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Abstract

It is shown that a so-called shortly connected combinatorial inverse semigroup is strongly lattice-
determined "modulo semilattices". One of the consequences of this theorem is the known fact
that a simple inverse semigroup with modular lattice of full inverse subsemigroups is strongly
lattice-determined [7]. The partial automorphism semigroup of an inverse semigroup 5 consists
of all isomorphisms between inverse subsemigroups of S. It is proved that if S is a shortly
connected combinatorial inverse semigroup, T an inverse semigroup and the partial automor-
phism semigroups of 5 and T are isomorphic, then either 5 and T are isomorphic or they are
dually isomorphic chains (with respect to the natural partial order); moreover, any isomorphism
between the partial automorphism semigroups of 5 and T is induced either by an isomorphism
or, if 5 and T are dually isomorphic chains, by a dual isomorphism between 5 and T. Counter-
examples are constructed to demonstrate that the assumptions about S being shortly connected
and combinatorial are essential.

1980 Mathematics subject classification (Amer. Math. Soc.) (1985 Revision): 20 M 10, 20 M 18,
20 M 20.

0. Introduction

The purpose of this paper is to study to what extent an inverse semigroup
S is determined by its partial automorphism semigroup, which is defined as
the inverse semigroup of all isomorphisms between inverse subsemigroups
of S (including the empty one). The partial automorphism semigroup can
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400 Simon M. Goberstein [2]

be naturally defined for other mathematical structures as well. Several prob-
lems concerning partial automorphism semigroups of mathematical struc-
tures were posed by Preston in his well-known address [17]. Problem 4 of
[17] deals specifically with the question of characterizing algebras by their
partial automorphism semigroups. For several classes of groups and semi-
groups this problem has been considered in a number of publications (see
[3] for a brief survey). However only a few results in that direction were
obtained for the class of inverse semigroups other than groups. In [13] Libih
proved that a monogenic inverse semigroup is determined up to isomorphism
by its partial automorphism semigroup in the class of all inverse semigroups.
In [14] several special types of commutative inverse semigroups determined
by their partial automorphism semigroups were described.

It is known [1] that there exist nonisomorphic groups with isomorphic
partial automorphism semigroups. Thus in the study of determinability of
inverse semigroups by their partial automorphism semigroups, it is natural
to concentrate on the class of combinatorial inverse semigroups (that is those
which do not contain nontrivial subgroups). An isomorphism between par-
tial automorphism semigroups of two inverse semigroups induces their lat-
tice isomorphism (that is, an isomorphism between their lattices of inverse
subsemigroups). Therefore in Section 1 we study lattice isomorphisms of
combinatorial inverse semigroups. The main result here (Theorem 5) im-
plies that a so-called shortly connected combinatorial inverse semigroup is
strongly lattice-determined "modulo semilattices". One of the consequences
of this theorem is the known fact that a simple inverse semigroup with mod-
ular lattice of full inverse subsemigroups is strongly lattice-determined [7].
In Section 2 we prove our principal result (Theorem 8) that if S is a shortly
connected combinatorial inverse semigroup, T an inverse semigroup and the
partial automorphism semigroups of S and T are isomorphic, then either
S = T or S and T are dually isomorphic chains (with respect to the natural
partial order); moreover, any isomorphism between the partial automorphism
semigroups of S and T is induced either by an isomorphism or, if S and T
are dually isomorphic chains, by a dual isomorphism between S and T. We
also construct counterexamples to demonstrate that our assumptions about
S in Theorems 5 and 8 (that 5 is shortly connected and combinatorial) are
essential—if the first one is dropped or the second is weakened to the re-
quirement that S be fundamental, the theorems will no longer hold.

Preliminary versions of results from Section 2 were announced at the 1984
Marquette Conference on Semigroups and are described without proofs in
[3].
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1. Lattice isomorphisms

Let S be an inverse semigroup. If X is a subset of S, denote by (X) the
inverse subsemigroup of S generated by X. To indicate that H is an inverse
subsemigroup of S, we write H < S. It will be assumed that the empty set
0 < S. Then the set of all inverse subsemigroups of S, partially ordered by
inclusion, is a lattice which will be denoted by Sub(S). Let T be an inverse
semigroup such that Sub(5') = Sub(r). Then S and T are said to be lattice
isomorphic and any isomorphism of Sub(5') onto Sub(T) is called a lattice
isomorphism of S onto T. If O is a lattice isomorphism of 5 onto T, we
will say that O is induced by a mapping <f>: S —> T (or that <f> induces <J>) if
H& = H(f> for any H <S. If S is isomorphic to each inverse semigroup which
is lattice isomorphic to S, then S is called lattice-determined. We say that S
is strongly lattice-determined if each lattice isomorphism of S onto an inverse
semigroup T is induced by an isomorphism of S upon T. As usual, E$ will
denote the semilattice of idempotents of 5 and < the canonical partial order
on S (that is, x < y if and only if x — xx~ly for x,y e S). Recall that if x
and y are elements of a certain poset, then x\\y means that x and y are not
comparable, and x ft y denotes the negation of x\\y.

RESULT A (Jones [9, Lemma 1.1]). Let S and T be inverse semigroups and
O a lattice isomorphism of S onto T. Then there is a unique bijection <J>E

of Es upon ET such that (e)O = {e<f>E) for every e e Es, and the following
conditions are satisfied for all e, f e £5 :

(i) e If / if and only ife<j>E Hi ffa;
(ii) e\\f implies (ef)<pE = (e<j>E)(f<t>E)-

It must be emphasized that <f>E is not, in general, an isomorphism of Es
onto ET (see, for example, [9]).

If X is a set, denote by A* the equality (or "diagonal") relation on X.
Recall [16] that a semigroup S is said to be combinatorial if ^ = A$. Clearly
an inverse semigroup is combinatorial if and only if all its subgroups are
trivial.

RESULT B (A corollary to [4, Lemma 2.1]). Let S and T be inverse semi-
groups and<j>: S —» T a bijection such that 4>\Es is an isomorphism ofEs onto
ET- IfS is combinatorial, then 4> is an isomorphism ofS onto T if and only
if(x~x)4> = {x<j>)~1 and (ex)(j> = (e(j))(x(f>) for any x e S and any e < xx~l.

If an inverse semigroup S is combinatorial and an inverse semigroup T is
lattice isomorphic to 5, then T is combinatorial as well [9, Corollary 1.3].
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Through the rest of this section S and T are combinatorial inverse semigroups
and O is a lattice isomorphism of S onto T.

RESULT C (from Jones [12, Proposition 1.6 and Corollary 1.7]). For any
x € S, there exists a unique y e T such that {x)<b = (y), (xx~l)<f>E = yy~l

and (X~1X)<J>E — y~ly- The mapping $: x*-+y is a bijection ofS onto T with
the following properties:

(i) 4> extends <f>E, that is 4>\Es = 4>E\
(ii) 4> and <f>~' preserve 5C- and £ft'-classes;
(iii) if 6 is any homomorphism ofS onto T which induces O, then 8 — <j>.

We will say that <f> is the ^-associated bijection of 5 onto T. This bijection
will be denoted by <)> through the rest of this section.

It has long been known that any free group (in particular, the infinite cyclic
group) is strongly lattice-determined [18]. More recently it was proved [9],
[11], that any free inverse semigroup (in particular, the free monogenic one)
and the bicyclic semigroup are also strongly lattice-determined. Furthermore,
if in Result A, 5 is a monogenic inverse semigroup, then T is also monogenic
and <J>E is an isomorphism of E$ onto ET [12, Lemma 1.4 and Corollary
1.13]. Combining these results and [12, Lemma 3.6] with the well-known
facts about the structure of monogenic inverse semigroups [16, Chapter IX],
one can readily obtain the following theorem (thus even though no explicit
proof of it, to the best of our knowledge, has been published yet, the result
is undoubtedly true):

RESULT D (Ershova, see [20, Theorem 1.39]). A monogenic inverse semi-
group which contains no finite nontrivial subgroups is strongly lattice-
determined.

REMARK 1. In what follows some of the basic results about the structure
of monogenic inverse semigroups will be used without reference. The reader
may consult [16, Chapter IX] for a detailed exposition.

As a consequence of Result D, we obtain

LEMMA 1. For any a e S, <f>\(a) is an isomorphism of {a) onto (a<t>). In
particular, (a~l)<f> = (a<f))~l.

PROOF. Let a e S, *¥ = 4>|Sub((a» a n ( i V - 0l<a>- T n e n ^ is a lattice
isomorphism and y/ is the *F-associated bijection of {a) onto (aij/){= («(/>)).
Since (a) is combinatorial, it is strongly lattice-determined, from Result D.
Thus there exists an isomorphism of (a) onto (ay/) which induces *F. By
Result C(iii), this isomorphism must coincide with y/.
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Let U be an inverse semigroup, a e U and e < aa~x. If there is no
/ e (a) such that e < f < aa~x, we say that e is a-coveredby aa~x and write
e <a aa~x. The crucial result is the following.

L E M M A 2 . If4>E is an isomorphism ofE$ onto Ej, then for any aeS and
e e E such that e <a aa~l, (ea)(j> — (e<j))(a(f)).

PROOF. Note that the properties (i) and (ii) of <j> from Result C will be
used below without comments. Let a e 5 and e € Es be such that e is a-
covered by aa~x. Suppose that 4>E is an isomorphism of Es onto Ej. Then,
if a € Es, we have (ea)4> = {e(j>)(a(j>). Thus from now on we will assume that
a£ E$ (since 5 is combinatorial, this means that aa~l ^ a~la).

Since e&ea, we have e<j>M{ea)<j). Moreover,

( ^ X a ^ K ^ X a ^ ) ] - 1 = {e<t>){a<t>){a<t>)-1 = {e<t>) • {aa-x)cj> = {eaa-x)(j> = e<j>,

so that e<j).^{e(t>){a(f)). It follows that {e<f>)(acf>) — scf> for some 5 e Re.
Since (e,a)O = {e<t>) V {a<j>) = {e<j),a<j)) and (e4>)(a<j)) e {e^,a<\>), we have
5 € (e,a). Suppose that s - xuy where x,y, u e {e,a) and u = u2. Then
s - (xux~x)(xy). Repeating this as many times as necessary, we can write 5
in the form s = gt where g = g2 e (e, a), t € (a) and no subword of t (con-
sidered as a word in a and a~x) is an idempotent (cf. [10, Lemma 2.1]). Thus
either t = a" or t = a~n for some integer n > 1. Moreover, e£%s = es = egt.
It follows that Re = Regt < Reg < Re, whence eg = e and s = (eg)t = et.

CASE I. aa~x •£ a~xa.

(l)s = ea-n forn > 1.
We have

e3tearn3lea-x3!l{ea-x){ea-xYx = ea~xa.

Thus e = ea~xa < a~la. Since e < aa~x, it follows that e < (a~xa)(aa~x) <
aa~x. However e is a-covered by aa~x. Hence e — (a~xa)(aa~x) e (a) and,
by Lemma 1, {ea)<f> = (e<j>){a<j)).

(2) s = ean for n > 1.
If n = 1, then (e<j>)(a<fr) = scf> = (ea)<p. Now suppose that n > 2. Then

(e(f>)(a<j>) — (ea")<f> and we have

(a-"ean)<t> = [(ean)-x{ean)]<f> = [{ean)<t>]'x • (ean)<fi - '

Since « > 2, a~"ea" < a~"a" < a~2a2. Thus

(a4>)-x(e<f>)(acf>) = (a-"ea")<j> < (a-
2a2)<f>,

whence

e<j> = (acj>)(a<t>rx(e<j>)(acj>)(a<j>rx < (a<^)(a0)2

= [(aa-x)(a-xa)]<f>.
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Therefore, e < (aa~l)(a~la) < aa~l. Since e <a aa~\ it follows that
e = (aa~l)(a~la) e (a) and again, by Lemma 1, (ea)<f> = (e<t>)(a(f>).

CASE II. acrx <a~xa.
Let b = a~x and / = a~lea. Then / -<b bb~l and by case I, {fb)<j> =

(f<f>)(b<f>). It follows that

(ea)4> = (b-xfb -b-x)<t> = (b-lf)<f> = [{fb)<t>rx = [{f<t>){b<t>)Tx

= {b<t>)-x{f<t>){b<t>) • (b<f>)-1 = [{f<t>)(b<t>)V\f<t>){b<t>) • {b<j>rx

= [(fb)<f>rl • (fb)cf> • (b~V) = {b-{fb)4> • (b~l<t>) = (*0)(flfl .
This completes the proof.

Now we will describe a class of inverse semigroups which will play an
important role in this paper. Let U be an inverse semigroup. Take a e U
and e < aa~l. Suppose that for some n > 1, there exist eo,e\,...,en € Ev

such that e = eo < e\ < • • • < en = aa~x and for any i = 1,...,«, e,_i is a,-
coveredby e, where a, = eta (andhence a,a,~' = ei). Then (eo,e\,...,en) will
be called a short bypass from e to aa~l. If for any a e U and any e < aa'1,
there exists a short bypass from e to aa"1, C/ is said to be shortly connected.
It is obvious that any semilattice and any finite inverse semigroup are shortly
connected. In fact, semilattices and finite inverse semigroups are contained
in a large subclass of shortly connected inverse semigroups described below.

Let a € U ande < aa~l. A short bypass {e,f\,...,fk) iromeXo fk = aa~l

is called a short link between e and aa~l if for any / = \,...,k - 1 (when
k > I), fj e (a), ft is covered by fi+x in ((a),<) and there is no g e is<a>
such that e < g < f\. If for all a € U and e < aa~x, there is a short link
between e and aa~l, then U is called shortly linked. It is immediate from
the definition that a shortly linked inverse semigroup is shortly connected.

The following facts about the semilattice of idempotents of a monogenic
inverse semigroup are explicitly presented in [2] (they can also be recovered
from [16]). Let U be an inverse semigroup and aeU. If (a) is a free mono-
genic inverse semigroup, then (£<<,)><) is isomorphic to the direct product
Cw x Co) from which the largest element is deleted (here Cw denotes an co-
chain [16], that is, the set of nonnegative integers ordered dually to their
natural order). Hence in this case (E^,<) has the following diagram

aa"1 ft ft a-1a

FIGURE 1
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If (a) is not free, then the diagram of (£"<<,>, <) is one of the following

... l ...

... 2 ...

... 3 ...

.. n-1 ..

(a) (b)

FIGURE 2

The diagram 2(a) corresponds to the case when (a) has a kernel which is
a bicyclic semigroup, and the diagram 2(b) to the case where the kernel of
(a) is a (cyclic) group. The numbers 1, . . . , n — 1 indicate the depth (or the
weight [16]) of idempotents of {a) which do not belong to the kernel. Note
that n > 1; if n = 1, then (a) coincides with the kernel.

Using this information about the structure of {E^a),<) we can establish
the following proposition which, in particular, gives a convenient description
of shortly linked inverse semigroups. For a e U and e < aa~l, set Fe.a =
{fe(a):e<f<aa~i}.

1 e,a

PROPOSITION 3. Let U bean inverse semigroup, ae U ande < aa '.
the following conditions are equivalent:

(i) there is a short bypass {e ,e\,... ,e{) from e toaa~x = e/ such thatei
for any i= 1 , . . . , / ;

(ii) there is a short link between e and aa~x;
(iii) ife £ {a}, then Fe<a has a least element;
(iv) Fe,a is finite.

Then

(a)
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Thus U is shortly linked if and only if for any a sU and e < aa~x, FeA is
finite.

PROOF. (i)=^(ii). Let (e,e\,...,e{) be a short bypass from e to aa~x = et

such that ej € (a) for any / = 1, . . . , / . Suppose that this bypass is not a short
link between e and aar'. If / > 1 and for some 1 < j < / - 1 , e,- is not covered
in ((a), <) by e,+i, since the segment [e,,e,+i] of ({a), <) is finite, we can find
ft ft€ [ei,ei+i] such that et < gx <••• < gk < ei+x (here and later in
the proof •< denotes the covering relation in ((«),<)). Similarly "filling up"
other "gaps" in the chain e\ < •• • < e/ (if they exist), we will get a short
bypass (e,f\,...,fk) from e to aa~l = fk in which for every / = \,...,k - 1
(if k > 1), / , E (a) and /• < fM.

Set a\ = f\a and recall that e is «i-covered by a\a\x = f\. Let {e,f\\a —
{h e E(a) : e < h < f \ } . Suppose that {e,f\\a is infinite. Then the diagram of
E(a) is given either by Figure 1 or by Figure 2(a), and there exists an infinite
f a m i l y {hn e ( e , f \ ] a : n > 0 } s u c h t h a t f \ = h 0 >- h \ > h i > ••• > h n > •••.
In the first case, E^ contains a sublattice

-1 2 -1
a a a

and for some n > 1, either a\ax
 2 > hn > e or a{

 xa\a{ ' > hn > e; a
contradiction. In the second case, take any g e £(ai) such that g < f\ and
g belongs to the kernel of {a). Then for some n > 1, g > hn > e; again
a contradiction. Thus (e,f\]a is finite and we can find g[,...,g'm e (e,f\]a

such that e < g[ < ••• < g'm = f\ and g[ is a minimal element in (e,f\]a-
Therefore (e, g[,..., g'm — f\,..., fk) is a short link between e and aa~l = fk.

(ii)=^(iii). Suppose that e $ (a) and let {e,f\,...,fm) be a short link
between e and aa~x = fm. Take any g e Fe,a. If f\ % g, then f{ > fxg > e,
a contradiction. Thus f\ < g, that is f\ is the least element in Feya.

(iii)=>(iv). Since Fe>a consists of all elements of Eaa~x which are greater
than or equal to some element of E^, Fe<a is finite.

(iv)=Ki). Suppose that Fe>a is finite. Let e\ be a minimal element in Fe>a

and let a\ = exa. Then e is a\-covered by e\. Furthermore, there exist
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e 2 , . . . , e i e (a) ( i f ex j= a a ~ l ) s u c h t h a t ex -< e 2 -< ••• < e t = a a ~ x . T h e n
(e,e\,...,ei) is the desired short bypass from e to aa~'.

Let U be an inverse semigroup. If for every e € Ev and a e U such that
aa~l > a~la,a~"an < e for some n > 1, then £•[/ is called Archimedean in £/
(see, for example, [10] or [11]). An immediate consequence of Proposition
3 is the following

COROLLARY 4. Let U be an inverse semigroup. If for every e e Ev and
every element a e U of infinite order, there exists g e E(a) such that g < e,
then U is shortly linked. In particular, U is shortly linked if each nonidem-
potent ofU is either of finite order, or generates a bicyclic subsemigroup ofU
and Ev is Archimedean in U.

The following theorem is the main result of this section. To make its
formulation complete, we repeat the assumptions made earlier about S, T
and <J>.

THEOREM 5. Let S be a combinatorial inverse semigroup, T an inverse
semigroup and<ba lattice isomorphism ofS onto T. Let <f> be the ^-associated
bijection ofS upon T and <f>£ = 0|fs- Suppose that S is shortly connected and
<f>E is an isomorphism ofEs onto ET- Then <j> is the unique isomorphism ofS
onto T which induces <J>.

PROOF. Take any a € S and e e Es such that e < aa~l. If e — aa~l,
t h e n (ea)4> = a<f> = (a<j>)(a<f>)-1 (a<f>) = (aa~x)<t> • (acf>) = (e<f>)(a<t>) b y R e s u l t
C (alternatively we could refer to Lemma 1). Now suppose that e < aa~l.
Since S is shortly connected, there exists a short bypass {eo,e\,...,en) from
e to aa~l. Recall that this means that e = eo < e\ <••• <en = aa~x and for
any i = \,...,n, e,_i is a,-covered by a,a~' where a, = e,a. Note that for
i = 1 , . . . , « - 1, a,: = e,a,+i. Using Lemma 2, we get

(ed)(p = (e o a i )<£ = {eQ(p){aX(p) = (eo(p){exa2)(p = •••

= (eo<p) • {en-xan)<t> = (eo9)(en-i<t>)(an<P) = {eq>){a<p).

(Of course, we could have used a simple induction argument here.) By
Lemma 1, (or1)^ = (a<j>)~x. Therefore, according to Result B, <f> is an iso-
morphism of S onto T. The fact that </> induces O is obvious. By Result
C(iii) <f> is the only isomorphism of S upon T inducing O.

Theorem 5 states that any shortly connected combinatorial inverse semi-
group is strongly lattice-determined "modulo semilattices". In the next sec-
tion it will be shown that there exist nonisomorphic combinatorial, but not
shortly connected, inverse semigroups S and T which are lattice isomorphic
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and such that Es = Ej. Thus the condition that 5 is shortly connected cannot
be dropped from the formulation of Theorem 5.

Recall [6], [16] that an inverse semigroup U is said to be fundamental if
Ay is the only congruence on U contained in # \ It will be also shown in
the next section that the assumption in Theorem 5 that S is combinatorial
cannot be replaced by a less restrictive assumption that 5 is fundamental
(even when S is finite) without invalidating the conclusion of the theorem.

REMARK 2. It ought to be mentioned that certain fundamental inverse
semigroups are lattice-determined even if they are not shortly connected. As
an illustration consider the following. Recall that if E is a semilattice, then
the Munn semigroup TE is an inverse semigroup (under composition) con-
sisting of all isomorphisms between principal ideals of E. The semilattice
of idempotents of TE is isomorphic to E and an inverse semigroup U with
Eu = E is fundamental if and only if U is isomorphic to a full (i.e., contain-
ing all the idempotents) inverse subsemigroup of TE (see [6, Section V.4]).
According to Proposition 2.2 of [12], if E is a semilattice such that TE is
simple and each principal ideal of E has a finite group of automorphisms
(the latter condition is, of course, equivalent to saying that each ^"-class of
TE is finite), then TE is lattice-determined. With only a slight change in the
proof of that proposition we can establish the following more general result:

Let E be any semilattice such that the group of automorphisms of each
principal ideal ofE is finite. Let U be an inverse semigroup with Eu = E. If
Sub(C/) =s Sub(7», then U = TE.

An inverse semigroup U is called modular [distributive] if the lattice of all
full inverse subsemigroups of U is modular [distributive]. The structure of
simple distributive and of simple modular inverse semigroups was described
in [10] and in [8] respectively. In [11] Jones proved that a simple distributive
inverse semigroup, which is not a group, is strongly lattice-determined. A
recent paper by Johnston extended this theorem to simple modular inverse
semigroups [7]. We conclude this section by showing that the latter (and thus
the former) result is a consequence of Theorem 5. We will need the following

RESULT E (from Johnston and Jones [8, Propositions 2.2, 2.5 and 4.3(iii)]).
Let S be a simple modular inverse semigroup which is not a group. Then

(i) S is combinatorial;
(ii) a nonidempotent of S is either of finite order or generates a bicyclic

subsemigroup ofS;
(iii) Es is Archimedean in S.

Now we can easily deduce the following corollary.
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COROLLARY 6 [7, THEOREM 15]. Let S be a simple modular inverse semi-
group, which is not a group, and T an inverse semigroup. Then each isomor-
phism ofSvib{S) onto Sub(T) is induced by a unique isomorphism ofS upon
T.

PROOF. By Result E(i) 5 is combinatorial, and by Corollary 4 and Result
E, (ii) and (iii), 5 is shortly linked. Let O be a lattice isomorphism of 5
onto T, cf> the O-associated bijection of 5 upon T and 4>E = <I>\ES- Since S
is simple, it follows from [12, Lemma 1.10] that 4>E is an isomorphism of
£$ onto Ej. Thus, by Theorem 5, (j> is a unique isomorphism of S upon T
which induces O.

REMARK 3. The author initially introduced the class of shortly connected
inverse semigroups and formulated and proved Lemma 2 and Theorem 5, the
central results of this section, using the following definition of a-covering: for
an inverse semigroup U and e,a& U with e < aa~', e is said to be a-covered
by aa~x if there is no / e (e,a) satisfying e < f < aa~l. P. R. Jones noticed
that the author would have to change absolutely nothing in the formulations
and proofs of Lemma 2 and Theorem 5 if in the definition of a-covering
"no / e {e,a)n is replaced by "no / e (a)" (so that Theorem 5 would apply
to a larger than the original class of shortly connected inverse semigroups),
and observed that [7, Theorem 15] can be easily deduced from that more
general statement of Theorem 5. The author is grateful to Dr. Jones for that
important comment and for his kind suggestion to include Corollary 6 in this
paper.

2. ^/-isomorphisms

Let S be an inverse semigroup. A partial automorphism of 5 is defined
here as an isomorphism between any two (isomorphic) inverse subsemigroups
of 5 (in particular, the empty set 0 is a partial automorphism of S). The
set of all partial automorphisms of S with respect to composition is itself an
inverse semigroup which will be denoted by «^s/(5) and called the partial
automorphism semigroup of S. It is clear that 3°sf{S) < ̂ f(S) where ^f(S)
is the symmetric inverse semigroup on the set S. Thus the idempotents of
^ s / (5) are precisely the partially identical mappings AH of S for every H <S
(note that A& = 0) . Since AH o A* = A^nK for any H,K <S, the semilattice
of idempotents of ^ J / ( 5 ) is isomorphic to Sub(S'). Furthermore, the group
of units of £°j!f(S) is Aut(S), the automorphism group of S.

Let S and T be inverse semigroups. If &s/(S) = 3°stf{T), then S and T
are said to be &sf -isomorphic and any isomorphism of £Psf (5) upon . ^ s / (T)
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is called a £Psf-isomorphism of S onto T. Let O be a .^/-isomorphism of
5 onto T. For any H < S, define i/O* by the formula A#<I> = A//<D- . Then
O* is a lattice isomorphism of 5 onto T (defined by O). It is also clear that
the restriction of 0 to Aut(S) is an isomorphism of Aut(S) onto Aut(T). On
the other hand it is not hard to find examples of inverse semigroups with
isomorphic groups of automorphisms and lattices of inverse subsemigroups
which nevertheless are not J3^/-isomorphic (Z35 and Z39 represent perhaps
the simplest such example [15]).

LEMMA 7. Let S and T be inverse semigroups andQ> a &&-isomorphism of
S onto T. Then for any a € &s/(S), dom(aO) = [dom(a)]O* and ran(aO) =
[ran(a)]<P*.

PROOF. Let a € &s/(S) and H = dom{a),K = ran(a). Then aoa"1 = A#
and a" 'oa = A*. It follows that (aO)o(aO)"1 = A//*, and (aO)"'o(aO) =
AKQ.. Hence dom(aO) = H<P* and ran(aO) = K®*.

We say that a &sf -isomorphism <E> of 5 onto T is induced by a bijection
<f>: S -> T (or that <f> induces O) if for every a e &>s/{S), aO = <t>~1 o
a o (/>, that is, for any x,y e 5, xa = y if and only if (x<j))(a<J>) — y</>.
If inverse semigroups are isomorphic, then any isomorphism between them
obviously induces a &lBf isomorphism. An inverse semigroup S is called
^/-determined if for any inverse semigroup T, &$/{S) = &s/(T) if and
only if S = T. If moreover any ^/-isomorphism of S onto T is induced by
an isomorphism of S upon T, then S is said to be strongly 3°£/-determined.

Let £ be a semilattice and < the natural partial order on E (that is, for any
e,feE,e<fif and only if e = ef). Then by Ed we denote the semilattice
dual to E, that is, the underlying set of Ed is E and its natural partial order
<d is dual to <.

RESULT F (a corollary to Schein [19]). Let E be a semilattice and F an
inverse semigroup. Then &>s/(E) = &>s/(F) if an only if E £ F or (E,<)
is a chain and F S Ed. Moreover, any tPsf-isomorphism O of E onto F is
induced by a bijection <f>E defined by (e)<i>* — {e(j>E) for every e e E, and <j)E

is either an isomorphism ofE onto F or, ifE is a chain and F = Ed, a dual
isomorphism ofE upon F.

In addition, it is easy to see that if a bijection y: E —> F induces a
isomorphism <J> of E onto F, then y = </>E, that is, CJ>E in Result F is uniquely
defined by O.

Using Result F and Theorem 5, we will now show that any shortly con-
nected combinatorial inverse semigroup S is strongly ^/-determined (unless
(S, <) is a chain which is not isomorphic to its dual). More precisely, we have
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THEOREM 8. Let S be a shortly connected combinatorial inverse semigroup
and T an inverse semigroup. Then £Psf(S) = £Psf(T) if and only if either
S = T or (S,<) and (T, <) are dually isomorphic chains. Moreover, any&W-
isomorphism ofS onto T is induced by a unique isomorphism ofS upon T or,
if(S, <) is a chain and T = Sd, by a unique dual isomorphism ofS upon T.

PROOF. Let <D be a ^/-isomorphism of S onto T. The restriction of O
to ^sf(Es) is a ^/-isomorphism of Es upon ET. By Result F, O ^ ^
is induced by the bijection <j>E: Es —• ET denned by (e)O* = (e^s) for
every e e Es. From Results A and C, it follows that this bijection <j>E is
the restriction to Es of the <J>*-associated bijection of 5" onto T. Moreover,
according to Result F, either 4>E is an isomorphism of Es onto ET, or (Es, <)
and (ET, <) are chains and <f>E is a dual isomorphism of Es onto £>.

Suppose first that <J>E maps Es isomorphically onto ET. Let <j> denote the
O*-associated bijection of 5 onto T. Then by Theorem 5, <f> is the unique
isomorphism of 5 upon T which induces <J>*. To show that cf> induces O, take
an arbitrary a € &lsf(S) and any x,y e S such that xa = y. Set a = a\(x).
Then a e &$f(S), dom(a) = (x) and ran(a) = (y). By Lemma 7 and
Result C, dom(aO) = (JC)O* = (x<f>) and ran(aO) = (y)O* = (y<f>). Hence
(x<l>)(a®) € { j^ , (y^)"1}. Using Results C and F, we get [(x(f>)(x<f>)-l](a^) =
{y<t>){y<t>)~1- Since a<J> is an isomorphism of (x<j>) onto (y<f>), it follows that
(jc^)(aO) = y<j> and hence (x^)(aO) = yep. Thus 0 induces <£>. If y is any
isomorphism of S onto T which induces O, then it is easy to see that y
induces O* and, by Result C(iii), y = <f>, that is, <f> is the only isomorphism
of S upon T inducing O.

Now assume that (Es, <) and (Ej, <) are chains and $E is a dual isomor-
phism of Es onto £y. We will show that in this case S = Es and T — ET-
Suppose that S contains a bicyclic subsemigroup (x). Then the idempotents
of (x)G>* are well-ordered, so that {x)&* is a Clifford semigroup [6, Section
V.5] which must be a chain since T is combinatorial. Hence, by Result A, (x)
is a chain; a contradiction. Thus S is completely semisimple, that is idempo-
tents in each ^-class of 5" are incomparable. Since S is combinatorial and Es
is a chain, it follows that each ^-class of S consists of just one idempotent,
so that S = Es. By symmetry (or by Result A) we also have T = ET. To
complete the proof, it remains to apply Result F and the remark that follows
it.

We are going to show that Theorem 8 need not hold for a combinatorial
inverse semigroup S which is not shortly connected, even if we assume in
addition that S is completely semisimple.

EXAMPLE 1. Let A — (a) be the free monogenic inverse semigroup gen-
erated by a, and let E\ = EA (the diagram of E\ is given by Figure 1). For
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any e < aa~l, set e6a = a~lea. Then [6, Section V.4] 6a is an isomorphism
of E\aa~l onto E\a~xa, so that Ba e TEl. Let Eo = {0,^0,^1,^2} be a four-
element primitive semilattice (that is, 0 is a zero of EQ and e,e; = 0 if / ^ j)
disjoint from E\. Let E be the ordinal sum of EQ and E\, that is, E = EQKJE\

and the natural partial order < on E is such that e < f for all e e Eo and
f E Eu and its restriction to Et coincides with the natural partial order on
Ej (i = 0,1). A diagram of E is shown on Figure 3(a).

E n :

h 2

(a) (b)

FIGURE 3

Let £ and t] be elements of ^f{E) such that <̂ |£, = t]\El — 6a, and £\E0

and rj\Eo are permutations of Eo with the cycle decompositions {e§e\ei) and
(eo^ i ) , respectively. It is clear that <J, r\ e 7^. Let [/ be the full inverse
subsemigroup of Tj generated by <!;. We can identify U with an ideal ex-
tension of a ten-element combinatorial Brandt semigroup B (having Eo as
its semilattice of idempotents) by A0. More precisely, U is identified with
the semigroup whose underlying set is the (disjoint) union A u B and whose
multiplication extends that of A and of B and is uniquely defined by the re-
lations: a~leoa = e\, crxe\a = e2 and a~le2a = eo. Let V be the full inverse
subsemigroup of Tj generated by >/. Similarly to the above, we identify V
with the semigroup on the set A U B whose operation * extends that of A
and of B and is completely determined by the relations: a~l * eo * a = et,
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a~x *e2*a = e\ and a~x * e\ * a = eo (thus V is another ideal extension of B
by A0). Note that Ev and Ev have been identified with iT.

Now let 5 be the ideal extension of U and T the ideal extension of V
by the five-element primitive semilattice {0,/,g,h\,h2) determined by the
following partial homomorphism: / i-> aa~x, g i-+ e\, hi i-> ^ (/' = 1,2).
Informally speaking, S and T are constructed from [/ and V, respectively,
by "tagging" idempotents aa~x,e\ and e-i. Denote E$ (= Ej) by is. Then
E = £ u {f,g,h\,h2} and its diagram is given by Figure 3(b). It turns out
that 5 and T are .^s/-isomorphic but not isomorphic combinatorial inverse
semigroups. More precisely, we have

PROPOSITION 9. Let S and T be the semigroups constructed in Example 1.
Then

(i) S and T are completely semisimple combinatorial inverse semigroups;
(ii) 5 and T are not isomorphic,
(iii) S and T are £Psf-isomorphic.

PROOF, (i) It is obvious that S and T are combinatorial. Since they do
not contain inverse subsemigroups isomorphic with the bicyclic semigroup,
S and T are completely semisimple.

(ii) Suppose that 5 and T are isomorphic and let <f> be an isomorphism of 5
onto T. Then <J>\E is an automorphism of E. Since a"1 a is a maximal element
of E and aa~l is contained in / , (aa~l)(f> = aa~l and {a~la)(t> = a~xa.
Similarly, from the "tagging" of idempotents e\ and ei, we get e,</> = e, {j —
0,1,2). It follows that <j>\E = AE and <f>\A = AA. Then

e\ = e\<l> = (a~ieoa)(f> = (a<f>)~1 *eo<f>*a<f> = a " 1 *eo *a = ei,

a contradiction. Thus S and T are not isomorphic.
(iii) Recall that S and rhave the same underlying setAuBu{f,g,hi,h2}

and for any element of this set, its inverse in 5 coincides with its inverse in
T. It is straightforward to calculate the "eggbox" structure of the nonzero
^-class of B in S [in T] (cf. the table below).

In particular, for each i = 0,1,2, e,x~' = ei* x and x~le,; = x * e, where
x e {a,a~l}. Moreover, for any n e 1 and / = 0,1,2,aV, = a"e, and e,a" =
e,a"̂  where n e {-1,0,1} and n = n (mod 3). Using this information and the
standard representation for the elements of A due to Gluskin (see [16, IX. 1]),
we can check that for all u € A and v e B, u*v = u~xv and v *u = vu~x

(note that these equalities can also be deduced from our original definition
of U and V as full inverse subsemigroups of Tj generated respectively by
Z,ri € Tz such that (\El = da = n\E% and {\Eo = (e0eie2) = (ri\Eo)-

x). It
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eoa = aex

[eo*a~l =a~l * ex]

e2a~l = a~lex

[e2 * a = a * ex ]

exa ' = a 'eo

[ex*a = a* e0]

e2a = ae0

[e2 * a " 1 = a~ ' * eo]

ex a = ae2

[ex *a~l = f l - ' *e2]

eoa~l =a~le2

[eo*a = a* e2]

follows, in particular, that for any H C A u B U {/, g, hx, h2}, H <S if and
only if H < T.

Take an arbitrary a € «^s/(5). Note that for every x € S\E if x e A [x e
B], then (x) is a free monogenic inverse [a five-element Brandt] subsemigroup
of S. Thus if x is any nonidempotent from dom(a), then xa e A if x e A,
and xa € 5 if x € 5 . Set H = dom(a) and Â  = ran(a). Take any u, v e H.
lfu,v eA\J{f} or u,v eBu{g,hx,h2}, then

(M * v)a = {uv)a = (ua)(va) = (ua) * (va).

Now suppose that ue Au {/} and v e B U {g, hx, /?2}- Then

(M * v)a = (u~]v)a = (HQ)"'(VQ) = (wa) * (va),

and similarly (v * u)a = (va) * (ua). Therefore a is an isomorphism of
(//,*) onto (K,*), that is, a e &>s/(T). Thus ^?j/(5) C ^? j / (D so that,
by symmetry, S°sf(S) = &>s/(T) and the identity mapping of &W(S) is a
^/-isomorphism of S onto 7\

REMARK 4. Another example of iW-isomorphic, but not isomorphic,
combinatorial inverse semigroups can be obtained if in Example 1 we replace
the free monogenic inverse semigroup A by the bicyclic semigroup. This time
though the corresponding nonisomorphic, but <^s/-isomorphic, combinato-
rial inverse semigroups 5 and T will not be completely semisimple.

Our next example shows that Theorem 8 need not be valid if S is a shortly
connected (in fact, even finite) fundamental inverse semigroup.

EXAMPLE 2. Let EQ = {0, eo, • • •, e^} be a six-element primitive semilattice
and let E = EQ. The diagram of E is shown in Figure 4.

Let <!; and t} be the automorphisms of £1 (= E) determined by the cycles
(e§e\e2e->,et) and ( e o ^ s ^ i ) respectively. Let U be the full inverse subsemi-
group of Tg generated by £. Then U can be identified with an ideal extension
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of a combinatorial Brandt semigroup B, having Eo as its semilattice of idem-
potents, by G° where G = {a) is a cyclic group of order 5 disjoint from B.
More precisely, U is identified with the semigroup on the set GliB whose
multiplication extends that of G and of B and is uniquely defined by the
following action of a on Eo: a~l0a = 0, a~xe^a = eo and a~le^ia = e, for
every i = 1,. . . , 4. Let V be the full inverse subsemigroup of T-g generated by
n. We identify V with the semigroup on the set G U B whose multiplication
extends that of G and of B and is uniquely determined by the following ac-
tion of a on Eo:

 a~l *0*a = 0, a~l *eo*a = e2, a'1 *e/_i *a = e, (j — 3,4),
a~x *e**a = e\ and a~l * e\ * a — eo (so that V is another ideal extension of
B by G°).

Let S be the ideal extension of U and T the ideal extension of V by the
primitive semilattice {0,fu,f\2,f22,fi3,f23,fi3,fi4,fu,f34,M determined
by the following partial homomorphism: fj i-> e7 for j = 1, . . . , 4 and i =
l,...,j. Denote Es (= £ » by E. We claim that S and T are ^/- isomorphic
but not isomorphic. More specifically, we have

PROPOSITION 10. Let S and T be the semigroups constructed in Exam-
ple 2. Then they are finite fundamental inverse semigroups which are ^ls/-
isomorphic but not isomorphic.

OUTLINE OF PROOF. It is obvious that S and T are finite fundamental
inverse semigroups. Suppose that S and T are isomorphic and let y/ be an
isomorphism of S onto T. From the "tagging" of idempotents, it follows that
V\E = Af. Assume that ay/ = ak {k = 1,2,3). Then

ex = (a~leoa)y/ = (ay/)~l * eoy/ *ay/ = a~k * e0 * ak = ek+l,

a contradiction. Now if we suppose that ay/ = a4, then ei = [a~xe\d)y/ =
a"4 * e\ * a4 = e*, again a contradiction. Therefore S and T are not isomor-
phic.
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Let H < S. It is easy to see that there are only the following possibilities:
(i) Hn (G\l) = 0 ; (ii) H = G or H = G°; (iii) GuBCH. First of all, this
implies that H < T, so that, Sub(S) = Sub(T). Secondly, if a e 3°s/{S),
H = dom(a) and K = ran(a), then one of the cases (i), (ii), or (iii) holds
simultaneously for H and for K, and we can show without difficulty that
a e &>sf(T). Thus &>s/(S) = &st'(T), so that S and T are trivially &s(-
isomorphic.

REMARK 5. The author gratefully acknowledges that he learned the general
idea that led to counterexamples 1 and 2 and, in particular, the method of
"tagging" idempotents, from Dr. T. E. Hall who conceived that method for
one of the counterexamples in [5].
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