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THE NUMBER OF TWO CONSECUTIVE
SUCCESSES IN A HOPPE–PÓLYA URN
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Abstract

In a sequence of independent Bernoulli trials the probability of success in the kth trial is
pk = a/(a + b + k − 1). An explicit formula for the binomial moments of the number
of two consecutive successes in the first n trials is obtained and some consequences of it
are derived.
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1. Introduction

An urn initially contains one white ball and one black ball of weight a > 0 and b ≥ 0,
respectively. Balls are randomly drawn from the urn with probabilities proportional to weights.
Every time a white ball or a black ball is drawn from the urn, it is replaced with a ball of weight 1
of a colour not already in the urn, otherwise a ball is replaced together with a copy of it. We
call this drawing scheme a Hoppe–Pólya urn. If b = 0, there is no black ball, the so-called
Hoppe urn. If all balls emanating from a draw of the white or black are coloured white or,
respectively, black, we obtain the well-known Pólya urn.

Let the sequence of independent Bernoulli random variables I1, I2, I3, . . . indicate the
drawings of the white ball, the ‘successes’ or ‘records’ in the Hoppe–Pólya urn. Obviously,

pk = P(Ik = 1) = 1 − P(Ik = 0) = a

a + b + k − 1
, k = 1, 2, . . . .

The number of successes in the first n trials can be written as

Kn = I1 + I2 + · · · + In,

and the number of two consecutive successes can be written as

Mn = I1I2 + I2I3 + · · · + In−1In.

An explicit formula for the binomial moments of Mn is the main result of this paper. Note that
0 ≤ Mn ≤ n − 1.

For pk = a/(a + b + k − 1), the Borel–Cantelli lemma implies that

M∞ =
∞∑

k=1

IkIk+1 < +∞
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with probability 1. For the case in which a = 1 and b = 0, i.e. pk = 1/k, connected with
record values and random permutations, Hahlin (1995) proved that M∞ is Poisson distributed
with mean 1. After that, an unpublished proof of the same result by Diaconis inspired a number
of studies on the distribution of M∞; see Chern et al. (2000), Mori (2001), Joffe et al. (2004),
Sethuraman and Sethuraman (2004), Holst (2007), and the references therein. To the author’s
knowledge, the result in this paper on the distribution of Mn for finite n has not been obtained
previously.

2. Notation and facts

Following Knuth (1992), we denote falling and rising factorials by

xn = x(x − 1) · · · (x − n + 1),

xn = x(x + 1) · · · (x + n − 1) =
n∑

j=1

[
n

j

]
xj ,

where
[
n
j

]
is a cycle number or signless Stirling number of the first kind. Recall the combinatorial

interpretation:
[
n
j

]
is the number of permutations of 1, 2, . . . , n with j cycles.

For Kn equals the number of successes in the first n trials, we have

E(xKn) =
n∏

k=1

(
a

a + b + k − 1
x + 1 − a

a + b + k − 1

)

= (ax + b)n

(a + b)n

=
n∑

j=1

[
n

j

]
(ax + b)j

(a + b)n

=
n∑

i=0

xi
n∑

j=i

[
n

j

](
j

i

)
ai bj−i

(a + b)n
.

Hence, for i = 0, 1, 2, . . . n,

P(Kn = i) =
n∑

j=i

[
n

j

]
(a + b)j

(a + b)n

(
j

i

)(
a

a + b

)i(
b

a + b

)j−i

.

In particular, for b = 0, i.e. Hoppe’s urn, we obtain the cycle distribution,

P(Kn = i) =
[
n

i

]
ai

an
, i = 1, 2, . . . , n,

for an a-biased random permutation; see Arratia et al. (2003, p. 100).
The number of times the white ball, or balls emanating from it, is drawn in the first n trials,

Xn, has the following Pólya–Eggenberger distribution:

P(Xn = i) =
(

n

i

)
aibn−i

(a + b)n
= E

((
n

i

)
Ui(1 − U)n−i

)
, i = 0, 1, 2, . . . , n,
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where U is a Beta(a, b) random variable with density

fU(u) = �(a + b)

�(a)�(b)
ua−1(1 − u)b−1, 0 < u < 1.

Using the binomial distribution, we obtain, for r = 1, 2, . . . , n,

E

(
Xn

r

)
= E

( n∑
i=r

(
i

r

)(
n

i

)
Ui(1 − U)n−i

)
= E

((
n

r

)
Ur

)
=

(
n

r

)
ar

(a + b)r
.

Recall that a random variable S with the hypergeometric distribution

P(S = i) =
(

c

i

)(
d

n − i

)/(
c + d

n

)

has the binomial moment

E

(
S

r

)
=

(
n

r

)
cr

(c + d)r
.

For an integer-valued random variable Z ≥ 0 having a probability generating function with
a radius of convergence larger than 1, we have

E(xZ) = E((1 + (x − 1))Z) =
∞∑

r=0

E

(
Z

r

)
(x − 1)r =

∞∑
i=0

xi
∞∑
r=i

(−1)r−i

(
r

i

)
E

(
Z

r

)
,

which gives the following probability function of Z expressed in binomial moments:

P(Z = i) =
∞∑
r=i

(−1)r−i

(
r

i

)
E

(
Z

r

)
, i = 0, 1, 2, . . . .

Note that if 0 ≤ Z < n then E
(
Z
r

) = 0 for r ≥ n.

3. The number of two consecutive successes

The following result implicitly gives the distribution of Mn.

Theorem 3.1. For pk = a/(a + b + k − 1) and r = 1, 2, . . . , n − 1,

E

(
Mn

r

)
= ar

(a + b + n − 1)r

r∑
k=1

(
r − 1

r − k

)(
n − r

k

)
ak

(a + b)k
.

Before proving the theorem we consider the special case b = 0, i.e. Hoppe’s urn. A more
general result is Proposition 3 of Holst (2007).

Lemma 3.1. For pk = a/(a + k − 1) and r = 1, 2, . . . , n − 1,

E

(
Mn

r

)
=

(
n − 1

r

)
ar

(a + n − 1)r
.

https://doi.org/10.1239/jap/1222441836 Published online by Cambridge University Press

https://doi.org/10.1239/jap/1222441836


904 L. HOLST

Proof. For Nn = Mn + In, we have

E(tNn+1) = pn+1 E(tNn)t + (1 − pn+1) E(tMn),

which implies that

E

(
Nn+1

r

)
= pn+1

(
E

(
Nn

r

)
+ E

(
Nn

r − 1

))
+ (1 − pn+1) E

(
Mn

r

)
.

For pk = a/(a + k − 1), the random variable Nn has the same distribution as the number of
fix-points in an a-biased random permutation of 1, 2, . . . , n, and

E

(
Nn

r

)
=

(
n

r

)
ar

(a + n − 1)r
;

see Arratia et al. (2003 pp. 95–96). Using this and the relation above, proves the assertion.

Proof of Theorem 3.1. Consider the Hoppe–Pólya urn and the random variable Xn intro-
duced in Section 2. In the Xn ‘white’ drawings, the probability of obtaining the white ball in
the j th trial is

p∗
j = a

a + j − 1
.

Given Xn = x, the number of times the white ball is consecutively drawn in these ‘white’
drawings, M∗

x , is distributed as in Lemma 3.1.
Conditional on Xn = x, we can argue as follows. Among the x ‘white’ draws let W1

denote a drawing that gives a white ball and let W0 denote a drawing that gives a ball which
emanates from a white ball. Let B denote a ‘black’ drawing. The result of the ‘white’ draws
can be written as W1Wi2Wi3 · · · Wix , where i2, . . . , ix are 0 or 1. For M∗

x = y, y of the pairs
W1Wi2 , . . . , Wix−1Wix are of type W1W1. For Mn = z consecutive draws W1W1 among the
original n draws (with x W s and n − x Bs), there are z pairs of the y W1W1-pairs among the
‘white’ draws which are intact and y − z which are split by at least one B between W1W1. The
number of ways to choose the pairs to be intact is

(
y
z

)
. After such a splitting, there are x − z

‘free’W s to combine with the n−x − (y −z) ‘free’Bs, and there are
(
n−y
x−z

)
such combinations.

As each combination of x W s and n − x Bs has the same probability, 1/
(
n
x

)
, we obtain

P(Mn = z | Xn = x) =
∑
y

P(M∗
x = y)

(
y

z

)(
n − y

x − z

)/(
n

x

)
.

Thus, Mn’s probability function can be written as

P(Mn = z) =
∑
x,y

P(Xn = x) P(M∗
x = y)

(
y

z

)(
n − y

x − z

)/(
n

x

)

with the binomial moment

E

(
Mn

r

)
=

∑
x,y

P(Xn = x) P(M∗
x = y)

∑
z

(
z

r

)(
y

z

)(
n − y

x − z

)/(
n

x

)
.
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Using the formula for the binomial moment of the hypergeometric distribution and Lemma 3.1,
we obtain

E

(
Mn

r

)
=

∑
x,y

P(Xn = x) P(M∗
x = y)

(
x

r

)
yr

nr

=
∑
x

(
x

r

)(
n

r

)−1

P(Xn = x)
∑
y

(
y

r

)
P(M∗

x = y)

=
∑
x

(
x

r

)(
n

r

)−1(
n

x

)
axbn−x

(a + b)n

(
x − 1

r

)
ar

(a + x − 1)r
.

Hence, the binomial moment of the Pólya–Eggenberger distribution gives

E

(
Mn

r

)
= ar

(a + b + n − 1)r

∑
x

(
n − r

x − r

)
ax−rbn−r−(x−r)

(a + b)n−r

r∑
k=1

(
r − 1

r − k

)(
x − r

k

)

= ar

(a + b + n − 1)r

r∑
k=1

(
r − 1

r − k

) ∑
t

(
t

k

)(
n − r

t

)
at bn−r−t

(a + b)n−r

= ar

(a + b + n − 1)r

r∑
k=1

(
r − 1

r − k

)
E

(
Xn−r

k

)

= ar

(a + b + n − 1)r

r∑
k=1

(
r − 1

r − k

)(
n − r

k

)
ak

(a + b)k
,

which proves the assertion.

The distribution of M∞ was obtained by Mori (2001). It is a special case of the distribution
given in Theorem 1 of Holst (2007).

Corollary 3.1. Conditional on a Beta(a,b) random variable U , M∞ is Poisson distributed with
mean aU .

Proof. From Theorem 3.1, it follows that

E

(
Mn

r

)
→ ar

r!
ar

(a + b)r
, n → ∞.

As E(Ur) = ar/(a + b)r , we obtain, using the Poisson distribution,

E

(
M∞
r

)
= E

(
E

((
M∞
r

) ∣∣∣∣ U

))
= E

(
(aU)r

r!
)

= ar E(Ur)

r! = ar

r!
ar

(a + b)r
.

The assertion follows from the moment convergence.

The distribution of Mn for pk = p was studied by Hirano et al. (1991); see also the references
therein. Letting a, b → ∞ such that a/(a + b) → p, we obtain their result.

Corollary 3.2. For pk = p and r = 1, 2, . . . , n − 1,

E

(
Mn

r

)
= pr

r∑
k=1

(
r − 1

r − k

)(
n − r

k

)
pk.
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Finally, consider the Pólya urn starting with one white ball of weight a and one black ball
of weight b. Every drawn ball is replaced together with one ball of the same colour and of
weight 1. In n drawings, the number of times a white ball is drawn, Xn, has the Pólya–
Eggenberger distribution. Let Yn denote the number of times a white ball is consecutively
drawn.

Corollary 3.3. For the Pólya urn and r = 1, 2, . . . , n − 1,

E

(
Yn

r

)
=

r∑
k=1

(
r − 1

r − k

)(
n − r

k

)
ar+k

(a + b)r+k
.

Proof. Set Jk = 1 if the kth drawn ball is white, otherwise set Jk = 0. It is a well known,
easily proved fact that, conditional on a Beta(a, b) random variable U , the random variables
J1, J2, . . . are independent and Bernoulli distributed with success probability U . Thus, it
follows from Corollary 3.2 that

E

(
Yn

r

)
= E

(
Ur

r∑
k=1

(
r − 1

r − k

)(
n − r

k

)
Uk

)
=

r∑
k=1

(
r − 1

r − k

)(
n − r

k

)
E(Ur+k),

which proves the assertion.
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