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Abstract

Let a and b be positive integers and let {Un}n≥0 be the Lucas sequence of the first kind defined by

U0 = 0, U1 = 1 and Un = aUn−1 + bUn−2 for n ≥ 2.

We define an (a, b)-Wall–Sun–Sun prime to be a prime p such that gcd(p, b) = 1 and π(p2) = π(p), where
π(p) := π(a,b)(p) is the length of the period of {Un}n≥0 modulo p. When (a, b) = (1, 1), such primes are
known in the literature simply as Wall–Sun–Sun primes. In this note, we provide necessary and sufficient
conditions such that a prime p dividing a2 + 4b is an (a, b)-Wall–Sun–Sun prime.
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1. Introduction

Throughout this note, for positive integers a and b, we let {Un}n≥0 be the Lucas
sequence of the first kind [6] defined by

U0 = 0, U1 = 1 and Un = aUn−1 + bUn−2 for n ≥ 2. (1.1)

The sequence {Un}n≥0 is periodic modulo any prime p with gcd(p, b) = 1, and we
denote by π(p) := π(a,b)(p) the length of the period of {Un}n≥0 modulo p.

We define an (a, b)-Wall–Sun–Sun prime to be a prime p such that

π(p2) = π(p). (1.2)

An (a, 1)-Wall–Sun–Sun prime is also known in the literature as an a-Wall–Sun–Sun
prime [10] or an a-Fibonacci–Wieferich prime. Note that when (a, b) = (1, 1), the
sequence {Un}n≥0 is the well-known Fibonacci sequence. In this case, such primes
are referred to simply as Wall–Sun–Sun primes [3, 10] or Fibonacci–Wieferich primes
[11]. However, at the time this note was written, no Wall–Sun–Sun primes were known
to exist. The existence of Wall–Sun–Sun primes was first investigated by Wall [9] in
1960, and subsequently studied by the Sun brothers [8], who showed that the first case
of Fermat’s last theorem is false for exponent p only if p is a Wall–Sun–Sun prime.
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For an a-Wall–Sun–Sun prime p, it can be shown [4, 5] that the following conditions
are equivalent:

(1) π(p2) = π(p);
(2) Uπ(p) ≡ 0 (mod p2);
(3) Up−δp ≡ 0 (mod p2), where δp is the Legendre symbol

( a2 + 4
p

)
.

Because of this equivalence, various authors have chosen to use either item (2)
or item (3) for the definition of an a-Wall–Sun–Sun prime. However, for the more
general (a, b)-Wall–Sun–Sun prime p, it turns out that, while item (1) implies the
still-equivalent items (2) and (3), the converse is false in general. For example, with
(a, b) = (5, 8) and p = 7, an easy calculation shows that items (2) and (3) are true,
but item (1) is false since π(49) = 42 and π(7) = 6. Because of this phenomenon, and
the fact that Wall [9] was originally concerned with the impossibility of item (1) in
the Wall–Sun–Sun situation, we have chosen to adopt (1.2) as our definition of an
(a, b)-Wall–Sun–Sun prime.

This note is motivated in part by recent results of Bouazzaoui [1, 2] which show,
under certain restrictions on a, b and p, that an odd prime p is an (a, b)-Wall–Sun–Sun
prime if and only if Q(

√
a2 + 4b) is not p-rational. We recall that a number field K is

p-rational if the Galois group of the maximal pro-p-extension of K which is unramified
outside p is a free pro-p-group of rank r2 + 1, where r2 is the number of pairs of
complex embeddings of K.

A second motivation for this note is recent work of the second author which,
again under certain restrictions on a and p, establishes a connection between
(a, 1)-Wall–Sun–Sun primes p and the monogenicity of certain power-compositional
trinomials [5].

One restriction imposed on p in the work of these motivational articles is that
a2 + 4b � 0 (mod p). In this note, our focus is on primes p that divide a2 + 4b,
and in this case, we provide necessary and sufficient conditions so that p is an
(a, b)-Wall–Sun–Sun prime. More precisely, we prove the following result.

THEOREM 1.1. Let a and b be positive integers and let p be a prime divisor of a2 + 4b
such that gcd(p, b) = 1. Let (a, b)m := (a mod m, b mod m). Then

• p = 2 is an (a, b)-Wall–Sun–Sun prime if and only if (a, b)4 = (0, 1);
• p = 3 is an (a, b)-Wall–Sun–Sun prime if and only if

(a, b)9 ∈ {(1, 8), (2, 5), (4, 2), (5, 2), (7, 5), (8, 8)};
• p ≥ 5 is never an (a, b)-Wall–Sun–Sun prime.

2. Proof of Theorem 1.1

Note that the sequence {Un}n≥0 from (1.1) is explicitly

{Un} = [0, 1, a, a2 + b, a3 + 2ab, a4 + 3a2b + b2, a5 + 4a3b + 3ab2, . . .]. (2.1)

We let {Un}p denote the sequence (2.1) modulo the prime p.
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We first address the prime p = 2. Since a2 + 4b ≡ 0 (mod 2), it follows that
a ≡ 0 (mod 2). Then, since gcd(p, b) = 1, we see from (2.1) that

{Un}2 = [0, 1, 0, 1, . . .] and {Un}4 = [0, 1, a, b, 0, b2 . . .].

Thus, π(2) = 2 and π(4) = 2 if and only if (a, b)4 = (0, 1), which finishes the case
p = 2.

Next, let p = 3. Since a2 + 4b ≡ 0 (mod 3), we see that a2 ≡ −b (mod 3). Since
gcd(3, b) = 1, we deduce that b ≡ 2 (mod 3) and a2 ≡ 1 (mod 3). Hence, from (2.1),

{Un}3 = [0, 1, a, 0, 2a, 2, 0, 1, . . .],

where a ≡ 1, 2 (mod 3). We conclude that

π(3) =

⎧
⎪⎪⎨
⎪⎪⎩

6 if a ≡ 1 (mod 3),
3 if a ≡ 2 (mod 3).

Observe that π(9) = 3 if and only if

U3 = a2 + b ≡ 0 (mod 9) and U4 = aU3 + bU2 ≡ ba ≡ 1 (mod 9).

Since b mod 9 ∈ {2, 5, 8}, it follows that

π(9) = 3 if and only if (a, b)9 ∈ {(2, 5), (5, 2), (8, 8)}.

If π(9) = 6, then

U6 = a5 + 4a3b + 3ab2 = a(a2 + b)(a2 + 3b) ≡ 0 (mod 9),

which implies that a2 + b ≡ 0 (mod 9), since a2 + b ≡ 0 (mod 3) and gcd(3, b) = 1.
Hence, from (2.1), we have that

{Un}9 = [0, 1, a, 0, ab, a2b, 0, a2b2, . . .],

where a2b2 ≡ 1 (mod 9). Thus,

ab ≡ −1 (mod 9), (2.2)

since we are assuming that π(9) � 3. Consequently,

{Un}9 = [0, 1, a, 0,−1,−a, 0, 1, . . .].

Recall that b ≡ 2 (mod 3). Then, for each b mod 9 ∈ {2, 5, 8}, solving (2.2) for a yields

π(9) = 6 if and only if (a, b)9 ∈ {(1, 8), (4, 2), (7, 5)},

which completes the proof when p = 3.
Finally, suppose that p ≥ 5. Since

π(p2) = π(p) implies Uπ(p2) = Uπ(p) ≡ 0 (mod p2),

we show that Uπ(p) � 0 (mod p2) to establish that p is not an (a, b)-Wall–Sun–Sun
prime.
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We claim that, for n ≥ 0,

Un ≡

⎧
⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

(−1)n/2ab(n−4)/2n(a2(n2 − 4) + 4b(n2 − 10))
48

(mod p2) if n is even,

(−1)(n+1)/2b(n−3)/2n(a2(n2 − 1) + 4b(n2 − 7))
24

(mod p2) if n is odd.

(2.3)

The proof is by induction on n. The claim is easily verified when n ∈ {0, 1, 2}. Since p
divides a2 + 4b, we see that p2 divides (a2 + 4b)2 = a4 + 8a2b + 16b2. It follows that

a4 ≡ −8a2b − 16b2 (mod p2). (2.4)

Suppose that the claim holds for all n ≤ t for some even integer t. Then, modulo p2,

Ut+1 ≡ aUt + bUt−1

≡ a
(−1)t/2ab(t−4)/2t(a2(t2 − 4) + 4b(t2 − 10))

48

+ b
(−1)t/2b(t−4)/2(t − 1)(a2(t2 − 2t) + 4b(t2 − 2t − 6))

24

≡ (−1)t/2b(t−4)/2 a4(t3 − 4t) + 6(t + 2)(t − 3)tba2 + 8(t − 1)(t2 − 2t − 6)b2

48

≡ (−1)(t+2)/2b(t−2)/2(t + 1)(a2t(t + 2) + 4b(t2 + 2t − 6))
24

(by (2.4))

≡ (−1)((t+1)+1)/2b((t+1)−3)/2(t + 1)(a2((t + 1)2 − 1) + 4b((t + 1)2 − 7))
24

and

Ut+2 ≡ aUt+1 + bUt

≡ a
(−1)((t+1)+1)/2b((t+1)−3)/2(t + 1)(a2((t + 1)2 − 1) + 4b((t + 1)2 − 7))

24

+ b
(−1)t/2ab(t−4)/2t(a2(t2 − 4) + 4b(t2 − 10))

48

≡ (−1)t/2−ab(t−2)/2(a2(t + 2)(t2 + 4t) + 4b(t + 2)(t2 + t − 6))
48

≡ (−1)(t+2)/2ab((t+2)−4)/2(t + 2)(a2((t + 2)2 − 4) + 4b((t + 2)2 − 10))
48

,

which establishes the claim.
For brevity of notation, we let λ denote the order of 2−1a modulo p. Then, since

gcd(p, b) = 1, it follows that π(p) = pλ [7, Theorem 3(c)]. Since λ divides p − 1, it
follows that gcd(p, λ) = 1. To finish the proof, we must show that Uπ(p) � 0 (mod p2).
We use (2.3).
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If λ ≡ 0 (mod 2), then modulo p2,

Upλ ≡
(−1)pλ/2ab(pλ−4)/2 pλ(a2((pλ)2 − 4) + 4b((pλ)2 − 10))

48

≡ (−1)pλ/2ab(pλ−4)/2 pλ(a2(−4) + 4b(−10))
48

≡ (−1)λ(p+2)/24ab(pλ−4)/2 pλ(a2 + 10b)
48

.

Since p � {2, 3} and does not divide a, b or λ, if Upλ ≡ 0 (mod p2), then p divides
a2 + 10b. However, since p divides a2 + 4b, it follows that

a2 + 10b ≡ 6b � 0 (mod p),

completing the proof in this case.
Suppose now that λ ≡ 1 (mod 2). Then, modulo p2,

Upλ ≡
(−1)(pλ+1)/2b(pλ−3)/2 pλ(a2((pλ)2 − 1) + 4b((pλ)2 − 7))

24

≡ (−1)(pλ+1)/2b(pλ−3)/2 pλ(a2(−1) + 4b(−7))
24

≡ (−1)(pλ+3)/2b(pλ−3)/2 pλ(a2 + 28b)
24

.

Reasoning as in the previous case, we see that Upλ ≡ 0 (mod p2) if and only if
a2 + 28b ≡ 0 (mod p). However, since a2 + 4b ≡ 0 (mod p), it follows that

a2 + 28b ≡ 24b � 0 (mod p),

which completes the proof of the theorem.
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