentally that reinforcement learning can find effective
rotation modes of small cylinders around a primal stationary cylinder for its drag reduction.
As shown above, most previous studies consider relatively simple flow fields such as a
two-dimensional laminar flow around a blunt object. Also, their control inputs are wall
blowing and suction from slots at two or four prescribed locations, or rotation/vibrations
of one or two cylinders, so that the degrees of freedom for a control input are commonly
limited. Therefore, it remains an open question whether reinforcement learning can be
applicable to turbulence control with a control input having large degrees of freedom.

To the best of the authors’ knowledge, this is the first study applying reinforcement
learning to control of a fully developed turbulent channel flow for reducing skin friction
drag. As is often the case with wall turbulence control, we consider wall blowing and
suction as a control input, which is defined at each computational grid point on the wall.
This makes the degrees of freedom of the control input quite large (O(104)), compared
with those assumed in the existing applications of reinforcement learning. This paper
is organized as follows. After introducing our problem setting in § 2, we explain the
framework of the present reinforcement learning in detail in § 3. Then we present new
control policies obtained in the present study, and their control results in § 4. In § 5, we
discuss further how the unique features of the present control policies lead to high control
performances. Finally, we summarize the present study in § 6.

2. Problem setting

2.1. Governing equations and boundary conditions
We consider a fully developed turbulent channel flow with wall blowing and suction as
a control input, as shown in figure 1. The coordinate systems are set so that x, y and
z correspond to the streamwise, wall-normal and spanwise directions, respectively. The
corresponding velocity components are denoted by u, v and w. Time is expressed by t.
The origin of the coordinates is placed on the bottom wall as shown in figure 1. Unless
stated otherwise, we consider only the bottom half of the channel due to the symmetry
of the system. The governing equations of the fluid flow are the following incompressible
Navier–Stokes and continuity equations:

∂ui

∂t
+ uj

∂ui

∂xj
= − ∂p

∂xi
+ 1

Re
∂2ui

∂xj ∂xj
, (2.1)

∂ui

∂xi
= 0, (2.2)

where p is the static pressure. Throughout this paper, all variables without a superscript are
non-dimensionalized by the channel half-width h∗ and the bulk mean velocity U∗

b , while
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Blowing and Suction φ

Turbulence
Ly = 2

Lz

Lx

z
x

y

Figure 1. Schematic of the computational domain and coordinate system.

a variable with an asterisk indicates a dimensional value. A constant flow rate condition
is imposed, so that the bulk Reynolds number is Reb ≡ 2U∗

bh∗/ν∗ = 4646.72, where ν∗
is the kinematic viscosity of the fluid. The corresponding friction Reynolds number in
the uncontrolled flow is Reτ ≡ u∗

τ h∗/ν∗ ≈ 150. Here, the friction velocity is defined as
u∗
τ =

√
τ ∗

w/ρ∗, where ρ∗ is the fluid density, and τ ∗
w is the space–time average of the wall

friction.
Periodic boundary conditions are imposed in the streamwise and spanwise directions.

As for the wall-normal direction, we impose no-slip conditions for the tangential velocity
components on the wall, while wall blowing and suction with zero-net-mass flux is applied
as a control input:

ui(x, 0, z, t) = φ(x, z, t) δi2. (2.3)

Here, φ(x, z, t) indicates the space–time distribution of wall blowing and suction at the
bottom wall (y = 0), and δij is the Kronecker delta. Wall blowing and suction is also
imposed at the top wall, and its space–time distribution is determined based on the
same control policy as that used for the bottom wall, so that the resulting flow is always
statistically symmetric with respect to the channel centre. The objective of the present
study is to find an effective strategy to determine the distributions of φ(x, z, t) for drag
reduction.

In reinforcement learning, a control policy (control law) is learned on a trial-and-error
basis requiring a large number of simulations. In order to reduce the computational
cost for the training, we introduce the minimal channel (Jiménez & Moin 1991), which
has the minimum domain size to maintain turbulence. Accordingly, the streamwise,
wall-normal and spanwise domain sizes are set to be (Lx, Ly, Lz) = (2.67, 2.0, 0.8). Once
a control policy is obtained in the minimal channel, it is assessed in a larger domain with
(Lx, Ly, Lz) = (2.5π, 2.0, π). Hereafter, the latter larger domain is referred to as a full
channel.

2.2. Numerical methodologies
The governing equations (2.1) and (2.2) are discretized in space by a pseudo-spectral
method (Boyd 2001). Specifically, Fourier expansions are adopted in the streamwise and
spanwise directions, while Chebyshev polynomials are used in the wall-normal direction.
For the minimal channel, the number of modes used in each direction is (Nx, Ny, Nz) =
(16, 65, 16), whilst they are set to be (Nx, Ny, Nz) = (64, 65, 64) for the full channel.
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The 3/2 rule is applied to eliminate aliasing errors, and therefore the number of grid
points in the physical space is 1.5 times the number of modes employed in each direction.

As for the time advancement, a fractional step method (Kim & Moin 1985) is applied
to decouple the pressure term from (2.1). The second-order Adams–Bashforth method is
used for the advection term. For viscous terms, we employ the Euler implicit method, since
the Crank–Nicolson method sometimes leads to numerical instability due to its slightly
narrower stability region (Kajishima & Taira 2016). This is reasonable considering that
the reinforcement learning is a trial-and-error process, which can lead to unstable control
policies, especially during the early stage of learning. Hence it is more advantageous to
prioritize stability over accuracy during the training, and then to verify the resulting control
performances by the obtained control policies with higher-order schemes afterwards.
Indeed, in the present study, a time-advancement scheme hardly affects the evaluation
of the skin friction drag for a given control policy, as shown in Appendix D, since we
commonly use a relatively small time step in both training and evaluation phases.

Specifically, the time step is set to be �t+ = 0.06 and 0.03 for the minimal and full
channels, respectively. The superscript + denotes a quantity scaled by the viscous scale in
the uncontrolled flow throughout this paper. The above setting of the time step ensures
that the Courant number is less than unity even with wall blowing and suction. The
present numerical scheme has already been validated and applied successfully to control
and estimation problems in previous studies (Yamamoto et al. 2013; Suzuki & Hasegawa
2017).

3. Reinforcement learning

3.1. Outline
Reinforcement learning is a problem where an agent (learner) learns the optimal policy
that maximizes a long-term total reward through trial and error. Specifically, an agent
receives a state s from an environment (control target) and decides an action a based on a
policy μ(a|s). By executing the action against the environment, the state changes from s
to s′, and a resulting instantaneous reward r is obtained. Then s′ and r are fed back to the
agent and the policy is updated. With the new policy, the next action a′ under the new state
s′ is determined. By repeating the above interaction with the environment, the agent learns
the optimal policy. If the next state s′ and the instantaneous reward r depend only on the
previous state s and the action a, then this process is called the Markov decision process,
which is the basis of the reinforcement learning (Sutton & Barto 2018).

In the current flow control problem, the environment is a fully developed turbulent
channel flow, whereas the state is sensing a signal from the instantaneous flow field,
and the action corresponds to the control input, i.e. wall blowing and suction. The
instantaneous reward r(t) is the friction coefficient Cf (t) with a negative sign, since the
reward is defined to be maximized, while the wall friction should be minimized in the
present study. Specifically, it is defined as

r(t) = −Cf (t), (3.1)

where

Cf (t) = τw
1
2ρU2

b

. (3.2)

Here, τw is the spatial mean of the wall shear stress over the entire wall, and therefore both
r and Cf are functions of time as written explicitly in (3.1) and (3.2). It should be noted
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State: s

State

State

Critic

Action Action value function

Action

Action: a

Cost function
Cost function

Time discount rate: γ = 0.99

(r(s, a) + γQμ (s′, a′) – Qμ (s, a))2
–Qμ (s, a)

Qμ

Actor

Agent

Environment

s
s

s
s

a

a
Reward: r

Figure 2. Schematic diagram of the DDPG algorithm.

that there is no unique way to define the reward. For example, the inverse of the friction
coefficient, i.e. r(t) = 1/Cf (t), could be another choice. The major difference from the
present choice, (3.1), is that the reward increases more rapidly when Cf becomes smaller.
It was confirmed, however, that there is no significant difference in the final outcome. More
detailed comparisons in the resulting control policies and their performances between the
two rewards can be found in Appendix A.

Our objective is to find an efficient control policy that describes the relationship between
the flow state and the action for maximizing the future total reward. In the present study, we
use the deep deterministic policy gradient (DDPG) algorithm (Lillicrap et al. 2016), which
is a framework to optimize a deterministic policy. Specifically, this algorithm consists
of two neural networks, called an actor and a critic, as shown in figure 2. The input of
the actor is the state s, while its output is the action a. Therefore, the actor dictates a
control policy μ(a|s), and it has to be optimized. For this purpose, another network, i.e.
a critic, is introduced. The inputs of the critic are the current state s and the action a.
The critic outputs the estimation of an action value function Qμ(s, a), i.e. the expected
total future reward when a certain action a is taken under a certain state s. It should be
noted that during the training, although the instantaneous reward, i.e. instantaneous wall
friction, is obtained at every time step from simulation, we generally do not know Qμ(s, a),
since it is determined by the equilibrium state after the current control policy μ is applied
continuously to the flow field. The role of the critic network is to estimate Qμ(s, a) from
past states, actions and resulting rewards.

As for training the networks, the actor is first trained so as to maximize the expected
total reward Qμ(s, a) while fixing the critic network. Then the critic is optimized so that
the resulting Qμ(s, a) minimizes the following squared residual of the Bellman equation:

Lcritic = {
r(s, a) + γ Qμ(s′, a′) − Qμ(s, a)

}2
. (3.3)

As shown in figure 2, the two networks are coupled and trained alternatively, so that both
of them will be optimized after a number of trials. Here, γ is the time discount rate. If it is
set to be small, then the agent searches for a control policy yielding a short-term benefit. In
contrast, when γ approaches unity, the policy is optimized from a longer-term perspective.
Meanwhile, it is also known that when it is set too large, the agent tends to select no action
to avoid failure, i.e. drag increase. In this study, γ is set to be 0.99, which is the same as
the value used commonly in previous studies (Fan et al. 2020; Paris et al. 2021).
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3.2. State, action and network setting
Ideally, the velocity field throughout the entire domain should be defined as the state, and
wall blowing and suction imposed at each grid point should be considered as the action. In
such a case, however, the degrees of freedom of the state and the action become quite large,
so that network training will be difficult. Meanwhile, considering the homogeneity of the
current flow configuration in the streamwise and spanwise directions, wall blowing and
suction could be decided based on the local information of the flow field. For example, the
opposition control (Choi et al. 1994), which is one of the well-known control strategies,
applies local wall blowing and suction so as to cancel the wall-normal velocity fluctuation
above the wall. Belus et al. (2019) also introduce the idea of the translational invariance
to the control of a one-dimensional falling liquid film based on reinforcement learning.
They demonstrate that exploiting the locality of the flow system effectively accelerates
network training. Hence, in the present study, we also assume that a local control input can
be decided based solely on the velocity information above the location where the control
is applied. Specifically, we set the detection plane height to y+

d = 15, which is found to
be optimal for the opposition control in previous studies (Hammond et al. 1998; Chung &
Talha 2011). We note that we have conducted additional configuration where the state is
defined as the velocity information at multiple locations above the wall. It was found that
the resultant control performance is not improved significantly from that obtained in the
present configuration with a single sensing location, and the largest weight was confirmed
at approximately y+ = 15 (see Appendix B). Hence the present study focuses on a control
with the single detection plane located at y+

d = 15 from the wall.
As a first step, we consider the simplest linear actor, defined as

a ≡ φ(x, z, t) = α v′(x, yd, z, t) + β + N. (3.4)

Here, the prime indicates the deviation from the spatial mean, so that v′ = v − v̄.
Throughout this study, the velocity fluctuation used in the state is defined as the deviation
from its spatial mean in the x and z directions at each instant, and α and β are constants
to be optimized. In order to enhance the robustness of the training, a random noise N
with zero mean and standard deviation 0.1 in a wall unit is added. Throughout the present
study, the same magnitude of N is used in all the cases. In the present flow configuration,
where periodicity is imposed in the streamwise and spanwise directions, v̄ is null, and
therefore v′ = v. We also note that the same values of α and β are used for all locations
on the wall. In addition, a net mass flux from each wall is assumed to be zero, so that
β is zero. Eventually, the above problem reduces to optimizing the single parameter α in
the actor. This configuration will be referred to as Case Li00, as shown in table 1. For this
control algorithm (3.4), the previous study (Chung & Talha 2011) reported that the optimal
value of α is approximately unity. The purpose of revisiting this configuration is to assess
whether the present reinforcement learning can reproduce the opposition control, find the
optimal value of α, and achieve a drag reduction similar to that reported in the previous
study. We also note that the output of the actor is clipped to −1 ≤ φ+ ≤ 1 before applying
it to the flow simulation in order to avoid a large magnitude of the control input.

Considering that the skin friction drag is related directly to the Reynolds shear stress
−u′v′ (Fukagata, Iwamoto & Kasagi 2002), the streamwise velocity fluctuation u′ would
also be worth considering in addition to v′. Hence, for the rest of the cases shown in table 1,
both u′ and v′ at y+

d = 15 are considered as the state. The actor network has 1 layer and 8
nodes, as shown in figure 3(a). We have changed the size of the actor network and found
that further increases in the numbers of layers and nodes do not improve the resultant
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Case State Layers Nodes Activation function d

Li00 v′|y+=15 0 0 None 0
R18 u′, v′|y+=15 1 8 ReLU 0
S18 u′, v′|y+=15 1 8 Sigmoid 0
LR18 u′, v′|y+=15 1 8 LeakyReLU 0
T18 u′, v′|y+=15 1 8 tanh 0
R18D1 u′, v′|y+=15 1 8 ReLU 0.01
R18D2 u′, v′|y+=15 1 8 ReLU 0.05
R18D3 u′, v′|y+=15 1 8 ReLU 0.1

Table 1. Considered cases with the corresponding state, numbers of layers and nodes, an activation function,
and the weight coefficient d for the control cost.

State

S

S

State

S

S

Action a

a

8 nodes

8 nodes

ReLU

16 nodes

ReLU

16 nodes

ReLU

64 nodes

ReLU

64 nodes

ReLU

Action value

function
Q

Actor Critic

Action

(a) (b)

Figure 3. Network structures of (a) the actor and (b) the critic.

control performance (see Appendix C). The mathematical expression of the present actor
network is

a ≡ φ(x, z, t) = tanh
[
σ

{
u′(x, yd, z)α11 + v′(x, yd, z)α12 + β1

} · α2 + β2
] + N, (3.5)

where α11, α12, β1 and α2 are vectors having the same dimension as the number of the
nodes, while β2 is a scalar quantity. As for the activation function σ , we consider rectified
linear unit (ReLU), sigmoid, leaky ReLU and hyperbolic tangent, which are referred to
respectively as Cases R18, S18, LR18 and T18 as listed in table 1. The last two digits in
each case name represent the numbers of layers and nodes employed in the actor. We also
note that a hyperbolic tangent is used for the activation function of the output layer in order
to map the range of the control input into ‖φ+‖ < 1.0.

The network structure of the critic is shown schematically in figure 3(b). It consists of
two layers with 8 and 16 nodes for the first and second layers for the state, and another
one-layer network with 16 nodes for the action. Then the two networks are integrated by
an additional two layers with 64 nodes, and the final output is the action value function
Qμ(s, a). ReLU is used for the activation function.
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In order to take into account the cost for applying the control, we extend the reward as

r = −Cf − d
(φ+)2

2
. (3.6)

The second term of (3.6) represents the cost of control, and d is a weight coefficient that
determines the balance between the wall friction and the cost of applying the control. In
the present study, d is changed systematically from 0 to 0.1, which cases are referred to as
R18, R18D1, R18D2 and R18D3 (see table 1).

We note that the current reward ((3.1) or (3.6)) is defined based on the global quantities,
which are averaged in the homogeneous directions x and z, whereas the control policy
is defined locally as (3.5). Another option would be to define the reward locally as well.
Belus et al. (2019) assessed carefully these two possibilities and concluded that to define
both the control policy and the reward locally is more effective in training the network for
their one-dimensional liquid film problem. In the present problem, however, we found that
the training becomes unstable when the local reward is used. The reason for the instability
is unclear, but we speculate as follows. In the case of wall turbulence, it is not difficult
to achieve local drag reduction by applying strong wall blowing. However, it is highly
possible that this will cause large drag increase afterwards (downstream). Therefore, using
a local reward may not be effective for evaluating the global drag reduction effect in the
present case. Consequently, the reward is defined globally throughout this study. It would
also be interesting to include the spanwise velocity fluctuation w′ to the state. However, we
found that it does not contribute to further improvement of the resultant policy (not shown
here). It is in contrast to Choi et al. (1994), where it is shown that the opposition control
based on w′ is most effective in reducing the skin friction drag. In their case, however, the
control input is also a spanwise velocity on the wall, while the present study considers wall
blowing and suction as a control input. Hence which quantities should be included in the
state could depend on flow and control configurations.

3.3. Learning procedures
Figure 4 shows the general outline of the present learning procedures. The two networks,
i.e. actor and critic, are trained in parallel with flow simulation within a fixed time interval,
which is called an episode. In the present study, the episode duration is set to be T+ = 600,
and the flow simulation is repeated within the same interval, i.e. t ∈ [0, T]. In each episode,
the flow simulation is started from the identical initial field at t = 0, which is a fully
developed uncontrolled flow. For t > 0, the control input φ is applied from the two walls
in accordance with the control policy μ(a|s). We set the episode duration as T+ = 600, so
that the period covers the entire process in which the initial uncontrolled flow transits
to another fully developed flow with the applied control. If the episode length is too
short, then the flow does not converge to a fully developed state, so that the obtained
policy is effective for only the initial transient after the onset of the control. Meanwhile, if
the episode length becomes longer, then the obtained policy is more biased to the fully
developed state under the control, and therefore might not be effective for the initial
transient. According to our experience, the episode duration should be determined so
that it covers the entire procedures for the initial uncontrolled flow to converge to another
fully developed state after the onset of a control. Of course, the transient period should
generally depend on a control policy and also a flow condition, therefore the optimal
episode duration has to be found by trial and error. The number of training episodes is
set to be 100. We tested additional training with different initial conditions and also with
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1 episode

Time

Policy

Flow field

State (u′, v′),

u′v′ u′v′

Reward (–Cf)

Linear interpolation

Decide the control φ inputs after �t update

φ φ

Update the policy

s

s
a

T+ = 600

�t+
update = 0.6

t+

Figure 4. Schematic of the learning process.

twice the number of episodes in several cases, and confirmed that the resulting control
policies presented in this study are hardly affected by them. We also note that in the present
study, the control policy generally converges and exhibits similar features in the last 10–20
episodes within the total 100 episodes.

Within each episode, the agent interacts consecutively with the flow by applying a
control, and receives the instantaneous reward (3.1) or (3.6). Based on each interaction,
the networks of the actor and the critic are updated. The Adam optimizer is used for both
the networks, whereas the learning rate is set to be 0.001 and 0.002 for the actor and the
critic, respectively. The buffer size is set to be 5 000 000, while the batch size is 64. In the
present study, the networks are trained every short interval �t+update = 0.6. Accordingly,
the control input is also recalculated from the updated policy at the same time interval.
Within the time interval, the control input is interpolated linearly (see figure 4). Ideally,
a smaller time interval is better, since there will be more chances to update the networks.
Meanwhile, it is known that a short training interval often causes numerical instability
(Rabault et al. 2019; Fan et al. 2020). Our preliminary simulation results indicate that
�t+update = 0.6 leads to the best control performance.

The detailed numerical conditions of the present flow simulations, and also the network
configurations used in the present reinforcement learning, are summarized in tables 2
and 3, respectively. The wall clock time needed for the training of 100 episodes, i.e.
for running direct numerical simulations of 100 cases within t+ = 600 in the minimal
channel, with a single core of Intel Xeon Gold 6132 (2.6 GHz) is approximately one day.
Most computational costs are for performing flow simulations, and the other costs such as
updating the network parameters are quite minor. We also note that in the present study,
the training of the networks is always conducted in the minimal channel, so that we do not
apply transfer learning, where the network is first trained in the minimal channel or in the
fully channel with a coarser mesh, and then fine tuning is performed in the full channel
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Minimal channel Full-size channel

Domain size (Lx, Ly, Lz) = (2.67h, 2h, 0.80h) (Lx, Ly, Lz) = (2.5πh, 2h, πh)

Number of modes (Nx, Ny, Nz) = (16, 65, 16) (Nx, Ny, Nz) = (64, 65, 64)

Number of grid points (Mx, My, Mz) = (24, 97, 24) (Mx, My, Mz) = (96, 97, 96)

Time step �t+ = 0.06 �t+ = 0.03

Table 2. Numerical conditions in the present flow simulations.

Actor Critic

Networks([input]-[hidden]-[output]) [2]-[8(ReLU)]-[1(tanh)] Figure 3
Standard deviation of noise 0.1 —
Learning rate 0.001 0.002
Optimizer Adam Adam
Buffer size 5 000 000 5 000 000
Batch size 64 64
Number of training episodes 100 100
Time discount rate — 0.99

Table 3. Parameters in the present reinforcement learning for Case R18.

with a higher resolution. A few trials suggest that training in the full-size channel makes
the training procedures much slower and sometimes unsuccessful, whereas successful
cases result in policies similar to those obtained in the minimal channel. Hence the present
reinforcement learning can successfully extract essential features of the effective control
policies from the minimal channel.

4. Results of reinforcement learning

4.1. Linear policy: revisiting the opposition control
As a first step, we consider Case Li00, where only the wall-normal velocity fluctuation v′
at the detection plane at y+

d = 15 is used as a state, and the policy dictating the relationship
between the state and the control input is linear, as described in (3.4). The time traces of
the instantaneous Cf for different episodes are shown in figure 5. The line colour changes
from green to blue as the number of episodes increases. For comparison, we also plot the
temporal evolution of Cf for the uncontrolled and opposition control cases, with black
and red lines, respectively. It can be seen that Cf is reduced successfully as the training
proceeds, and eventually converges to a value similar to that obtained by the opposition
control.

In figure 6, the time average 〈Cf 〉 of the instantaneous friction coefficient is shown,
where the bracket 〈·〉 indicates the time average within the final period 500 ≤ t+ ≤ 600 in
each episode. It can be seen that 〈Cf 〉 decreases for the first ten episodes, then converges
to the value obtained by the opposition control. Figure 7 shows the policy, i.e. the control
input versus the state, obtained at the end of each episode. The line colour changes from
green to blue with increasing episode number. As described by (3.4), the relationship
between the state v′ and the control input φ is linear, and the maximum absolute value of
φ+ is clipped to unity. The red line corresponds to the case (α, β) = (−1.0, 0) in (3.4),
which was found to be optimal for the opposition control in Chung & Talha (2011). It can
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Figure 5. Temporal evolution of Cf obtained in each episode for Case Li00. With increasing episode number,
the line colour changes from green to blue. Black and red lines correspond to uncontrolled and opposition
control cases.
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0.008

0.006

〈Cf〉
0.004
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Case Li00 No control Opposition control
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0
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Episode number

60 80 100

Figure 6. Time average of the friction coefficient 〈Cf 〉 at the final period 500 ≤ t+ ≤ 600 in each episode.
Blue indicates Case Li00; thick black indicates uncontrolled; dashed black indicates opposition control; thin
black indicates laminar.

be seen that the present policy reproduces the opposition control with the optimal values
(α, β) = (−1.0, 0) quite well, while the present policy has a slightly steeper slope. This
is probably attributed to the fact that the magnitude of φ is clipped in the present policy.
From the above results, we validate that the present reinforcement learning successfully
finds the optimal linear control policy that has been reported in the previous studies (Choi
et al. 1994; Chung & Talha 2011).

4.2. Nonlinear control policies
In this subsection, we present the results obtained by nonlinear policies, where a hidden
layer and a nonlinear activation function are added to the actor network as listed in table 1.
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Figure 7. Obtained policy in Case Li00 at the end of each episode. With increasing episode number, the line
colour changes from green to blue. The red line represents the opposition control where (w, b) = (−1.0, 0).
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Figure 8. Plots of 〈Cf 〉 versus episode number for different policies obtained in the present reinforcement
learning. Blue indicates Case R18; yellow indicates Case S18; green indicates Case LR18; red indicates Case
T18.

4.2.1. Obtained policies
Figure 8 shows 〈Cf 〉 as a function of the episode number for Cases R18, S18, LR18 and T18
using different activation functions. For all the cases, 〈Cf 〉 reduces from the uncontrolled
value with increasing episode number, and eventually converges to a value similar to
or even smaller than that achieved by the opposition control. In particular, higher drag
reduction rates than that of the opposition control can be confirmed clearly in Cases R18,
LR18 and S18.

The policy obtained at the best episode where the maximum drag reduction rate is
achieved in each case is shown in figures 9(b–e), where the control input φ is plotted
as a function of the state (u′, v′) at y+

d = 15. Red and blue correspond to wall blowing
and suction, respectively. For reference, we also plot the policy of the opposition control
defined by (3.4) with (α, β) = (−1.0, 0) in figure 9(a). In this case, the control input
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Figure 9. Control input as a function of the flow state at y+
d = 15: (a) opposition control; (b) Case R18;

(c) Case S18; (d) Case LR18; (e) Case T18; ( f ) joint p.d.f. of u′ and v′ at y+ = 15 in the uncontrolled flow.

depends on only v′, so that the colour contours are horizontal, and the control input φ

depends linearly on the state v′.
In contrast, the present nonlinear control policies shown in figures 9(b–e) obviously

depend on not only v′, but also u′. In addition, the control input switches rapidly between
wall blowing and suction, depending drastically on the state, i.e. u′ and v′ at y+

d = 15.
Specifically, for Cases R18 and T18 shown in figures 9(b) and 9(e), respectively, the
boundary between wall blowing and suction is inclined, so that wall blowing is applied
when a high-speed fluid (u′ > 0) approaches the wall (v′ < 0), while wall suction is
applied for upwelling (v′ > 0) of low-momentum fluid (u′ < 0). On the other hand, for
Cases S18 and LR18 shown in figures 9(c) and 9(d), respectively, the boundary between
wall blowing and suction is almost vertical, so that the control input depends mostly on
the streamwise velocity fluctuation u′ only. It should be emphasized that such complex
nonlinear relationships between the state and the control input can be obtained first by
introducing the neural network for the actor. The joint probability density function (p.d.f.)
of u′ and v′ at y+

d = 15 for the uncontrolled flow is plotted in figure 9( f ). It can be
confirmed that the joint p.d.f. fits roughly in the plot range, and the boundaries between
wall blowing and suction obtained in all the cases cross the central part of the joint p.d.f.
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Figure 10. Time evolutions of Cf obtained with different policies in the minimal channel.

4.2.2. Control performances of obtained policies
As mentioned in § 3.3, the present control policies are obtained through iterative training
within the fixed episode period T+ = 600. In order to evaluate their control performances,
here we note that the exploration noise N in the control policy (3.5) is introduced only
during the training process, while it is hereafter turned off in the evaluation of the obtained
policies. The time evolutions of the instantaneous Cf for the obtained policies are shown in
figure 10. It can be seen that all the nonlinear policies obtained in the present study achieve
drag reduction rates higher than that achieved by the opposition control. In particular,
relaminarization can be confirmed in Cases R18 and T18. However, it should be noted that
these policies may not always be optimal, since the control performance of each policy
could depend on an initial condition, especially for the minimal channel considered here.
Indeed, when we apply the present policies to another initial condition, the resultant drag
reduction rates are commonly larger than that obtained by the opposition control, while the
relaminarization is not always confirmed (not shown here). Due to the small domain size of
the minimal channel, the turbulent flow becomes intermittent even in the uncontrolled flow
(Jiménez & Moin 1991), therefore it is difficult to distinguish whether relaminarization is
caused by the applied control or the intermittency of the flow.

In order to evaluate the control performances of the obtained policies, we apply them
to the full channel. The results are shown in figure 11. Although relaminarization is no
longer achieved in the full channel, it can be seen that the present control policies still
outperform the opposition control. We regard the initial period T+ = 3000 after the onset
of the control shown in figure 11 as a transient period. Then the skin friction drag is
further averaged over another period T+ = 4000 to obtain the value at an equilibrium
state. Throughout this study, the same criterion is used for the evaluation of the skin
friction drag in the full channel. The resulting drag reduction rates achieved by Cases
R18, S18, LR18 and T18 are respectively 31 %, 35 %, 35 % and 27 %, while that of the
opposition control remains 23 %.

In summary, it is demonstrated that the control policies obtained in the minimal channel
still work in the full channel, and the present reinforcement learning successfully finds
control policies more efficient than the existing opposition control. We also note that
Cases R18, S18 and LR18 lead to similar drag reduction rates, so we do not make

960 A30-16

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

14
7 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2023.147


Reinforcement learning for turbulence control

0.010

0.008

0.006

0.004

0.002

0

Cf

0 1000 2000 3000

t+

4000 5000 6000

Case R18 Case S18 Case LR18

No control Opposition control Laminar

Case T18

Figure 11. Time evolutions of Cf obtained with different policies in the full channel.

particular statements about which case is the best. Rather, we consider that the common
features found from these obtained policies shown in figures 9(b–e) – such as the strong
dependency of the control input on both u′ and v′, and the rapid switch from wall blowing
and suction – are more important. In the following, taking the optimal policy obtained in
Case R18 as the default, we investigate further how each feature contributes to the resulting
drag reduction effects.

Before closing this subsection, we also briefly address the generality of the present
results. The nonlinear policies shown in figures 9(b–e) commonly exhibit a rapid switch
between wall blowing and suction, which may cause numerical oscillations and affect
the resultant control performances, especially when a pseudo-spectral method is used.
Therefore, we have also assessed the obtained policies in the same flow configurations
with another code based on a finite difference method. We found that the resultant
drag reduction rates are hardly affected by changing the numerical scheme. The detailed
comparisons between the two numerical schemes are summarized in Appendix D.

4.3. Effects of the control cost
Here, we assess the impacts of the weight d for the control cost in the reward (3.6) by
comparing Cases R18, R18D1, R18D2 and R18D3. Figure 12 shows the average drag
reduction rates during the final 20 episodes after the flow reaches an equilibrium state
for each case in the minimal channel. Specifically, 38 %, 38 %, 10 % and 7 % of drag
reduction are obtained in Cases R18, R18D1, R18D2 and R18D3, respectively. We also
note that these values change to 31 %, 23 %, 7 % and 14 % in the full channel, respectively.
From the above results, it can be confirmed that the resulting drag reduction rate decreases
with increasing the weight d for the control cost. This suggests that the control cost is
properly reflected in the learning process of the present reinforcement learning.

The obtained policy at the final episode in each case is shown in figures 13(b–e) together
with that of the opposition control in figure 13(a). Specifically, in Case R18D1, where d
is relatively small, the obtained policy shown in figure 13(c) is similar to that in Case
R18 shown in figure 13(b), where no control cost is taken into account. It should also be
noted, however, that the control input in Case R18D1 almost vanishes in the central region
of figure 13(c). This indicates that when the cost for the control is relatively small, the
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Figure 12. Drag reduction rates averaged over the final 20 episodes after the flow reaches an equilibrium state
for the minimal channel in Cases R18, R18D1, R18D2 and R18D3. The dashed line corresponds to the drag
reduction rate of the opposition control.
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Figure 13. Control input as a function of the flow state at y+
d = 15: (a) opposition control; (b) Case R18;

(c) Case R18D1; (d) Case R18D2; (e) Case R18D3.

obtained policy avoids applying the control when the streamwise and wall-normal velocity
fluctuations are relatively small. This is reasonable, since larger velocity fluctuations
should have larger contributions to the momentum transfer in the near-wall region. When
the cost for the control becomes larger in Cases R18D2 and R18D3, it can be seen that
the obtained control policies shown in figures 13(d,e) tend to be similar to the opposition
control shown in figure 13(a). From these results, the opposition control can be considered
optimal when the weight for the cost of the control becomes large.
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Before closing this section, we summarize the power consumptions for applying the
controls in Cases R18, R18D1, R18D2 and R18D3. The conservative estimate of the
control power input for applying wall blowing and suction at the bottom wall can be given
by the formula (Hasegawa & Kasagi 2011)

Π =
〈
S1pwvw + 1

2 S2v
3
w

〉
, (4.1)

where the bracket indicates the average in the x and z directions, and also time. vw (= φ)

denotes the wall blowing and suction at the bottom wall, and pw is the wall pressure. Since
the energy recovery from the flow is unrealistic, we introduce switching functions S1 and
S2 to make sure that a local negative value is discarded. Namely, S1 = 1 when pwvw > 0,
and S1 = 0 when pwvw ≤ 0. Similarly, S2 = 1 when vw > 0, while S2 = 0 when vw ≤ 0.
As a result, it is found that the ratios of the control power input to the pumping power
for driving the uncontrolled flow are 0.53 %, 0.30 %, 0.24 % and 0.14 % for Cases R18,
R18D1, R18D2 and R18D3, respectively. These values are approximately two orders of
magnitude smaller than the obtained drag reduction rates reported above. Hence the power
consumptions for applying the present controls are negligible.

5. Feature analyses of obtained policies and control inputs

5.1. Effects of the rate of change from wall blowing to suction
The unique features of the control policies obtained in the present reinforcement learning
are the rapid switches between wall blowing and suction, and their dependency on the
streamwise and wall-normal velocity fluctuations at the detection plane y+

d = 15, as shown
in figure 9. In this subsection, we clarify how each feature affects the resulting drag
reduction rate, and leads to a drag reduction higher than that obtained by the opposition
control. For this purpose, we extract their features, systematically change parameters
characterizing them, and evaluate the resulting control performances. We note that all
results presented in this subsection are obtained in the full channel.

5.1.1. u′-based control
We first consider the policies obtained in Cases S18 and LR18 shown in figures 9(c,d).
Both of these policies depend mainly on u′. In order to clarify how the rate of change from
wall blowing to suction in u′-based control affects the control performance, we consider
the policies

φ+ =

⎧⎪⎨
⎪⎩

αuu′+|y+=15 (−1 ≤ αuu′+ ≤ 1),

−1 (αuu′+ < −1),

1 (αuu′+ > 1),

(5.1)

where αu is a parameter controlling the rate of change from wall blowing to suction,
changed systematically from 0.01 to ∞ in the present study. As in the previous cases,
φ+ is constrained from −1.0 to 1.0. The corresponding policies in the u′–v′ plane and the
obtained drag reduction rates are summarized in table 4.

In Case U3, where the slope from wall blowing to suction is moderate, i.e. αu = 0.1,
20 % drag reduction rate is achieved, and this value is similar to that obtained by the
opposition control. When the rate of change from wall blowing to suction becomes steeper,
i.e. αu > 0.1, the drag reduction rate increases further. From this result, it can be concluded
that the sharp change from wall blowing to suction is effective in the u′-based control.
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Case Control policy αu Drag reduction rate

U1

1

0

–1
–6 –4 –2 0 2 4 6

1.0

0.5

–0.5

–1.0

0

v
′+ |

y+
 =

 1
5

φ+

u′+|y+ = 15

0.01 6 %

U2

1

0

–1
–6 –4 –2 0 2 4 6

1.0

0.5

–0.5

–1.0

0
v
′+ |

y+
 =

 1
5

u′+|y+ = 15

0.05 16 %

U3

1

0

–1
–6 –4 –2 0 2 4 6

1.0

0.5

–0.5

–1.0

0

v
′+ |

y+
 =

 1
5

u′+|y+ = 15

0.1 20 %

U4

1

0

–1
–6 –4 –2 0 2 4 6

1.0

0.5

–0.5

–1.0

0

v
′+ |

y+
 =

 1
5

u′+|y+ = 15

0.5 30 %

U5

1

0

–1
–6 –4 –2 0 2 4 6

1.0

0.5

–0.5

–1.0

0

v
′+ |

y+
 =

 1
5

u′+|y+ = 15

1 32 %

U6

1

0

–1
–6 –4 –2 0 2 4 6

1.0

0.5

–0.5

–1.0

0

v
′+ |

y+
 =

 1
5

u′+|y+ = 15

∞ 37 %

Table 4. Control policies and resulting drag reduction rates in the full channel for different slopes αu from
wall blowing to suction in u′-based control.

5.1.2. v′-based control
Here, we consider the effects of the rate of change from wall blowing to suction in v′-based
control. In this case, the policy depends on the wall-normal velocity fluctuation v′ only,
and it can be expressed as

φ+ =

⎧⎪⎨
⎪⎩

αvv
′+|y+=15 (−1 ≤ αvv

′+ ≤ 1),

−1 (αvv
′+ < −1),

1 (αvv
′+ > 1).

(5.2)

Again, αv determines the slope from wall blowing to suction. It should be noted that when
αv = −1.0, it corresponds to the opposition control. The results are summarized in table 5.

In contrast to u′-based control summarized in table 4, the opposite trend can be seen.
Namely, the drag reduction rate is reduced as αv increases. It should be noted that Chung &
Talha (2011) conducted a parametric survey changing αv from −0.1 to −1.0, and reported
that αv = −1.0 is optimal within the range. Hence we do not repeat these cases here. The
current results indicate that the further decrease of αv from −1.0 does not improve the
control performance.

960 A30-20

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

14
7 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2023.147


Reinforcement learning for turbulence control

Case Control policy αv Drag reduction rate

Opposition control

1

0

–1
–6 –4 –2 0 2 4 6

1.0

0.5

–0.5

–1.0

0

v
′+ |

y+
 =

 1
5

u′+|y+ = 15

−1 23 %

V1

1

0

–1
–6 –4 –2 0 2 4 6

1.0

0.5

–0.5

–1.0

0
v
′+ |

y+
 =

 1
5

φ+

u′+|y+ = 15

−2 12 %

V2

1

0

–1
–6 –4 –2 0 2 4 6

1.0

0.5

–0.5

–1.0

0

v
′+ |

y+
 =

 1
5

u′+|y+ = 15

−5 10 %

V3

1

0

–1
–6 –4 –2 0 2 4 6

1.0

0.5

–0.5

–1.0

0

 v
′+ |

y+
 =

 1
5

u′+|y+ = 15

−10 8 %

V4

1

0

–1
–6 –4 –2 0 2 4 6

1.0

0.5

–0.5

–1.0

0

v
′+ |

y+
 =

 1
5

u′+|y+ = 15

−∞ 9 %

Table 5. Control policies and resulting drag reduction rates in the full channel for different slopes αv from
wall blowing to suction in v′-based control.

5.1.3. u′v′-based control
Next, we consider the effects of the rate of change from wall blowing to suction for a policy
that depends on both u′ and v′. In this case, the considered policies are expressed as

φ+ =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

αuv

(
u′+|y+=15

2
− v′+|y+=15

) (
−1 ≤ αuv

(
u′+

2
− v′+

)
≤ 1

)
,

−1
(

αuv

(
u′+

2
− v′+

)
< −1

)
,

1
(

αuv

(
u′+

2
− v′+

)
> 1

)
,

(5.3)

where αuv is the rate of the change from wall blowing to suction. As summarized in
table 6, the contours representing the control policies have the same inclination angle,
which is taken from the policy obtained by the reinforcement learning in Case R18 shown
in figure 9(b). It is found that the resultant drag reduction rate increases with increasing
αuv . This trend is similar to that of u′-based control, but opposite to v′-based control. From
these results, we could conclude that the rapid switch between wall blowing and suction
is effective for a policy depending on u′, and such a policy can outperform the existing
opposition control, which is based on v′ only.

960 A30-21

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

14
7 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2023.147


T. Sonoda, Z. Liu, T. Itoh and Y. Hasegawa

Case Contour map αuv Drag reduction rate

UV1

1

0

–1
–6 –4 –2 0 2 4 6

1.0

0.5

–0.5

–1.0

0

v
′+ |

y+
 =

 1
5

u′+|y+ = 15

0.089 17 %

UV2

1

0

–1
–6 –4 –2 0 2 4 6

1.0

0.5

–0.5

–1.0

0

v
′+ |

y+
 =

 1
5

u′+|y+ = 15

0.447 27 %

UV3

1

0

–1
–6 –4 –2 0 2 4 6

1.0

0.5

–0.5

–1.0

0

v
′+ |

y+
 =

 1
5

u′+|y+ = 15

0.894 35 %

UV4

1

0

–1
–6 –4 –2 0 2 4 6

1.0

0.5

–0.5

–1.0

0

v
′+ |

y+
 =

 1
5

u′+|y+ = 15

8.944 35 %

Table 6. Control policies and resulting drag reduction rates in the full channel for different slopes αuv from
wall blowing to suction in u′v′-based control.

5.1.4. Effects of the inclination of the boundary between wall blowing and suction
Finally, we investigate the effects of the inclination angle of the boundary between wall
blowing and suction. Specifically, the policies considered here can be expressed by

φ+ =
{−1

(
0 > εu′+|y+=15 − v′+|y+=15

)
,

1
(
0 ≤ εu′+|y+=15 − v′+|y+=15

)
,

(5.4)

where ε controls the inclination angle of the boundary and is changed systematically as
shown in table 7.

It is interesting to note that the resultant drag reduction rate increases with increasing
ε, i.e. the inclination angle. In Case IA5, where the control policy depends only on u′, i.e.
ε = ∞, the drag reduction rate becomes maximum. This policy is quite similar to those
obtained in Cases S18 and LR18 shown in figures 9(c) and 9(d), respectively. It can also be
seen that the drag reduction rates almost saturate when ε is larger than 0.25. Therefore, the
control policies obtained in figures 9(b) and 9(e) can also be considered nearly optimal.
Considering that all the policies shown in figures 9(b–e) are obtained through training in
the minimal channel, we can conclude that the reinforcement learning can successfully
find the effective control policies that can be transferable to the full channel.

5.2. Spatio-temporal distribution of control inputs
It is of interest to investigate the spatio-temporal distribution of wall blowing and suction
determined by the policy obtained from the current reinforcement learning and how it
results in a drag reduction rate higher than that obtained by the conventional opposition
control. The instantaneous flow fields as well as the control inputs at t+ = 0.6 and 20.4
after the onset of the control in Case R18 are shown in figures 14(a) and 14(b), respectively.
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Case Contour map ε Drag reduction rate

IA1

1

0

–1
–6 –4 –2 0 2 4 6

1.0

0.5

–0.5

–1.0

0

v
′+ |

y+
 =

 1
5

u′+|y+ = 15

0 9 %

IA2

1

0

–1
–6 –4 –2 0 2 4 6

1.0

0.5

–0.5

–1.0

0

v
′+ |

y+
 =

 1
5

u′+|y+ = 15

0.125 17 %

IA3

1

0

–1
–6 –4 –2 0 2 4 6

1.0

0.5

–0.5

–1.0

0

v
′+ |

y+
 =

 1
5

u′+|y+ = 15

0.25 27 %

IA4

1

0

–1
–6 –4 –2 0 2 4 6

1.0

0.5

–0.5

–1.0

0

v
′+ |

y+
 =

 1
5

u′+|y+ = 15

1 34 %

IA5

1

0

–1
–6 –4 –2 0 2 4 6

1.0

0.5

–0.5

–1.0

0

v
′+ |

y+
 =

 1
5

u′+|y+ = 15

∞ 37 %

Table 7. Drag reduction rate with different inclination angle of the boundary between rapidly changing wall
blowing and suction.

It can be seen that the control input switches rapidly from wall blowing to suction, i.e. φ =
1.0 and −1.0, consistent with the policy shown in figure 9(b). Just after the onset of the
control, at t+ = 0.6, the control input is elongated in the streamwise direction, reflecting
instantaneous near-wall streaky structures (see figure 14a). Interestingly, as time passes,
the control input transits to a coherent wave-like input as shown in figure 14(b), which is
almost uniform in the spanwise direction, and its streamwise wavelength is equal to the
streamwise domain size.

We also note that similar wave-like control inputs can be generated when policies with
a rapid change from wall blowing to suction are applied. In order to extract a coherent
component from the control input, we define the spanwise average of the instantaneous
control input φ on each wall as

φ̃(x, t) = 1
Lz

∫ Lz

0
φ(x, z, t) dz. (5.5)

The spanwise-averaged control inputs in Cases R18, U6 and V4 as functions of t and x are
shown in figures 15(a), 15(b) and 15(c), respectively. We note that the corresponding drag
reduction rates for Case R18, U6 and V4 are 31 %, 37 % and 9 %, respectively.

In Case R18, the wall blowing and suction switches at a high frequency, while its wave
nodes move slowly upstream (see figure 15a). In contrast, when the control policy of Case
U6 is applied, a downstream travelling wave can be confirmed, as shown in figure 15(b),
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1.5
1.0
0.5
0
–0.5

C
o
n
tr

o
l 

in
p
u
t

–1.0
–1.5
–2.0

2.0

(b)(a)

Figure 14. Visualization of the flow fields and the control inputs in the full-size channel when applying the
policy obtained in Case R18 (a) at t+ = 0.6, and (b) at t+ = 20.4. White contours show iso-surfaces of the
second invariant of the deformation tensor Q (Q+ = 0.004). Red to blue colours on the bottom wall indicate
wall blowing and suction, respectively.

30(a) (b)
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~

Figure 15. Spanwise-averaged control input φ̃+ as a function of time t and the streamwise coordinate x in (a)
Case R18, (b) Case U6, (c) Case V4.

while a standing-wave-like control input can be confirmed in Case V4 (see figure 15c).
Since all three policies switch rapidly from strong wall blowing to suction depending on
the state u′ and v′ at the detection plane y+

d = 15, such an abrupt change of the control input
causes a strong perturbation at the detection plane. This in turn determines the control
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0.010

0.008

0.006

0.004

0.002

0

Cf

0 500 1000 1500

t+

2000 2500 3000

Case R18 Case U6 Case V4

No control Opposition control Laminar

Figure 16. Time evolutions of Cf obtained with the spanwise-averaged control inputs in Cases R18, U6 and
V4. For comparison, the values in the uncontrolled flow, the opposition control and the laminar flow are also
plotted as thick black, dashed black and thin black lines, respectively.
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Figure 17. Visualization of the control input and the velocity fluctuations on the detection plane in the full-size
channel for the optimal policy obtained in Case R18. Control input at (a) t+ = 0.0, and (b) t+ = 30.0.
Streamwise velocity fluctuation on the detection plane at (c) t+ = 0.0, and (d) t+ = 30.0. Wall-normal velocity
fluctuation on the detection plane at (e) t+ = 0.0, and ( f ) t+ = 30.0.

input in the next time step. Such feedback between the control input and the flow state
at the detection plane should yield the wave-like coherent control inputs observed here.
Indeed, the time period of switching from wall blowing to suction in Cases R18 and V4 is
equal to the time step for updating the control input, i.e. �t+update = 0.6.

It has been reported that drag reduction can be achieved by applying a
travelling-wave-like control input. For example, Min et al. (2006) showed that sub-laminar
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drag can be achieved by an upstream travelling wave of wall blowing and suction when its
phase speed is approximately three times the bulk mean velocity. As mentioned before, the
wave node obtained in Case R18 shown in figure 15(a) travels in the upstream direction,
and its velocity normalized by the bulk mean velocity is approximately 3.34. Although
the travelling speed of the wave node in Case R18 agrees well with the value reported
previously, the spanwise-averaged control input obtained in Case R18 switches wall
blowing and suction at a higher frequency, so it is essentially different from the upstream
travelling waves considered in the previous study.

Meanwhile, relaminarization is also caused by a downstream travelling wave when the
phase speed is larger than 1.5 times the bulk mean velocity (Lieu et al. 2010; Mamori
et al. 2014). However, the phase speed of the downstream wave obtained in Case U6
shown figure 15(b) is much faster, i.e. approximately 28 when it is normalized by the bulk
mean velocity. In order to clarify whether the coherent wave-like inputs observed in figures
15(a–c) alone lead to drag reduction or not, we conduct additional simulations where only
the coherent control inputs – which are uniform in the spanwise direction and depend only
on the streamwise direction and the time – are applied. It should be noted that in these
cases, the applied controls are no longer feedback controls, but predetermined controls,
since the control inputs are determined a priori, and do not depend on the instantaneous
flow state. The results are shown in figure 16. It is found that applying solely the coherent
wave-like control inputs hardly leads to drag reduction. This indicates that the present
controls are feedback controls, and applying a control input based on the instantaneous
flow state is essential to yield the drag reduction effects.

Based on the above findings, we investigate further the effects of the local control input.
In figures 17(a,b), we show the spatial distributions of the instantaneous control inputs
(wall blowing and suction) on the bottom wall at t+ = 0 and 30.0 in Case R18. Similarly,
the instantaneous streamwise velocity fluctuations on the detection plane y+

d = 15 at
t+ = 0 and 30.0 are shown in figures 17(c,d), while the wall-normal velocity fluctuations
on y+

d = 15 at t+ = 0 and 30.0 are presented in figures 17(e, f ). It can be seen that the
control input at the onset of the control, i.e. t+ = 0, shown in figure 17(a), agrees well
with that of the streamwise velocity fluctuation shown in figure 17(c). This is because the
optimal policy in Case R18 applies wall blowing and suction based on the streamwise
velocity fluctuation at the detection plane, especially when its magnitude is large, i.e.
|u′+| > 2 (see figure 9b). In contrast, after some time has passed since the onset of the
control, the streamwise velocity fluctuation at the detection plane is suppressed due to
the control applied up to that point. Consequently, the control input shown at t+ = 30.0
in figure 17(b) correlates negatively with the wall-normal velocity fluctuation at y+

d = 15
shown in figure 17( f ). This indicates that the applied control input on the wall propagates
immediately in the wall-normal direction due to the incompressibility of the fluid, and the
feedback of the wall-normal velocity fluctuation on the detection plane causes the coherent
travelling-wave-like control input. As discussed already, however, such a coherent control
input alone does not cause drag reduction effects. A closer look at figure 17(b) reveals
that small-scale fluctuations in the control input are superimposed on the coherent input.
These small-scale fluctuations coincide with regions with relatively large streamwise
velocity fluctuation in figure 17(d), and should play essential roles in reducing skin friction
drag.

Figure 18 shows more detailed comparison between the local control inputs applied in
Case R18 and the opposition control. Note that the same instantaneous uncontrolled flow
field is used, and only the control inputs are different in the two figures. White surfaces
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x
y

z

x

yd
+ = 15

(a) (b)

yd
+ = 15

y

z

Figure 18. Instantaneous near-wall turbulent structures and control inputs by (a) the optimal policy in Case
R18, and (b) the opposition control. Vortex cores and associated fluid motions are depicted by the white
iso-surfaces of the second invariant of the deformation tensor (Q+ = 0.01) and the black vectors, respectively.
The blue and red regions correspond to low- and high-speed regions (u′ = −3.0 and 3.5). Red vectors show
the control input on the bottom wall. The yellow surface represents the detection plane at y+

d = 15 from the
bottom wall.

corresponds to vortex cores, with black vectors representing the local fluid motions. Red
and blue contours correspond to high- and low-speed regions. The detection plane at
y+

d = 15 is expressed by yellow, while the applied control input is shown by red vectors. It
can be seen that the local control inputs in Case R18 and the opposition control are quite
different, especially below the low-speed region. In the case of the opposition control,
strong wall blowing is applied below the low-speed region (see figure 18b) so as to
cancel the downwelling motion towards the bottom wall induced by the upper streamwise
vortex. In contrast, wall suction is applied at the same region in Case R18 shown in
figure 18(a), since its control policy depends mostly on the streamwise velocity fluctuation
at the detection plane. It can be considered that applying strong wall suction below
low-speed streaks prevents their lift-up, and therefore stabilizes the flow in a long-term
perspective.

6. Conclusions

In this study, reinforcement learning is first applied to obtain effective control strategies
using wall blowing and suction for reducing skin friction drag in a fully developed
turbulent channel flow. The present framework is based on the deep deterministic policy
gradient (DDPG) algorithm (Lillicrap et al. 2016), where the actor network dictating a
control policy reads the flow state and outputs the action, i.e. the control input, while the
critic network estimates the expected total future reward, i.e. a long-term drag reduction
rate, when a certain action is taken under a certain flow state. The two networks are trained
simultaneously through a number of trials in direct numerical simulation.

We first considered a simple policy where the local wall blowing and suction is linearly
related to the wall-normal velocity fluctuation at the detection plane y+

d = 15. It is found
that the current reinforcement learning successfully finds the optimal weight coefficient
reported in the previous study (Chung & Talha 2011). Next, we extended the above
framework by adding the streamwise velocity fluctuation as well as the wall-normal
velocity fluctuation as the state, and also including nonlinear activation functions in the
actor network. It is demonstrated that the obtained policies lead to drag reduction rates as
high as 37 %, which is higher than the 23 % achieved by the existing opposition control.
The obtained control policies are characterized by a sharp change from wall blowing to
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suction depending on the streamwise and wall-normal velocity fluctuations at the detection
plane. Further detailed analyses indicate that such a control policy with a rapid switch
between wall blowing and suction is particularly effective when a control policy depends
on the streamwise velocity fluctuation at the detection plane.

It should be emphasized that finding such an effective and highly nonlinear control
policy is quite difficult by relying solely on researchers’ insights, and it becomes possible
by a systematic learning framework leveraged by neural networks. One of great advantages
in the reinforcement learning is that it can learn not only from successes, but also from
failures through numerous trials. In the flow control community, effective control laws
have often been sought by human through trial and error. Reinforcement learning has a
potential to replace such human efforts to explore effective control policies. Although we
are still in the process of developing newly emerging methodologies, based on the obtained
control policies, it is expected that we will be able to gain a deeper understanding of flow
physics and new control guidelines. The unique control policies obtained in the present
study would also contribute to these purposes. In the current study, we consider only the
streamwise and wall-normal velocity fluctuations at a certain distance from the wall as
a state, and there is a possibility that more effective control strategies could be found
by extending the state in space and/or time. Meanwhile, our preliminary results suggest
that the learning becomes more difficult when the network size becomes larger (see
Appendix C). Establishing effective learning methodologies is obviously crucial. In the
present study, we employ the DDPG algorithm, while some existing studies successfully
applied the proximal policy optimization algorithm (Belus et al. 2019) to different flow
problems (Rabault et al. 2019; Rabault & Kuhnle 2019; Tang et al. 2020; Tokarev et al.
2020; Xu et al. 2020; Ghraieb et al. 2021; Paris et al. 2021; Ren et al. 2021). Even for
the current DDPG, enormous efforts are needed to validate various training parameters
and network hyperparameters, and to clarify the optimal configuration. In particular, the
network structures of the actor and the critic should have significant impacts on the training
results. Since such verification is difficult to complete by a single group, it should be
conducted by collaboration among multiple groups across countries. For this, we open
the source code used in the present reinforcement learning (https://github.com/YSKLAB-
SHARE/RL-turbulence-control).

The current study considers only a single low Reynolds number, and the applicability of
the current approach to higher Reynolds numbers needs to be investigated. Considering
that the obtained policies in the minimal channel work well in the full-size channel
as well in the present study, transfer learning over Reynolds numbers, which combines
pre-training at lower Reynolds numbers and then fine tuning at higher Reynolds numbers,
could also be an interesting option. We also note that approaches of treating a system as a
black box, as typified by reinforcement learning, should generally have wide applicability
to experimental studies (Fan et al. 2020). In particular, if the state, action and reward
can be measured and evaluated online, then the training becomes much faster and more
effective than that in simulation. The above issues should be explored further in future
studies.
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Figure 19. (a) Comparison of the learning curves with different rewards, i.e. r(t) = −Cf (t) and
r(t) = 1/Cf (t) in Case R18. (b) Resultant optimal policy obtained with the reward r(t) = 1/Cf (t).

Appendix A. Performances with different rewards

There are numerous ways to define the reward. In this appendix, we consider the following
reward as an alternative to (3.1) used in the present study:

r(t) = 1
Cf (t)

. (A1)

This new reward also increases with decreasing Cf , but its increasing rate becomes larger
with decreasing Cf . The learning curves with the two rewards in Case R18 are compared
in figure 19(a). We can confirm a similar or slightly larger reduction of Cf with the new
reward. The resultant optimal policy obtained with the new reward is shown in figure 19(b),
and it is closer to u′-based control. Nonetheless, the essential features of the optimal
policies obtained with the present and new definitions ((3.1) and (A1)) are quite similar
(compare figure 19b with figure 9b). Namely, wall blowing and suction switch rapidly, and
it depends on not only the wall-normal velocity fluctuation, but the streamwise velocity
fluctuation at the detection plane. Therefore, the effects of different definitions of the
reward are minor.

Appendix B. Control policy based on flow states at different locations

The present results indicate that control policies based on the streamwise velocity
fluctuation are generally more effective than those based on the wall-normal velocity
fluctuation only. Meanwhile, all the policies considered in the present study are based
on the flow state at a single location y+

d = 15 from the wall. Here, we show one example
where the state is extended to multiple locations from the wall.

Specifically, we use the streamwise velocity fluctuation u′ at 10 different locations from
the wall, i.e. y+

d,i = 5, 10, 15, 20, 25, 30, 34, 41, 44 and 51. In order to make the problem
simple, we consider the following linear control policy:

a ≡ φ(x, z, t) = tanh

{ 10∑
i=1

αi u′(x, yd,i, z) + β

}
+ N, (B1)

where αi (i = 1, . . . , 10) and β are linear weights and a bias to be optimized, while N is a
zero-mean random noise, the standard deviation of which is 0.1 in the wall unit.
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Figure 20. Weights for u′ at different locations in the best policy obtained for (B1).

Figure 20 shows the distribution of the weights αi for different distances from the
wall at the end of the episode where the maximum drag reduction is achieved. It can
be seen that the weights y+

d = 15–20 become maximum. When this policy is applied in
the full channel, the drag reduction rate 36 % is achieved. When the same linear activation
function is used for a single detection plane at y+

d = 15, the resulting drag reduction rate
reduces to 29 % (see Appendix E). Hence the flow information at multiple y locations is
certainly useful for constructing effective control policies. Meanwhile, even if we consider
a single detection plane y+

d , by leveraging a nonlinear activation function, we can achieve
a 31 % drag reduction rate in Case R18. This suggests that the single detection plane at
y+ = 15 already contains considerable information to characterize and control near-wall
turbulence, at least for the present low Reynolds number. Furthermore, we also check the
control performance when we consider the single detection plane at y+

d = 20 in Case R18,
since the corresponding weight is the largest in figure 20. The obtained drag reduction rate
is approximately 28 %, which is also less than the 31 % obtained with the single detection
plane at y+

d = 15. From these results, we conclude that y+
d = 15 is the optimal for a single

detection plane, and further increase of the number of detection planes will not improve
significantly the control performance.

Appendix C. Effects of the numbers of layers and nodes employed in the actor

Here, we summarize some results with different numbers of layers and nodes used for
the actor. The obtained control policies and resulting drag reduction rates for all the cases
considered are summarized in table 8. Except for the numbers of layers and nodes in the
actor, the other settings such as an activation function in the actor, the hyperparameters
in the critic and learning procedures are the same as for Case R18 in table 1. The drag
reduction rates listed in table 8 are obtained by averaging the final 20 episodes during the
training after the flow fields converge to equilibrium states.

It can be seen that the obtained control policies are qualitatively similar in Cases R14,
R18 and R24. Among them, Case R18 results in the highest drag reduction rate. In Case
R28, where the actor has the most complex network among all the cases considered, drag
reduction is not achieved. It is still unclear why the policies do not converge when the
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Case Layers Nodes Policy Drag reduction rate

R14 1 4

1

0

–1
–6 –4 –2 0 2 4 6

1.0

0.5

–0.5

–1.0

0

v
′+ |

y+
 =

 1
5

u′+|y+ = 15

23 %

R18 1 8

1

0

–1
–6 –4 –2 0 2 4 6

1.0

0.5

–0.5

–1.0

0

v
′+ |

y+
 =

 1
5

u′+|y+ = 15

38 %

R24 2 4

1

0

–1
–6 –4 –2 0 2 4 6

1.0

0.5

–0.5

–1.0

0

v
′+ |

y+
 =

 1
5

u′+|y+ = 15

30 %

R28 2 8

1

0

–1
–6 –4 –2 0 2 4 6

1.0

0.5

–0.5

–1.0

0

v
′+ |

y+
 =

 1
5

u′+|y+ = 15

−8 %

Table 8. Cases with different numbers of layers and nodes used in the hidden layers of the actor.

network becomes more complex. It may be attributed to the difficulties in training large
networks. In summary, Case R18 with 1 layer and 8 nodes is found to be suitable for the
present problem setting.

Appendix D. Dependency of control performance on numerical schemes

As shown in figure 9, effective policies obtained in the present study commonly show a
rapid change from wall blowing to suction depending on the flow state at y+

d = 15. This
may cause unphysical oscillations and affect the resulting drag reduction rate. In particular,
such numerical effects could appear more strongly in a spectral method employed in the
present study due to the Gibbs phenomena. Therefore, we conduct additional simulations
with a finite difference method in order to confirm the universality of the present results.
Note that we use the same policies obtained from the spectral method, and their control
performances in the full channel are evaluated by another code.

Specifically, we use an open-source flow solver called Incompact3d (Laizet &
Lamballais 2009; Laizet & Li 2011), which is based on the sixth-order compact
finite difference scheme. Time integration is conducted by using the second-order
Crank–Nicolson scheme for the wall-normal diffusion term, whereas the third-order
Adams–Bashforth scheme is applied for the other terms. The friction Reynolds number
and the domain size are set to Reτ ≈ 150 and (Lx, Ly, Lz) = (2.5π, 2, π), respectively.
These are the same as used for the full channel in the present study. The number of grids
in each direction is set to (Nx, Ny, Nz) = (128, 129, 96), resulting in the spatial resolutions
�x+ = 9.2, �y+ = 0.83–6.6 and �z+ = 4.9.

Table 9 shows the comparisons of the drag reduction rates obtained by the present
pseudo-spectral and finite difference methods for typical control policies, i.e. Cases R18,
U3, U6 and V4, together with the results of the opposition control. We note that a rapid
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Case Policy Pseudo-spectral Finite difference

Opposition control

1

0

–1
–6 –4 –2 0 2 4 6

1.0

0.5

–0.5

–1.0

0

v
′+ |

y+
 =

 1
5

u′+|y+ = 15

23 % 25 %

R18

1

0

–1
–6 –4 –2 0 2 4 6

1.0

0.5

–0.5

–1.0

0
v
′+ |

y+
 =

 1
5

u′+|y+ = 15

31 % 35 %

U3

1

0

–1
–6 –4 –2 0 2 4 6

1.0

0.5

–0.5

–1.0

0

v
′+ |

y+
 =

 1
5

u′+|y+ = 15

20 % 21 %

U6

1

0

–1
–6 –4 –2 0 2 4 6

1.0

0.5

–0.5

–1.0

0

v
′+ |

y+
 =

 1
5

u′+|y+ = 15

37 % 37 %

V4

1

0

–1
–6 –4 –2 0 2 4 6

1.0

0.5

–0.5

–1.0

0

v
′+ |

y+
 =

 1
5

u′+|y+ = 15

9 % 12 %

UV2

1

0

–1
–6 –4 –2 0 2 4 6

1.0

0.5

–0.5

–1.0

0

v
′+ |

y+
 =

 1
5

u′+|y+ = 15

27 % 23 %

Table 9. Comparison of drag reduction rates for different policies obtained by pseudo-spectral and finite
difference methods.

switch from wall blowing to suction exists in Cases R18, U6 and V4, while it changes
smoothly in the rest of the cases. It can be seen that the impacts of the employed numerical
schemes on the resultant drag reduction rates generally remain minor, so that the control
performances obtained by the preset policies can be considered universal.

Appendix E. Influences of a nonlinear activation function in the actor network

Here, we investigate the effects of a nonlinear activation function used in the actor network.
Specifically, we simply change the activation function ReLU used in Case R18 to a linear
function, whereas the other learning conditions and network parameters are kept exactly
the same. The new case with the linear activation function is referred to as Case Li18.
The best policy obtained in Case Li18 is shown in figure 21. It can be seen that the
resulting policy is qualitatively similar to those obtained with the nonlinear activation
function in Case R18 shown in figure 9(b). In Case Li18, however, the change from wall
blowing to suction is smoother than that obtained in Case R18. The best policy obtained
in Case Li18 is then applied to the full-size channel, and the resulting drag reduction rate
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1

0

–1
–6 –4 –2 0 2 4 6

1.0

0.5

–0.5

–1.0

0 φ+

v
′+ |

y+
 =

 1
5

u′+|y+ = 15

Figure 21. Control input as a function of the flow state at y+
d = 15 obtained from Case Li18.

is 29 %, which is slightly smaller than the 31 % achieved by Case R18. Hence we could
conclude that nonlinearity in the actor is not critical in the present problem. Meanwhile,
as shown in tables 4 and 6, a steeper change of the control input leads to a higher control
performance, when the control input depends on the streamwise velocity fluctuation. The
present results suggest that the nonlinear activation function used in the actor helps to
approach this limit. Finally, in the present study, we clip the maximal absolute value of
the control input. Such constraints in the control input are common in not only numerical
simulations, but also experiments, and introduce additional nonlinearity in the control
policy. One of the advantages in the reinforcement learning is that the nonlinearity in the
control policy can be handled in a straightforward manner. We also note that there are
attempts (Jagtap, Kawaguchi & Karniadakis 2020) to introduce adaptive parameters in the
activation function itself, so that, in principle, the value for the clipping could also be
learned and optimized.
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