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Abstract
In this paper, we show the existence of an action of Chow correspondences on the cohomology of reciprocity
sheaves. In order to do so, we prove a number of structural results, such as a projective bundle formula, a blow-
up formula, a Gysin sequence and the existence of proper pushforward. In this way, we recover and generalise
analogous statements for the cohomology of Hodge sheaves and Hodge-Witt sheaves.

We give several applications of the general theory to problems which have been classically studied. Among these
applications, we construct new birational invariants of smooth projective varieties and obstructions to the existence
of zero cycles of degree 1 from the cohomology of reciprocity sheaves.
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Introduction

0.1. Overview

It is a well-known fact that a large class of cohomology theories for algebraic varieties can be equipped
with an exceptional, covariant functoriality, despite the fact that they are naturally contravariant. The
existence of this kind of ‘trace’ or ‘Gysin’ morphism associated to projective (or even proper) maps of
smooth schemes is usually manifesting the existence of some Poincaré duality theory for the cohomology
one is interested in; if one replaces cohomology with homology, which is naturally covariant, the
exceptional functoriality is conversely represented by the existence of a pullback along a certain class
of maps. The construction of cohomological Gysin morphisms has occupied vast literature, stemming
from Grothendieck’s trace formalism for coherent cohomology [Har66].

A classical instance in the homological setting is represented by the Chow groups. If X is a smooth
quasi-projective variety over a field &, the Chow groups CH..(X) are naturally covariant for proper maps
and admit contravariant Gysin maps for quasi-projective local complete intersection morphisms [Ful98].
Fulton’s construction of the Gysin morphism was later promoted by Voevodsky in the context of his
triangulated category of mixed motives DM"N[TS (k) over a perfect field k. Associated to a codimension n
closed immersion of smooth k-schemes, i: Z — X, Voevodsky [Voe0Ob] constructed a distinguished
triangle:

M(X = 7) - M(X) 5 M2)(n)[2n] 2% M(x - 2)[1],

where i* is the Gysin morphism and dx 7 is aresidue map. Combining it with a projective bundle formula
for motives, also provided by Voevodsky, the classical method of Grothendieck allows one to define
exceptional functoriality along an arbitrary projective morphism between smooth k-varieties, factoring
it as a closed immersion followed by a projection of a projective bundle. This as well as the naturality
properties of Voevodsky’s Gysin maps have been studied in detail by Déglise [Dég08], [Dég12].

In more recent times, Gysin morphisms for generalised cohomology theories have been constructed
in the context of A'-homotopy theory, making use of the full six functor formalism as developed
by [Ayo07a], [Ayo07b] and [CD19] (see [DJK 18] for more history and updated developments in that
direction).

From the Gysin sequence, the projective bundle formula and the blow-up formula (the latter being also
an ingredient in the construction of the first one) in the triangulated category of Voevodsky’s motives,
it is possible to get corresponding formulas for every cohomology theory which is representable in
DMIC\gS(k). This is the case of the sheaf cohomology of any complex of (strictly) A!-invariant Nisnevich
sheaves with transfers.

However, A!-invariant Nisnevich sheaves do not encompass all of the phenomena that one would
like to study. Interesting examples of sheaves which fail to satisfy this property are given by the sheaves
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of (absolute and relative) differential forms, Q the p-typical de Rham-Witt sheaves of Bloch-

L Ql
-2’ 2%~ Jk
Deligne-Illusie, W,,Q!, smooth commutative k-groups schemes with a unipotent part (seen as sheaves
with transfer) or the complexes Re.Z/p" (n), where Z/p” (n) is the étale motivic complex of weight
n with Z/p" coeflicients, ¢ is the change of site functor from the étale to the Nisnevich topology and
p > Ois the characteristic of k. For some of the above examples, instances of an exceptional functoriality
have been studied before, with results scattered in the literature. In the case of the sheaves of differential
forms, the existence of the pushforward is of course a consequence of general Grothendieck duality
(e.g. [Har66], [Nee96]). In this paper, we offer a unified approach to treat the cohomology of arbitrary
reciprocity sheaves, a notion that includes all of the above examples: this is a particular abelian'
subcategory RSCy;s of the category of Nisnevich sheaves with transfers on the category Smy of smooth
and separated k-schemes. Its objects satisfy, roughly speaking, the property that for any X € Smy, each
section a € F(X) ‘has bounded ramification’, that is, that the corresponding map a: Z,;(X) — F
factors through a quotient /o(X) of Z,,(X), associated to a pair X = (X, X.), where X is a proper
scheme over k and X, is an effective Cartier divisor on X, such that X = X — |X.| (see 1.6 for more
details). The category of reciprocity sheaves has been introduced by Kahn-Saito-Yamazaki in [KSY?22]
(see also its precursor [KSY 16]) and is based on a generalisation of the idea of Rosenlicht and Serre of
the modulus of a rational map from a curve to a commutative algebraic group [Ser84, Chapter III].

Voevodsky’s category of homotopy invariant Nisnevich sheaves, Hly;s, is an abelian subcategory
of RSCxjs. Heuristically, A'-invariant sheaves are special reciprocity sheaves with the property that
every section @ € F(X) has ‘tame’ ramification at infinity. Slightly more exotic examples of reci-
procity sheaves are given by the sheaves Conn' (in characteristic zero), whose sections over X are rank
1-connections, or Lisse} (in characteristic p > 0), whose sections on X are the lisse Q,-sheaves of
rank 1. Since RSCyj; is abelian, and it is equipped with a lax?> symmetric monoidal structure [RSY22],
many more interesting examples can be manufactured by taking kernels, quotients and tensor products
(see 11.1 for even more examples).

0.2. Cohomology of cube invariant sheaves

In order to formulate our main results, we need a bit of extra notation. In [KMSY21a], the authors
introduced the category MCor of modulus correspondences, whose objects are pairs X' = (X, X)),
called modulus pairs, where X is a separated scheme of finite type over k equipped with an effective
Cartier divisor X (the case X., = 0 is allowed), such that the interior X — |Xo| = X is smooth.
The morphisms are finite correspondences on the interiors satisfying some admissibility and properness
conditions (see 1.1). The category MCor admits a symmetric monoidal structure, denoted ®. Let MPST
be the category of additive presheaves of abelian groups on MCor. Given X € MCor and F' € MPST,
we write Fy for the presheaf on the small étale site X givenby U +— F(U,U X% Xo). We say that Fisa
Nisnevich sheaf if, for every X € MCor, the restriction Fyx is a Nisnevich sheaf; the full subcategory of
Nisnevich sheaves of MPST is denoted MNST. Thanks to [KMSY21a], the inclusion MNST ¢ MPST
has an exact left adjoint (the sheafification functor). Among the objects of MPST, we are interested in
a special class, namely, those which satisfy the properties of being cube invariant, semipure and with
M-reciprocity (see 1.4). The first two properties are easy to explain. Let O = (P!, c0) € MCor. Then
F € MPST is cube invariant, if for any X € MCor the natural map:

F(X) > F(X®D)
induced by the projection X xP! — X is an isomorphism. We have that F is semipure if the natural map:

F(X) > F(X,0), (X=X-|Xx|

IThe fact that the category of reciprocity sheaves is abelian is a nontrivial result (see [Sai20a]).
2In the sense that only a weak form of associativity is known to hold (cf. [RSY22, Theorem 1.5])
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is injective. The last condition of M-reciprocity is slightly more technical, and we refer the reader to the
body of the paper. We write CI**” for the category of cube invariant, semipure presheaves with M-
reciprocity and CI{;” for CI™*” N MNST. It is possible to show (see [MS20, Section 1.6], [KSY22,
Section 2.3.7]) that there is a fully faithful functor:
' RSCys — CIS?

admitting an exact” left adjoint, so that one can, in particular, specialise Theorem 0.1 below on cube
invariant sheaves to the case of reciprocity sheaves. If G € RSCyjs, we write G for QCI(G), and for
F e CI{", n > 1, let us write:

®) . n Py
Y'F = HomMPST(GmHIN“ ,F) = Homyper (K, F).

This is a form of (negative) twist (see 4.4, called contraction in Voevodsky’s theory [MV W06, Chapter
23]). The tensor product with subscript HI is the tensor product for homotopy invariant Nisnevich
sheaves with transfers from [MVWO06, Chapter 8], KM is the sheaf of improved Milnor K-theory
introduced in [Ker10] and the isomorphism follows from a result of Voevodsky [RSY?22, Section 5.5].
See Theorems 11.1 and 11.8 for some computations of the twists. The Bloch formula implies that for
any family of supports @ and any cycle @ € C H("D(X ) (see 5.1), there is a natural cupping map:

ca: (Y'F)x[-i] = RCuFx in D(Xnis),

which is compatible with refined intersection and pullback, see 5.8.

The following theorem summarises parts of our results. Write MCor, for the subcategory of MCor,
whose objects X = (X, D) satisfy the additional condition that X € Sm and |D| is a simple normal
crossing divisor.

Theorem 0.1. Let F € CI(;'”, and let X = (X, D) € MCor,.

(1) (Projective bundle formula, Theorem 6.3) Let V be a locally free Ox-module of rank n + 1, and let

P=P(V) 5 X be the corresponding projective bundle. Let P = (P, n* D). Then there is a natural
isomorphism in D (Xnis):

n n
Z /li, : @()/F)X[—i] — Rn.Fp,
i=0 i=0

where /l‘{, is induced by c ¢ for the i-fold power & e CH!(X) of the first Chern class & of V.

(2) (Gysin sequence, Theorem 7.16) Let i: Z — X be a smooth closed subscheme of codimension j
intersecting D transversally (Definition 2.11), and set Z = (Z,D\z). Then there is a canonical
distinguished triangle in D (Xis):

o . 8z/x o 9 . .
.y Fz[=j1 — Fx = Rp.F(g pom) = ¥/ Fz[=j +1], 0.1.1)

where p : X — X is the blow-up of X along Z and E = p~'(Z). The Gysin map gz/x satisfies an
excess intersection formula (7.9.1), it is compatible with smooth base change (Proposition 7.9) and
the cup product with Chow classes (Proposition 7.5).

We stress the fact that, in constrast to the Al-invariant setting, our Gysin sequence does not in-
volve the cohomology of the open complement of Z C X but rather, the cohomology of a modu-
lus pair constructed by taking the blow-up of X along Z. When F = G and G € Hly;s, one can
in fact verify that (0.1.1) gives back the classical Gysin sequence of Déglise and Voevodsky. For

3That is, commuting with finite limits and colimits.
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non-A'-invariant sheaves, the existence of the Gysin map is new essentially in all of the above-
mentioned examples: for instance, it does not follow from the work of Gros [Gro85] for the de

Rham-Witt sheaves. Other interesting cases are given by F = Conn' or Lisse' (see Corollary 11.6).
We may also apply (0.1.1) for D = 0 and F the whole de Rham-Witt complex and obtain in this
way a Gysin sequence for the crystalline cohomology Rux.Ox w,, where ux : (X/Wy)erys — Xnis
is the natural map of sites, which generalises to higher codimension the classical sequence in-
duced by the residue map along a smooth closed divisor(see Corollary 11.10 and the following
remark).

The key computation leading to the above results is the vanishing H' (Y, F, v.prr)) =0, fori >1,
where p : ¥ — A" is the blow-up in the origin and L c A" a hyperplane passing through the origin
(see Theorem 2.12). The proof of this theorem occupies almost all of Section 2 and relies deeply on the
theory of modulus sheaves with transfers.

By factoring any projective morphism as a closed embedding followed by a projection from a
projective bundle, we can use Theorem 0.1 to construct pushforward maps (in fact, we construct the
pushforward with proper support along a quasi-projective morphism; see Definition 8.5 and Proposition
8.6 for the main properties). Note that the pushforward is compatible with composition, smooth base
change and cup product with Chow classes (see 9.5 and Theorem 9.7).

For F = w®'W,,Q', the construction gives even a refinement of the pushforward map for cohomology
of Hodge-Witt differentials constructed by Gros [Gro85] (see Corollary 0.6 below).

0.3. Chow correspondences

When a cohomology theory is equipped with pushforward with proper support and a cup product with
cycles, it is possible, with a bit of extra work, to produce an action of Chow correspondences. Let S be a
separated k-scheme of finite type, and let Cg be the category whose objects are maps (f: X — S) with
the property that the induced map X — Spec(k) is smooth and quasi-projective. As for morphisms, we
set (if Y is connected):

Cs(X.Y) = CHggny (X xY),
XxgY

where <I>§;ZF;Y is the family of supports on X X Y consisting of closed subsets which are contained in
X Xgs Y, and that are proper over X. Composition is given by the usual composition of correspondences
using the refined intersection product [Ful98, Chapter 16]. If F* is a bounded below complex of
reciprocity sheaves and (f: X — S) and (g: Y — S§) are objects of Cg, we can define for @ € Cs(X,Y)

a morphism:
a": Rg.Fy — Rf.Fy in D*(Snis)

that is compatible with the composition of correspondences, satisfies a projection formula and gives
back the pushforward for reciprocity sheaves when a = [T} | is the transpose of the graph of a proper
S-morphism #: X — Y (see Proposition 9.10).

For homotopy invariant sheaves, the existence of the action of Chow correspondences follows from
work of Rost [R0os96] and Déglise [Dég12] (although, to our knowledge, this has not been spelled out
explicitly in the literature).

Previous instances of constructions of an action of Chow correspondences on the cohomology of
Hodge and Hodge-Witt differentials can be found in [CR11] and [CR12]. However, we remark that the
approach followed in this paper is conceptually different: in [CR11] and [CR12], the existence of the
whole de Rham and de Rham-Witt complex, with its structure of graded algebra, was used. In contrast,
here, the projective pushforward is directly constructed starting from a single reciprocity sheaf F' (and its
twists). Our statements are also finer, since we get morphisms defined at the level of derived categories,
rather than just between the cohomology groups.
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0.4. Applications

Let us now discuss how we can apply the formulas established so far to get new interesting invariants.

0.4.1. Obstructions to the existence of zero cycles of degree 1
In Section 10.1, we explain how to use the proper correspondence action on the cohomology of an
arbitrary reciprocity sheaf to construct very general obstructions of Brauer-Manin type to the existence
of zero cycles on smooth projective varieties over function fields, recovering the classical obstruction
as a special case.

Here is the main result (see Theorem 10.1):

Theorem 0.2. Let f: Y — X be a dominant quasi-projective morphism between connected smooth
k-schemes. Assume that there are integral subschemes V; C Y, which are proper, surjective and gener-
ically finite over X of degree n;, i = 1,...,s. Set N = ged(ny,...,ny). Let F* € Comp*(RSCxjs) be
a bounded below complex of reciprocity sheaves. Then there exists a morphism o : Rf.Fy — Fy in
D (Xnis), such that the composition:

Fy L rpFy 5 Ry

is multiplication with N.

In particular, if f is proper and f*: H(X, Fy) — H iy, Fy) is not split injective, then the generic
fibre of f cannot have index 1, that is, there cannot exist a zero cycle of degree 1. It is then possible to
assemble the morphisms o in order to produce a generalisation of the classical Brauer-Manin obstruction
in the case of the function field of a curve (see (10.2.3) and the references there for more details). This
is explained in Corollary 10.4.

See also the end of Section 10.1 for a comprehensive list of references to previous works where
unramified cohomology groups have been used to study obstructions to the local-global principle for
rational points, rather than for zero cycles, over special types of global fields.

0.4.2. Birational invariants
Once we have established an action of Chow correspondences on the cohomology of reciprocity sheaves,
this can be used to find birational invariants.

Let us fix again a separated k-scheme of finite type S. We say that (f: X — S)and (g: ¥ — S) € Cs,
with X and Y integral, are properly birational over S if there exists an integral scheme Z (that we call
proper birational correspondence) over S and two proper birational S-morphisms Z — X, Z — Y (note
that we don’t assume that f or g is proper). If we let Zy € X x Y be the image of Z — X X Y, we can
then look at the composition [Zp]* o [Z{]* and get, for example, the following result.

Theorem 0.3 (see Theorem 10.10). Let F € RSCyys, and assume that F(¢) = 0, for all points &
which are finite and separable over a point of X or Y of codimension > 1. Then any proper birational
correspondence between X and Y induces an isomorphism:

Rg.Fy > Rf.Fx.

If Y = S in the statement of Theorem 0.3, we get a vanishing R f,Fx = 0 for i > 1 and for any
projective birational morphism f: X — Y and F as in the theorem. The prototype example of a sheaf
satisfying the condition F(£) = 0 is the sheaf of top differential forms, Q‘;}cmx . For this, the birational
invariance is classical in characteristic zero and follows from Hironaka’s resolution of singularities. In
positive characteristic, it was proven in [CR11] by using a similar action of Chow correspondences
(although the statements in loc.cit. were for the cohomology groups, not for the whole complexes in the
derived category; see also [Kov17]). On the other hand, Theorem 0.3 provides a very general class of
birational invariants, many of which are new to us: for example, using results of Geisser-Levine [GL00],
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we can consider the cohomology of the étale motivic complexes R'e,(Z/p"(d)) (for all i and n, if
char(k) = p > 0), where d = dim X = dimY; see Corollary 11.16 for a more extensive list). Among
the other applications, we can use Theorem 0.3 to generalise parts of [Pirl2, Theorem 3.3] (which
generalises [CTV 12, Proposition 3.4]; see Corollary 11.19 for more details).

We remark that the global sections of reciprocity sheaves enjoy a general invariance under proper
(stable) birational correspondences, without assuming F (&) = 0 for £ as above (see Theorem 10.7 and
the notations there).

As a byproduct of 0.2, we also get (stably) proper birational invariance (see Definition 10.2) for the
n-torsion of the relative Picard scheme, Picx,s[n], for all n and any flat, geometrically integral and
projective morphism X — § between smooth connected k-schemes, such that the generic fibre has
index 1. This is classical and known to the experts if S is the spectrum of an algebraically closed field,
but it is new for general S (see Corollary 11.24).

0.4.3. Decomposition of the diagonal
In section 10.3, we investigate the implications of the cycle action in case we have a decomposition of
the diagonal, a method which was first employed in [BS83]. For example, we obtain:

Theorem 0.4 (see Theorem 10.13). Let f: X — § be a smooth projective morphism, where S is the
henselisation of a smooth k-scheme in a 1-codimensional point or a regular connected affine scheme of
dimension < 1 and of finite type over a function field K over k. Assume that the diagonal cycle [Ax, | of
the generic fibre X,, of f has an integral decomposition. Then, for any F € RSCxygs, the pullback along f
induces an isomorphism:

HY(X,F) = H(S, F).

See Remark 10.14 for some conditions under which the diagonal decomposes. Note that in the case
F = R'e,Z/p"(j),with (i, j) # (0,0),and X is defined over an algebraically closed field of characteristic
p > 0 and admits an integral decomposition of the diagonal, we obtain H*(X,R'e,Z/p"(j)) =
H°(Speck, R'e,Z/p"(j)) = 0. (The vanishing follows from [GL.00].) This immediately implies a
positive answer to Problem 1.2 of [ABBvB19] and reproves Theorem 1 in loc. cit. (see Corollary 11.21;
also see the recent work [Ota20], for a different approach).

Inthe case S = Spec k and F is Al-invariant, Theorem 0.4 is classical; Totaro proved that it also holds
for F = Q Ik (see [Tot16, Lemma 2.2]) and — building on ideas of Voisin and Colliot-Théléne-Pirutka
— used this to find many new examples of hypersurfaces that are not stably rational. It is an interesting
question, whether the flexibility in the choice of the sheaf F' coming from Theorem 0.4 — for example,
F can be any quotient of Qi/k, say F = Q_N/k/dlog KIQ,’I from Corollary 11.16 — can be used to find
new examples of nonstably rational varieties.

Results for higher cohomology groups are also obtained if F satisfies certain extra assumptions (see
Theorems 10.15 and 10.16 and Corollary 11.22 for examples).

0.4.4. Cohomology of ordinary varieties

Following Bloch-Kato [BK86] and Illusie-Raynaud [[R83], we say that a variety X over a perfect field k
of characteristic p > 0 is ordinary if H™ (X, B) = 0 for all m and r, where B}, = Im(d: Q;(_l — Q).
It is equivalent to ask that the Frobenius F': HY(X, WQY ) — HI(X, WQY ) is bijective for all g and
r. If X is an abelian variety A, this recovers the property that the p-rank of A is the maximum possible,
namely, equal to its dimension. For them, we have the following result.

Corollary 0.5 (see Corollary 11.14). Let f: X — S be a surjective morphism between smooth projective
connected k-schemes. Assume that the generic fibre has index prime to p. Then:

X is ordinary = S is ordinary.

Note that the assumption on the generic fibre is of course guaranteed if Xj(s) has a zero cy-
cle of degree prime to p (for example, when Xj(s) is an abelian variety). Similar implications
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hold for the properties ‘X is Hodge-Witt’ or ‘the crystalline cohomology of X is torsion-free’ (see
Remark 11.15).
In connection to ordinary varieties, let us also mention the following result (see Corollary 11.12):

Corollary 0.6. Let f: Y — X be a morphism of relative dimension r > 0 between smooth projective k-
schemes. Assume that X is ordinary. Then the Ekedahl-Grothendieck pushfoward (see [GroS5, Chapter
11, 1]) factors via:

RU(Y. W, Q%) [r] — RU(Y, W, Q% /B2 ) [r] L5 RT(X, W,Q%™), (0.6.1)

where BZ,OO = U FS N aW, s Q471 (see [IRS3, Chapter 1V, (4.11.2)]) and f. is induced by the
pushforward from 9.5.

Note that this is an essentially immediate consequence of the fact that the sheaves By ,, are reciprocity

sheaves, our general formalism and the computation of the twists of Theorem 11.8. In fact, even when
X is not ordinary, we always obtain a factorisation in top degree:

RU(Y, W, @) [r] — RU(Y, W,y /B, )[r] > RT(X, W, 0x)
as a byproduct of the proof of Corollary 11.12.

0.4.5. Relationship with logarithmic motives

In [BP@22], Park, @stveer and the first author recently introduced a triangulated category of logarithmic
motives over a field k. Similar in spirit to Voevodsky’s construction, the starting point is the category
ISm/k of log smooth (fs)-log schemes over k, promoted then to a category of correspondences. The
localisation with respect to a new Grothendieck topology, called the dividing-Nisnevich topology, and
with respect to the log scheme O, the log compactification of A}(, produces the category denoted by
logDM (k).

A theorem of Saito (see [Sai20b]) shows that there exists a fully faithful exact functor:

Log: RSCyjs — Shvngis(k,Z),

such that Log(F) is strictly O-invariant in the sense of [BP@22, Definition 5.2.2], where the target is the
category of dividing Nisnevich sheaves with log transfers on [Sm/k (see [BP?22, Section 2.4]). This
shows that Nisnevich cohomology of reciprocity sheaves is representable in logDM‘;f]fVl.s (k). Formulas
like the projective bundle formula, the blow-up formula, the existence of the Gysin sequence and so on
in logDMfflfW (k) can then be used to rededuce a posteriori some of the results in the present paper,
under some auxiliary assumptions. We warn the reader that in the proof of the main result of [Sai20b],
one needs in an essential way the formalism of pushforward maps along projective morphisms that we
show in the present work.

Moreover, note that the motivic formulas given in [BP?)22] cannot be used to deduce results involving
higher modulus, that we do instead systematically in the present paper, and that the projective bundle
formula, the blow-up formula and the Gysin triangle (using the identification of the log Thom space)
in [BP?22] are only proved under the assumptions of resolution of singularities, which we don’t need.
Finally, a general theory of log motives over a base (not just over a field) would be necessary to get the
full strength of the sheaf-theoretic version of the results in this work.

Warning. The content of Theorem 0.1 and of other main results in this paper (namely, Corollary 2.19
and Theorem 3.1) are a sheaf theoretic analogue to some of the results on motives with modulus in
[KMSY20], more precisely to [KMSY?20, Theorem 7.3.2], [KMSY20, Theorem 7.4.3] and [KMSY?20,
Theorem 7.4.4] (the latter being in fact a theorem of Keiho Matsumoto [Mat22], proved only for the
inclusion of a smooth divisor Z in X, whereas we consider the case of Z being a smooth closed subscheme
of any codimension). We warn the reader that our results cannot be recovered from the existing literature:
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for this to be the case, it would be necessary to show that the cohomology of O-invariant sheaves is
representable in the category of motives with modulus MDM® (k) constructed in [KMSY20]. In view
of [KMSY?20, Theorem 5.2.4], one would require a positive answer to the following two questions.

Question 0.7.

(1) Ts the Nisnevich cohomology of O-invariant sheaves invariant under blow-up with centre contained
in the support of the modulus?

(2) Is aO-invariant sheaf F equivalent (in the derived category of sheaves) to its derived Suslin complex
RCTU(F) defined in [KMSY20, Definition 5.2.3]?

Both questions seem out of reach for general O-invariant sheaves: note that (1) would amount to
answering affirmatively to [KMSY?21a, Question 1, p.4], and that a (weaker) version of it is the content
of Theorem 2.12, which is one of the crucial technical results of this paper.

Question (2) is equivalent to asking whether the cohomology of a T-invariant sheaf with transfers
is again O-invariant. For A'-invariant sheaves with transfers, this is a deep theorem of Voevodsky and
boils down to studying a nontrivial interaction between the Nisnevich sheafification functor and the
localisation functor L,i(—). For semipure sheaves (cf. 1.4 below), this is shown in [Sai20a], but the
general case is wide open (the first and third author once claimed the general case in characteristic O,
but a gap was found in its proof). We hope that the main results of this paper are useful in attempts to
answer the above open questions.

Moreover, even if both questions are answered positively, in order to get the full statement of Theorem
0.1 from the motivic point of view, it would be necessary to develop the whole theory of motives with
modulus over a base, which is not available at the moment.

0.5. Organisation of the paper

We conclude this introduction with a quick presentation of the structure of the paper.

In §1, we discuss some preliminaries and fix the notation. Nothing in this section is new, and it can
be found in [KMSY21a], [KMSY21b], [MS20]. In §2, we prove a key ‘descent’ property for O-invariant
sheaves, namely, Proposition 2.5. This is a crucial technical result that allows us to prove the invariance
of the cohomology of cube invariant sheaves along a certain class of blow-ups (see Theorem 2.12).
Once this is established, we proceed to prove that the cohomology of cube invariant sheaves is also
invariant with respect to the product with the modulus pair (P", P"~!), Theorem 2.18. In §3, we prove
a smooth blow-up formula; and in §4, we introduce the twist and prove some of its basic properties. In
§5, we use Rost’s theory of cycle modules together with a formula for the tensor product of reciprocity
sheaves to construct the cup product with Chow classes. In §6, we prove the projective bundle formula,
and in §7, we construct the Gysin sequence: for this, we essentially follow the steps of Voevodsky’s
construction in [VoeOOb], but we also get a finer theory with supports (the local Gysin map). In §8,
we assemble the Gysin maps and the morphisms induced by the projective bundle formula to construct
general pushforwards. In this section, we make use also of the cancellation theorems of [MS20]. In
§9, we explain the construction of the action of Chow correspondences on reciprocity sheaves (and
complexes of sheaves). Finally, in §10 and §11, we collect the main applications and a list of examples
of reciprocity sheaves. The reader who is mostly interested in examples and applications may read the
last two sections without having precise knowledge of modulus sheaves with transfers.

In the paper, we use frequently the results from [Sai20a], which plays a fundamental role for us.

1. Preliminaries
1.1. Notations and conventions

In the whole paper, we fix a perfect base field k. We denote by Sm the category of smooth separated
k-schemes. We write P! = P,1< etc. and X XY = X X Y for k-schemes X, Y. For a function field K/k,
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we denote by K{x,...,x,} the henselisation of K[x1,...,Xn](x,.....x,)- Let R be a regular noetherian
k-algebra. By [Pop86, Theorem 1.8] and [AGV72, Exp I, Proposmon 8.1.6], we can write R = hm R;,
where (R;); is a directed system of smooth k-algebras, and we use the notation F(R) = hm F (Spec R i),
for any presheaf F on Sm. If X is a scheme and F is a Nisnevich sheaf on X, we W111 denote by
H!(X,F) = H' (Xnis, F) the ith cohomology group of F on the small Nisnevich site of X, similar with
higher direct images. We denote by X ,,) (respectively, X (")) the set of n (respectively, co-) dimensional
points in X.

1.2. A recollection on modulus sheaves with transfers

We recall some terminology and notations from the theory of modulus sheaves with transfers (see
[KMSY21a], [KMSY21b], [KSY22] and [Sai20a] for details).

1.1. A modulus pair X = (X, X..) consists of a separated k-scheme of finite type X and an effective (or
empty) Cartier divisor X, such that X := X \ |X.| is smooth; it is called proper if X is proper over k.
Given two modulus pairs X = (X, X.) and Y = (¥, Ys), with opens X := X \ |Xeo| and Y := Y \ |Yeo|,
an admissible left proper prime correspondence from X to ) is given by an integral closed subscheme
Z c X x Y which is finite and surjective over a connected component of X, such that the normalisation

—N [ — —
of its closure Z — X XY is proper over X and satisfies:

Xoo|ZN ZYooEN’ (1.1.1)

as Weil divisors on ZN, where XooﬁN (respectively, lefw) denotes the pullback of X, (respectively,

Yo) to Z" . The free abelian group generated by such correspondences is denoted by MCor (X, )). By
[KMSY?21a, Propositions 1.2.3 and 1.2.6], modulus pairs and left proper admissible correspondences
define an additive category that we denote by MCor. We write MCor for the full subcategory of MCor,
whose objects are proper modulus pairs. We denote by 7 the inclusion functor 7: MCor — MCor. The
induced category of additive presheaves of abelian groups is denoted by MPST (respectively, MPST).
We have functors:

w: MCor — Cor, w: MCor — Cor

given by (X, Xe) — X \ |Xw|, where Cor is the category of finite correspondences introduced by
Suslin-Voevodsky (see, e.g. [MVWO06]). Note that there is also a fully faithful functor:

Cor — MCor, X - (X,0).
We will abuse notation by writing:
=(X,0) € MCor, forX € Sm. (1.1.2)

Write 7 for the restriction functor along 7, and write 7y for its left Kan extension. Similarly, write w*
(respectively, w™) for the restriction functor along w (respectively, w) and w, (respectively, w,) for its
left Kan extension. We have the following commutative diagrams at our disposal:

*

/—\
MPST MPST MPST MPST (1.1.3)

\/ PN
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Here, PST is the category of presheaves of abelian groups on Cor, the functors in the left triangle

are left adjoint to the functors in the right triangle, all the functors are exact, the diagrams commute and
we have T*F(X) = F(X), w*F(X) = F(X) and:

1.1.2
wF(X) = F(X,0) "2 F(X) (1.1.4)
for X = (X, Xoo) and X = X \ | Xool.
We denote by Z;(X) the presheaf on MCor (respectively, MCor) represented by X in MCor
(respectively, in MCor). We have 11Z(X) = Zy(X) and w,Zy(X) = Zy(X).
Let X = (X, Xo), Y = (Y, Y,) € MCor. We set:

XY= (XXY,p Xeo + ¢ Yeo),

where p and ¢ are the projections from X x Y to X and Y, respectively. In fact, this defines a symmetric
monoidal structure on MCor (respectively, MCor) which extends (via Yoneda) uniquely to a right exact
monoidal structure ® on MPST (respectively, MPST). Similarly, there is a monoidal structure on PST.
The functors w,, w, 71 are monoidal, since they are all defined as left Kan extensions of the functors
w, w and 7, which are clearly monoidal. For F € MPST, the functor (—) ® F : MPST — MPST admits
aright adjoint denoted by Homypor (F, —); similar with F € MPST (see, e.g. [MVWO06, Chapter 8]).

1.2. For F € MPST and X = (X, X.,) € MCor, denote by Fy the presheaf:
(ét/X)P 53U  Fx(U) := F(U, Xeop))s (1.2.1)

where (ét/X) denotes the category of all étale maps U — X. We say F is a Nisnevich sheaf if Fy is a
Nisnevich sheaf, for all X € MCor. We denote by MNST the full subcategory of MPST consisting of
Nisnevich sheaves.

We say F € MPST is a Nisnevich sheaf if 7 F is and denote the corresponding full subcategory by
MNST. The functors in (1.1.3) restrict to Nisnevich sheaves and have the same adjointness and exact-
ness properties (see [KMSY21b, 4.2.5, 5.1.1, 6.2.1]). Furthermore, there are Nisnevich sheafification
functors:

dnis - MPST — MINST,  an;is : MPST — MNST,
ay;s : PST — NST,
which are left adjoint to the forgetful functors, restrict to the identity on Nisnevich sheaves and satisfy:
W\ dyis = al‘\l/isg,, W\ dNis = al‘\l/iswl, TIANis = Ay Tl (1.2.2)
and:
anisw” = way, A" = way, (1.2.3)

(see [KMSY21a, Theorem 2], [KMSY21b, Theorems 4.2.4, 4.2.5 and 6.2.1]; al‘\l/is was constructed by
Voevodsky). It follows that NST, MNST and MNST are Grothendieck abelian categories and that the
sheafification functors are exact. For F € MPST and X = (X, X.,) € MCor, we have:

an(F)(X) = lim F roy o (Y), (1.2.4)
fY-X

where the limit is over all proper morphisms f : Y — X which restrict to an isomorphism over
X =X\ |Xo| and F (7. *Xoo) Nis denotes the Nisnevich sheafification of the presheaf F (F.f X OD the

https://doi.org/10.1017/fms.2022.51 Published online by Cambridge University Press


https://doi.org/10.1017/fms.2022.51

12 Federico Binda et al.

site ?Nis (see [KMSY21a, Theorem 2(1)]. In the following, we will use the notation:
Fris = ay; (F),  Hyis = ayy (H), F e MPST, H € PST.

Lemma 1.3. A morphism ¢ : F — G in MNST is surjective (i.e. has vanishing cokernel) if for all
X = (X, X») € MCor, with X normal, and all x € X, the morphism:

F(X) — G(X ()

is surjective, where X,y = (Y(x), X, ' )) and Y(x) = Spec (’)% is the spectrum of the henselisation
x ,X

of the local ring O ...

Proof. Let C be the cokernel of ¢ in MPST. We want to show ay,; (C) = 0. For X € MCor, set

Cx = Coker(py : Fx — G y) in the category of presheaves on (ét/?); denote by Cx nis its Nisnevich

sheafification. By (1.2.4), it suffices to show Cx nis = 0, if X is normal. The latter is equivalent to the
surjectivity of ¢y in the category of Nisnevich sheaves on X, which is equivalent to the statement. O

1.4. Set T := (P', ) € MCor. For F ¢ MPST, we say that:

(1) F is cube invariant if the map F(X) — F(X ® O) induced by the pullback along the projection is
an isomorphism.

(2) F has M-reciprocity if the counit map 7j7*F — F is an isomorphism.

(3) F is semipure if the unit map F — w*w, F is injective.

We denote by MPST™ the full subcategory of MPST consisting of the objects with M-reciprocity. Note
that for X', a proper modulus pair, we have Z(X) € MPST™. We denote by CI*-*? the full subcategory
of MPST consisting of the cube invariant semipure objects with M-reciprocity. We set:

MNST™ := MPST* "MNST and CI}” := CI™*” NMNST .
By [Sai20a, Theorem 10.1], the sheafification functor a restricts to:
Ay CIT°P — CIGP 1.4.1)

The natural inclusion CL{;;” < MPSTT has a left adjoint:

a,sp . .8
hg b, : MPST™ — CI” (1.4.2)

given by:

how (F) = ay (5 (F)P),

where for G € MPST:

(1) ﬁg(G) € MPST is the maximal cube invariant quotient of G defined by:

B (G)(X) = Coker(G(X ®T) 5 G(X)), (1.4.3)
where i, : {e} — 0, ¢ € {0, 1}, are induced by the natural closed immersions,
(2) G* =Im(G — w'w,G) denotes the semipurification of F.

The left adjointness of (1.4.2) to the natural inclusion follows from [MS20, Lemma 1.14(i)] and the

adjunction 7, 4 7*. We note that for any ' € MPST, the presheaf N (F) is defined and is in fact a

O,sp
. . . . . O’Nis
cube invariant, semipure Nisnevich sheaf on MCor.
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For X a proper modulus pair, we set:

ho 2 (X) 1= 0 (Zu(X)) € CILE . (1.4.4)

Lemma 1.5. Let F € CI;’izp and G, H € MPST?. Assume there is a surjection Zy(X) —» G, for some
X € MCor. We have:

(1) Homypper (G, F) € CIGP;

(2) Hompmpst(H ® G, F) = HomMPST(h s (), Homy ooy (G, F)).

0,Nis

Proof. (1). First assume G = Z(X), for some X € MCor. In this case, Hom(G, F)()) = F(X ® ))).
Clearly, this defines a cube invariant Nisnevich sheaf. It has M-reciprocity by [Sai20a, Lemma 1.27(2)]
and has semipurity by [Sai20a, Lemma 1.29(2)]. Hence, Hom(G, F) € CI;)” in this case. In the
general, case consider a resolution:

Pz - Pze(x) -G —o.
J i

We obtain an exact sequence:

0 — Hom(G, F) — | | Hom(Z (%), F) — | | Hom(Z (), F). (15.1)

This directly implies cube invariance and semipurity. The sheaf property holds since i @y, : MPST —
MPST is left exact, where iy is the forgetful functor. In general, M-reciprocity won’t hold since 77"
does not commute with infinite products; however, it clearly holds if the first product in (1.5.1) is finite
and by assumption we find such a resolution. (2) follows from (1) and adjunction. O

1.6. The full subcategory of PST given by RSC := w, CI™* is called the category of reciprocity
presheaves. The full subcategory of NST given by RSCyjs = w, CI{;*? is called the category of
reciprocity sheaves. It is direct to see that RSC is an abelian category, closed under subobjects and
quotients in PST. On the other hand, it is a theorem [Sai20a, Theorem 0.1] that RSCys is also abelian.
We use the following notation for a proper modulus pair X':

ho(X) 1= w,(h5(X)) = w,(hgP (X)) € RSC,
and:
honis(X) = @, (hf i, (X)) = @, (A5 P (X)) € RSCyis.

Note that /g nis(X) = ho(X)nis- By [MS20, (1.13)] (see also [KSY22, Proposition 2.3.7]), there is an
adjunction:

CI

CIL'” = RSCni, (1.6.1)

where w®!

is right adjoint to w, and is given by:
w(F) = 7 Hommpst (h5 (=), w*F).

In the notation of [KSY22], we have QCI =1L,
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Recall that Voevodsky’s category of homotopy invariant Nisnevich sheaves, Hly;s, is an abelian
subcategory of RSCyjs, and thanks to [Voe0Oa, Theorem 5.6], the natural inclusion Hly;s — NST has
a left adjoint:

1
By nis @ NST — Hlygg . (1.6.2)
By [KSY22, Proposition 2.3.2], we have:

1 s (hois (X)) = Bty (Zur (@), (1.6.3)

2. Cohomology of blow-ups and invariance properties
2.1. A lemma on modulus descent

Notation 2.1. For m,n > 1, we use the following notation:
g = (P m-0+n-o00), " .=T"".
In particular,
D= (P',0+ o).
Lemma 2.2. Let R be an integral regular k-algebra. For all m,n > 1, there is an isomorphism:
O : 0@ ™) (R) = ((RI1]/1")* & (R[2]/2")) /R ® L.
where R* acts diagonally on the direct sum. If Z € Q!Ztr(ﬁ(m’n))(R) is a prime correspondence which
we can write as Z = V(g), for an irreducible polynomial g = a,t" + ...+ ait + ag € R[t] with

ar,ag € R*, andr > 1, then:

Om.n(Z) = (8(0)/ (1 = 1)", 8o (2) /(1 = 2)", 1),

where g(z) = aoz +. . .+a,—1z2+a,. Furthermore, ifm’ < m andn’ < n, then we obtain a commutative

diagram:
ho@™ ") (R) 1 (R /) @ (R[<1 /7)) [RX © 2
— em n
ho (@) (R) —""> ((R[1]/t™)* & (R[] /")) |R* & Z,
where the vertical map on the left-hand side is induced by gl glmn) MCor and the vertical

map on the right is the natural quotient map.

Proof. The map 6,, 5 is the composition of the two isomorphisms:

ho (@™ (R) =, Pic(PL, m -0+ - o)

2, (RIA /™ @ (R[2) /")) /R & Z.
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which are defined as follows. We denote by Fg :=m -0r +n - cog C P}e the closed subscheme: (*) is
induced by the classical map from Weil to Cartier divisors:

Z:(@"")(R) D > (O(D),ido,,) € Pic(Pk, Fr),

where O(D) is the line bundle on P}e given by O(D)(U) = {f € R(1)* | divy(f) = D}; it is an
isomorphism by [RY 16, Theorem 1.1]. For (**), consider the exact sequence:

H(PL, 0X) — H°(Fgr, 0%) — Pic(Pk, Fr) — Pic(Pk) — Pic(Fg).
The last map decomposes as Pic(R) @ Pic(P') — Pic(Fg) given by:
(M. O({1H*") = (Mp1 ® (O({11)*")\r = MiF-

Since Fr — Spec R has a section, the map Pic(R) — Pic(FR) is injective. Hence, the above sequence
yields an exact sequence:

HO(PL, 0%) — HO(Fg, OX) = Pic(Pl, Fr) 57 — 0,
where d(L, @) := d(L) := deg(L p: ( )); we can choose a splitting of d by r — (OP}{ {1per, idoy,, );
Frac(R

the map in the middle sends u € HO(FR, O*) to (OP}e’ u-: Opg 5 Org), where u- is the isomorphism
given by multiplication by u. Let (L, @) be a pair with L a line bundle on P}e with d(L) = r and
« : Op, N L |, an isomorphism; we find an isomorphism ¢ : L ® O({1})®™" > OP;? and define the
isomorphism @’ as the composition:

’ ’ ’ =a —r @
@ = (@l Whs) : Op — Ligg = (L ® O{1)® )5 — (Op1) s

where the equality follows from the fact that we have a canonical identification O({1})|r, = O|r-
Hence, ¢ induces an isomorphism (L ® O({1})®7", a) = (OP}e’ a’); the isomorphism (**) is given by:

(L, @) = (a,,0(1),@;.5(1),d(L)).

LetZ=V(g) € Ztr(ﬁ(m’") )(R) be a prime correspondence as in the statement. Write ¢t = Ty /T, and
let G € R[Ty, T1] be the homogenisation of g. We have an isomorphism:

0(2) © O({1)* = Op - BZL S Op,

where the second isomorphism is given by multiplication with G/(Ty — T1)". Thus, 6, , admits the
description from the statement, where z = 1/¢. The commutativity of the diagram follows directly from
this. m]

Remark 2.3. Denote by W, the ring scheme of big Witt vectors of length m. If A is a ring, we can
identify the A-rational points of the underlying group scheme with:

W (A) = (1+1A[r])*/(1+ 1™ Al]) <.
Then the maps 6,, , from Lemma 2.2, m,n > 1, induce isomorphisms in NST:
O : honis @) S Wy @ W,y © Gy @ Z.

Indeed, it follows immediately from Lemma 2.2 that we have such an isomorphism of Nisnevich sheaves.
To check the compatibility with transfers, it suffices to check the compatibility with transfers of the limit
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liLn ™" (since the transition maps are surjective). Since W @ W & G,,, ® Z is a Z-torsion-free sheaf
m,n
on Smyj;s for which the pullback along dominant étale maps is injective, the compatibility with transfers

follows automatically from [MS20, Lemma 1.1].

Lemma 2.4. The unit map:

o @) = W' g EY) = W (G ©2) 24.1)

is an isomorphism in CI{.". Furthermore, the natural maps:

1
g;gs(u('" My - pOF (u( ) (2.4.2)
T,8p .

are surjective, for all m,n > 1, and there exists a splitting in CL "

Sman t @0 (G ©2) — g (@)

of (2.4.2), such that the following diagram is commutative for integers m’ > m and n’ > n:

sm’,n’ m',n
w0 (Gm®2Z) = ny @) (2.4.3)
|:| ,Sp (m n)
O le( )

Proof. The second isomorphismin (2.4.1) holds by Lemma 2.2 and Remark 2.3; the unit map is injective
by semipurity. We show the surjectivity of the composite map:

o @) = hid (@) - 0" (Gn ®Z) (2.4.4)

for m,n > 1. By Lemma 1.3, it suffices to show the surjectivity on (Spec R, (f)), where R is an integral
normal local k-algebra and f € R\ {0}, such that Ry is regular. Denote by:

Y Ze@")(R, f) - R S Z
the precomposition of (2.4.4) evaluated at (R, f) with the quotient map:

Ze @) (R. £) = g @) (R, f).

By Lemma 2.2:
y(V(iag+ait+...+a,t")) = ((-1)"ap/ay,r), (2.4.5)

provided that Z = V(ag + a1t + ... + a,t") is an admissible prime correspondence and a; € Ry. We
claim that ¢ is surjective. To this end, observe that for a € R*, we find N > 0 and b € R, such that:

ab=f"™, and af™ eR. (2.4.6)

Set W := V(t™"N + (-1)™"Nga) c Spec Ry [t,1/t] and K = Frac(R). Let t™N + (=1)""Nq = []; h;
be the decomposition into monic irreducible factors in K[¢, 1/¢], and denote by W; C Spec R [z, 1/¢]
the closure of V(h;) (note that W; = W, for i # j is allowed). The W; correspond to the components of
W which are dominant over Ry ; since W is finite (the polynomial defining W is monic) and surjective
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over Ry, so are the W;. We claim:
W; € Zo(@"™™)(R, f). (2.4.7)

Indeed, let I; (respectively, J;) be the ideal of the closure of W; in Spec R[t] (respectively, Spec R[z]
with z = 1/1). By (2.4.6):

btnmN + (_DmannN el and me +(_1)manmNaZmnN € Jj.

Hence, (f/t™)"™N e R[t]/I; and (f/z")"N € R[z]/J;. It follows that f/t™ (respectively, f/z") is
integral over R[t]/I; (respectively, R[z]/J;); thus, (2.4.7) holds. Put:

Wa —ZW € Ze@"™")(R, f).

We claim:
W (W,) = (a,mnN) € R; o 7Z. (2.4.8)

Indeed, it suffices to show this after restriction to the generic point of R, in which case, it follows
directly from the definition of the W; and (2.4.5). This implies the surjectivity of ¢ and that of (2.4.4).

Next, we show that (2 4.4) has a splitting. Let wl"" € hg - b(l:l(m’") )(R, f) be the class of W, and

AP = Wit — ‘”1 , where w;" is defined as W™ replacing a by 1 (and using the same N). By
(2.4.8), the image of A" under the map (2.4.4):

Hons @ )R, f) = R} ©Z
is (a, 0).
Claim 2.4.1. A" is independent of the choice of N, and we have:

/l?l;n — /l?,n + AZI," fOI" a, be R; . (249)

’ ’
Moreover, for m’ > m and n’ > n, the image of 1 ™" under:

5;}:5(—(m n)) N hD sp( (mn))

coincides with A"

By the semipurity of hg;ﬁ . (E(m’")) and [Sai20a, Theorem 3.1], we have an injective homomorphism:

o2 (@) (R, £) = w,hge (TG (K) = ho(@"™)(K). (2.4.10)

By Lemma 2.2, the isomorphism:

O = ho (@) (K) S (K[1]/™) @ (K[2]/2")) /KX @ Z
sends wl"" to:

i (=1)y"N g 1
Omon (W) = D (o Z)mnN,mnN .

Thus, 8,,.,(1%"") = (a, 1,0), which is independent of N. By the injectivity of (2.4.10), this implies the
first two assertions of the claim; similarly, the final assertion of the claim follows from the commutative
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diagram in Lemma 2.2. Since A" does not change if we replace f by uf with u € R*, the map
a — 7" glues to give a global morphism of Nisnevich sheaves which induces the splitting s, ,, from
the statement. It remains to check that s, , is compatible with transfers. To this end, it suffices to check
that w, (s,,,) is compatible with transfers, and since the transition maps are surjective, it further suffices
to show that:

im w, (sm.n) : Gm @Z—>hmw;h (D(m"))

mn mn

is compatible with transfers. Since we can identify the target with W & W & G,,, ® Z by Remark 2.3, the
compatibility holds automatically by [MS20, Lemma 1.1]. O

Proposition 2.5. Denote by ¢ : A; x Al — Al x Al the morphism induced by the k[s]-algebra
morphism k[x,s] — k[y, s], x — ys. We denote by the same symbol, the induced morphism in MCor:

g®@ _, g
.X

y 8" o8} oo, 2.5.1)

Let F € CI;I’izp and X € MCor. Then y* factors as follows:

F@E 08" ® X)

S

FEY oo’ X) . F(u(” g% e x),

(2

where the vertical map is induced by the natural morphism O, )

— 0.

Proof. Tt is direct to check that ¢ induces a morphism (2.5.1). To check the factorisation statement,
we may replace F by Hom(Z(X), F) to reduce to the case X = (Spec k, 0) (see Lemma 1.5(1)). By
Yoneda and (1.4.2), we are reduced to show that we have a factorisation as follows:

D@p (1) (l)
ON]S(D O, ) 2.5.2)

A ]

M o g5h v () o 5@
5 ) (E)];I[:s(m S )

Dsp

0 le(D

By [MS20, Lemma 1.14(iii)] and Lemma 2.4, the map a is surjective. Thus, we have to show ¢ (Ker a) =
0. By semipurity, it suffices to show that we have a factorisation as in (2.5.2) after applying w,. By
[RSY?22, Proposition 5.6], we have:

1 1 —(1 —(1
—w (h(?;}jb(u( 'oa")) = honi @ ) =K¥ G, 0 G 07,

where ICQ’I is the (improved) Milnor K-theory sheaf; in particular, H is Al-invariant. Thus, w, (¥) and
w,(a) factor via hy le(ho,Nis(ﬁy) ® Eiz))) (cf. (1.6.2)). Thus, we obtain solid arrows in NST:

. H (2.5.3)

la

— —(2
H ? I (honis (@ @ T)).
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Since a is the composition of the natural isomorphisms (cf. (1.6.3)):

1 —(1 —(2 1
s (hois (B ®T)) = hiyg (Zu (A} \ {0)) @pst Zu (AL \ {0)) = H
the dotted arrow exists, which completes the proof. O

Remark 2.6. Going through the definitions, one can check that the map H — H induced by ¢ in (2.5.3)
is on a regular local ring R given by:

({a,b},c,d,n) — ({a,b} +{d,-1},cd,d,n),

where we use the identification H(R) = K} (R) @ R* & R* & Z.

2.2. Cohomology of a blow-up centred in the smooth part of the modulus

The goal of this section is to prove Theorem 2.12 below, giving the invariance of the cohomology of
cube invariant sheaves along a certain class of blow-ups. This plays a fundamental role in what follows,
and it is used in the proof of the (P", P"~!)-invariance of the cohomology.

Recall the following definition from [Sai20a, Section 5].

Definition 2.7. Let F € CI**?. We define the modulus presheaf o (F) by:

oM (F)()) = Coker(F(V) 25 F(V & (P!, n0 + w0))).

where pr* is the pullback along the projection pr: Y ® (P',n0 + c0) — Y. Note that pr* is split
injective, with left inverse given by the inclusion iy : Spec k < P! of the 1-section. Hence, we have an
isomorphism, natural in :

F(Y® (P',n0+c0)) = o™ (F)(Y) ® F()).

Following [Sai20a, Definition 5.6], we write F_('f) for o) (F) when F is moreover in MNST. Note that
we have a natural identification:

F = Homygper (P!, -0+ ) /1, F) = F(~ ® (P!, n0 + 00)) /F(-),

where (P!, 0+ 0)/1 = Coker(Zy(Spec k, 0) -5 Z (P, 7+ 0 + c0)) in MPST. By Lemma 1.5(1), we
have F_(T) € CI)” if F e CI{’”, so that the association F FE'I’) gives an endofunctor of CI{;>”.
This construction is the modulus version of Voevodsky’s contraction functor (see [MV W06, p.191].

Notation 2.8. We denote by MCor, the full subcategory of MCor consisting of ‘log smooth’ modulus
pairs, that is, objects X = (X, D), where X € Sm and |D| is a simple normal crossing divisor (in
particular, each irreducible component of |D| is a smooth divisor in X). Note that ® restricts to a
monoidal structure on MCor;,.

Lemma 2.9. Let F € CI{;)” and X = (X, D) € MCor,,. Let H < X be a smooth divisor, such that
|D| + H is SNCD, and denote by j : U := X \ H — X the inclusion of the complement. Then:

Rij*F(U,DW) =0, foralli>1,
where F(y,p,,) denotes the Nisnevich sheaf on U defined in (1.2.1).

Proof. This is an immediate consequence of [Sai20a, Corollary 8.6(3)]. m|
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Lemma 2.10. Let F € CI;]‘i:p and X = (X, D) € MCor, . Let E; C AL i=1,...,n be effective (or
empty) divisors, and denote by n : A%, — X the projection. Then:

R'r.(Fialg)e..o4lE)ex) =0, foralli>1,n>0.

Proof. First consider the case n = 1. Set E := E; and g&n = (Pl, E +r - ), for r > 1. The natural

morphism g% - T induces a map Fygg — F, @ . The cohomology sheaves of the cone C of

this map are supported in X X |E + co|, whence R'7,C =0,i > 1, where 7 : P;( — X is the projection.
We obtain surjections:
R'T.Fygs = RTF, men — 0, foralli> 1.
By the cube invariance of cohomology (see [Sai20a, Theorem 9.3]), the left term vanishes. Thus, M-
reciprocity (see [Sai20a, Lemma 1.27(1)]) yields:
0=UmRT.Fy sen = RTFalpexs

X®0o
r

where j : A}( — P}( is the open immersion. Together with Lemma 2.9, we obtain:
RT.RjEF A1 pyox =0, foralli> 1,k >0.

Thus, the vanishing Rz F, (A1,E)ex = 0 follows from the Leray spectral sequence.

The general case follows by induction (by factoring 7 as A% NN A’;(_l X, X and observing):

1 (FAlLEDe...oALE)ox) = FI(ALE)®...0(A1E) 08X

where F| := Homyper (Zir (A, E1), F) lies in CI{;;” by Lemma 1.5(1). o
2.11. We recall some standard terminology. Let (X, D) € MCor,,Y € Sm,andlet f : ¥ — X be a
k-morphism of finite type. We say D is transversal to f, if for any number of irreducible components
Dy,...,D, ofthe SNCD |D]|, the morphism f intersects the scheme-theoretic intersection D;N...ND,
transversally (i.e. the scheme-theoretic inverse image f~'(D; N ... N D,) is smooth over k and of
codimension 7 in Y). Note that f is always transversal to the empty divisor.

If f is a closed immersion, we also say Y and D intersect transversally. Since X is of finite type over
a perfect field, this is equivalent to say, that for any point x € ¥ N D, we find a regular sequence of
parameters t1,...,t, € Ox x, such that Oy x = Ox «/(1,...,ts) and the irreducible components of
|D| containing x are in Spec Ox  given by V(ts41),...,V(t,),with1 < s <r < n.

Theorem 2.12. Let F € CI;I}EP and X = (X,D) € MCor,,. Assume there is a smooth irreducible
component Dy of |D| which has multiplicity 1 in D. Let Z C X be a smooth closed subscheme which is
contained in Dy and intersects |D — Dy| transversally. Let p : Y — X be the blow-up in Z. Then the
natural map:

Fx > Rp.Fy D)

is an isomorphism in the derived category of abelian Nisnevich sheaves on X.

The proof is given in 2.16. The key point is to understand the case of the blow-up of A in the origin
with Dg a line, which is established in the next Lemma. Here, after some preliminary steps, we are
reduced to prove the vanishing of the cohomology of the pushforward of F along the projection from
the blow-up to the exceptional divisor. This is where the modulus descent, in that, Proposition 2.5, is
crucially used.
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Lemma 2.13. Let F € CIL’i‘;p and X = (X,D) € MCor. Letp : Y — A? be the blow-up in the origin
0 € A2, and let L be a line containing 0. Then:

Ripx*F(y’p*L)@,X =0, foralli>1,

where px = p X idy : Y X X — A% x X is the base change of p.

Proof. We can assume X is henselian local and:
L =V(x) c A% = Spec k[x, y].
Set:
F=FypLex;

it is a Nisnevich sheaf on ¥ x X. Fori > 1, the higher direct images R'px..F are supported in 0 X X,
whence:

H/(A%,Ripx.F) =0, foralli,j>1,
and:
Ripx.F =0 & H'(A}, R'px.F) =0.

Furthermore, px.F = F(a2 1)gxsince (Y, p*L) @ X = (A%, L)® X in MCor (see [KMSY21a, Section
1.7]). Hence, by Lemma 2.10:

H' (A%, px:F) = H (A%, Fia2.1yox) = 0.
Thus, the Leray spectral sequence yields:
HY(A2, Ripx,F)=H (Y xX,F), i>0, (2.13.1)
and we have to show that this group vanishes for i > 1. Write:
Y = Proj k[x, y][S,T]/(xT — yS) c A>2x P!,
and denote by:
m:Y x X — A?x Py — P} = Proj Ox[S,T]

the morphism induced by projection. In order to show that (2.13.1) vanishes, we can project along m
and use the Leray spectral sequence:

H™I(PL, Rr!F) = H' (Y x X, F)
to reduce the problem to showing that:

H (PL. RIn,F)=0, i>1,j>0. (2.13.2)
The terms R’ 7, F for J = 1 are easy to handle using Lemma 2.10. Indeed, set s = §/T, and write:

P!\ {co} = A :=Speck[s], P'\{0}=Speck[l].
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Set U := Al x X and V := (P' \ {0}) x X and:
U=MAL0ex, V:i=rP\{0)ox.
We have:
N U)=ALxU, 77'(V)=AlxV,
and the restriction of 7 to these open subsets is given by projection. Furthermore by construction,
Fierw) = Faloews  Fiatv) = Faloev: (2.13.3)
Thus, Lemma 2.10 (in the case n = 1) yields:
Rim,F=0, j=1.

It remains to show:

H (P, m.F)=0, i>1. (2.13.4)
Set:

Fi := Hom(Z(AL,0), F). (2.13.5)

Note that F; € CI{;” by Lemma 1.5(1). Let j : V < P}, be the open immersion. Its base change along
7 induces a morphism:

t:(AL,0)®V = (¥,p’L)® X in MCor. (2.13.6)
This yields an exact sequence of Nisnevich sheaves on P;(:

0 nF 2 f Ry > T -0,

defining I'; here, the first map is injective by the semipurity of F. Since I' is supported on 0 X X, we
obtain for i > 2:

Hi(Pl ,ﬂ*f) = Hi(Pl ’j*Fl,V)
=H'(V,F1y), by Lemma 2.9,
=0, by Lemma 2.10.

It remains to prove the vanishing (2.13.4) for i = 1. This will occupy the rest of the proof. Let:
a:YxX — Al xP'xx

be induced by the base change of the closed immersion ¥ <> A? x P! followed by the base change of
the projection A> — Al. The map a induces a morphism:

a:(Y,p’L)® X — (AL,0)® P!, in MCor, (2.13.7)
where P}, := P! ® X and which precomposed with ¢ from (2.13.6) yields the morphism:

ac: (ALO)oV — (AL, 009 P, (2.13.8)
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induced by the open immersion AL x V < Al x P;. This gives a factorisation:

. (a¥)

Fl P! —) 71'*.7:
x

\ \Lm(t*)

J.*FI,V,

where the diagonal morphism is injective by [Sai20a, Theorem 3.1(2)] and the semipurity of F;. This
implies that the morphism labeled 7, (a*) is injective too. Similarly, the embedding V — (P!,0) ® X
induces another injective morphism Fy (p1 g)gx — Jj:F1,y. Intotal, we obtain the following commutative

diagram:
0 Fop — o F ) 0 2.13.9)
lm(t*) J{w
0 Fip, rled) J«F1y A 0
0 Fip, Fienoex A(0) 0,

with exact rows, defining the cokernels £, A and A(0), as well as the map . Applying RT' (P}, —) yields:

o
L ———>H'(P},Fp ) — H' (P}, 7. F) =0
w

62 |

A———=H'(Py,Fp ) — H'(Py, jiF1,p) >0

|

A(0) —= HI(P}(’FI,P‘X) —— H' (P}, Fy (p1 g)pr) =0

with exact rows and in which the 0; are the connecting homomorphisms and where:
2= HPy,2), A:=H'(PY.A), A(0):=H'(Py,A0)).

The group H' (P, F 1,(P!,0)@x) vanishes by the cube invariance of cohomology (see [Sai20a, Theorem
9.3]), thus, 02| (0) is surjective, the vanishing (2.13.4) for i = 1 will follow, if we can show:

A0) € ¢(Z). (2.13.10)

Note that X, A and A(0) have support in 0 X X C U, so we can compute the global sections on U instead
of P! to show (2.13.10). Now, since H' (U, F1 ) = 0, by Lemma 2.10, unravelling the definitions, we
obtain from (2.13.3) and (2.13.9) with G := F(- ® &) and A! = P! \ {co} the following descriptions:
G((A},0) ® (A}, 0))
~ @*G((AL0) @A)
Av G((AL,0) ® (A;\ {0},0)
G((AY,0) ® Ay)

s

s
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G((AL0) ® (A},0))

A(0) = 2.13.11
O "Ly eAD 131D
By [Sai20a, Lemma 5.9], we have isomorphisms (see Notation 2.1):
=(1) 1 1 1
G ® (A;,0 = G((A,,0)® (A,,0
58 (Al.0)_ - G((AL0)8 (AL.0) .
G((Py, ) ® (A;,0)) G(Ax ® (A;,0)
=(1) o =(1) =(1) 1
G = G A, 0
@ en) - GE o (AL0) .

G(@" ® (Pl, o)) c@" @Al

Write j for the open immersion (Al,0) — E)(Cl). The base change of j* induces a commutative

diagram:

G((A},0)®Ay) — G((AL,0) ® (A}, 0)) — A(0)

1 A / (2.13.14)

c@eAly —— ¢@\ e (AL,0)).

The horizontal composite morphism is zero by (2.13.11), hence, the kernel of the diagonal arrow
contains G(ﬁfcl) ® Al). Next, note that from (2.13.12), we get the surjective morphism:

@ e (AL0) e GAL e (AL0) > G((AL 0) & (AL,0) — 0. (2.13.15)

Combining (2.13.15), (2.13.13) and (2.13.14), we get a surjection:

GAL e AL 0)ec@ ea’) — A0). (2.13.16)

Note that the pullback of the open immersion 77! (V) < ¥ x X along 77! (U) — ¥ x X induces the
open immersion:

AL X (A\{0}) XX > A} X A{ X X,
which is induced by base change from the k[s]-linear map:
kly,s] — k[x,s,1/s], yt> x/s.
It gives the following two morphisms in MCor:
u:(ALoye @A\ {0hexr - ALL0)e AL e X.
b (AL e AN hexr -»T) eT e .
Furthermore, consider the base change of the map (2.5.1):
y:8 e8P ex -8 08" ® A,
which is induced by x +— ys; it restricts to:

U1 : (A},0)® (AL,0) > AL ® (A[,0).
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In particular, /1 o ¢ is induced by the open immersion AL \ {0} x A1\ {0} — AL x AL\ {0} and ¥ 01y
is induced by the identity on Al \ {0} x A! \ {0}. Consider the following diagram:

G(AL ® (A],0) — = G((A],0) ® (A!,0) — "~

ls |

G((AL0) ® (AL\{0},0) —>—=A

G(AL & (AL.0) —=—= A(0).

Here, the maps r; are the natural maps into the quotients; the diagram commutes by definition of the
morphisms involved. Hence:

Im(G(AL ® (AL, 0)) - A(0)) € ¢(2). (2.13.17)

Consider now the following diagram:

¢@ og) ——>=x
T
6@ 05" —* - 6@ oal) ¢

.
)

G((AL0) ® (AL\{0},0) —2—=A

¢@ em") — = A(0).

Here, the maps r; and r3 are induced by restriction followed by the quotient map using (2.13.12) and
(2.13.13); the two squares and the triangle on the lower left commute by definition of the morphisms
involved; the map ¢* factors via the dotted arrow in the diagram (by Proposition 2.5). This shows:

m(G@E" @8") - A0) € p(2),

which together with (2.13.17) and (2.13.16) implies (2.13.10). This completes the proof of the
lemma. m]

Lemma 2.14. Let the assumptions and notations be as in Theorem 2.12. Assume additionally
codim(Z, X) < 2. Then Theorem 2.12 holds.

Proof. There is nothing to prove for codim(Z, X) = 1, we therefore consider the case codim(Z, X) =2
Since (Y,p*D) = (X,D) in MCor we have p.Fy ,»p) = F(x p). Thus, it remains to show the
vanishing:

R'p.Fiy popy=0, foralli> 1. (2.14.1)

The question is Nisnevich local around the points in Z. Let z € Z be a point, and consider the regular
henselian local ring A = (’)h .For V. C X, set V() := V Xx Spec A. Denote by D’ C X the closed
subscheme defined by D — Do By assumption, we find a regular system of local parameters x, y, t1 . . ., ts
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of A, such that Z;y = V(x,y), Do (z) = V(x) and DEZ) =V ---17), forsome r < sand n; > 1. Let

K — A be a coefficient field over k; we obtain an isomorphism:
K{x,y,t1,...,ts} 5 A,

Let p; : A2 — A2 be the blow-up in 0. By the above, the blow-up in Z:
p:(Y,p’D) - (X,D)

is Nisnevich locally around z over k isomorphic to the morphism:
(A% pi(0) ® (A, (] [ = (A% () A%, (] [,
i=1 i=1

which is induced by base change from p;. Hence, the vanishing (2.14.1) follows from Lemma 2.13. O

Lemma 2.15. Let X be a finite type k-scheme and Zo C Z, C X closed subschemes. Let p : X' — X
be the blow-up of X in Zy, and let p’ : X" — X' be the blow-up of X' in the strict transform Z; of
Z\. Furthermore, let o : Y' — X be the blow-up in Z| and let 0’ : Y — Y’ be the blow-up of Y’ in
o~ (Zy). Then there is an isomorphism.:

X" =
X.

Proof. Recall the following general fact: Let Z, J c Ox be two coherent ideal sheaves. Then the blow-

14

up X — X of Xin Z - J is equal to the composition X, BEN X SN X, where 7 is the blow-up in Z
and m; is the blow-up in nl‘l J - Oy, . This is proven using the universal property of blow-ups (sge, e.g.
[Stal9, Tag 080A]. Here, denote by Z; C Ox the ideal sheaves of Z;. We have Z; c Zy. Letn : X —» X
be the blow-up of X in Z; - Zy. By the remark above, 7 is isomorphic as X-scheme to o-c”’. Furthermore,
note that p’ is also equal to the blow-up of X’ in p~'(Z;). Indeed, the ideal sheaf of p~!(Z;) is equal
to p’lIl -Ox+ = I - I, where Zg is the ideal sheaf of the exceptional divisor of p and 7, is the ideal
sheaf of Z;; since Zg is invertible, the blow-ups of X’ in fl and in p’lIl - Ox are isomorphic. Thus,
by the remark above, the X-scheme pp’ is isomorphic to 7 as well. O

2.16. Proof of Theorem 2.12. The proof is by induction on ¢ = codim(Z, X), the induction start for
¢ < 2being Lemma 2.14. Assume ¢ > 2. The question is local on X. Hence, we can assume X = Spec A
and that there is a regular sequence yy, ..., y¢,t1,...,t € A,suchthat Z =V (yy,...,y.), Do =V(y1)
and D’ =D - Dy = V(t?‘ -1, for some n; > 1. Set Z, := V(y1,y2). Let p : ¥ — X be the blow-up
in Z, and denote by Z, the strict transform of Z,. Then p*D has SNC support with the strict transform
Dy of D being a smooth component containing Z,. Furthermore, Z, intersects p*D — D transversally
and codim(Z,,Y) = 2. Let p’ : Y’ — Y be the blow-up in Z,. By Lemma 2.14 we find:

Rp.F(y p:p) = R(pp")F(y' (pp)D)- (2.16.1)
Let o : W — X be the blow-up in Z,, and set Z._; := o~ '(Z). Then ¢*D has SNC support with
the exceptional divisor E being a smooth component containing Z._;. Furthermore, Z._; intersects the

strict transform of D transversally and codim(Z._;,W) = ¢ — 1. Let o’ : W' — W be the blow-up in
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Z.—1. By Lemma 2.14 and induction, we find:
Fx.p) = RoOwF(w op) = R(00").Fw' (507)D-

Thus, the statement follows from Lemma 2.15 and (2.16.1). m]

2.3. (P",P" -invariance of cohomology
We follow the basic strategy of [KS20, Lemma 10] (see also [BP?22, Proposition 7.3.1].

Lemma 2.17. Let F € CI{;)” and X = (X, D) € MCor,. Let x € P" be a k-rational point and L C P"
a hyperplane. Denote by p : Y — P" the blow-up in x. Denote by q : Y X X — E X X the base change
of the morphism Y — E which parametrises the lines in P"* through x. Then the pullback:

q" : FELyex = Rq.Fy pr1)ex

is an isomorphism, where L' = L N E, with L C Y the strict transform of L (note L’ = 0, ifx ¢ L).

Proof. Note that the projection morphism ¥ — E makes Y into a P'-bundle over E and induces a
morphism (Y,p*L) ® X — (E,L’) ® X. The latter morphism locally over E has the form of the
projection O® W — W, for some W € MCor. Indeed, over an affine neighborhood U C E intersecting
(respectively, not intersecting) L’, the modulus pair W can be taken to be (U, L’ NU) ® X (respectively,
(U,0) ® X). In both cases, the divisor {co} x U x X on P! x U x X is the restriction of the exceptional
divisor to g~'(U) = P! x U x X. Thus, the statement follows from the cube invariance of cohomology
(see [Sai20a, Theorem 9.3]. O

Theorem 2.18. Let F € CI{;}”. Let L C P" be a hyperplane and X = (X, D) € MCor, . Then the
pullback:

FX ;> Rﬂ*F(P",L)Q@X’

along the projection m : Py, — X is an isomorphism.

Proof. The case n = 1 is [Sai20a, Theorem 9.3]. Assume n > 2. Let x € P" be a k-rational point,
L c P" a hyperplane with x € L and p : Y — P" the blow-up in x. Then Rp.F(y p1)ox = F(pr,1)ox
by Theorem 2.12. Thus, the statement follows from Lemma 2.17 and induction. O

Corollary 2.19. Let F € CI{” and X = (X,D) € MCor/. Let V be a vector bundle on X, and
denote by:

m: P(V) :=Proj(Symg, (V) — X
the structure map. Then nt* induces an isomorphism:
o FX i> ﬂ*F(P(V)’ﬂ*D).

Proof. The question is local on X, hence, we can assume that V is trivial of rank n+ 1. Let L ¢ P" be a
hyperplane and consider:

o
Fx — m.Fpngxy — mFpn )ox-

The second map is injective by semipurity and [Sai20a, Theorem 3.1(2)]; the composition is an isomor-
phism by Theorem 2.18, hence, so is the first map. m}
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3. Smooth blow-up formula

Theorem 3.1. Let F € CIJ;;” and X = (X,D) € MCor. Let Z C X be a smooth closed subscheme
which intersects D transversally. Consider the following cartesian diagram:

L.}

<t

H

X.&

> )

in which p is the blow-up of X along Z. Set:
X=(X,D|g), Z=(Z.D3z), E=(E.Dp).

Then there is a distinguished triangle in the bounded derived category of Nisnevich sheaves of abelian
groups DP (Xnis):

o .
Fao 2850, R Fo@isFs 205 i Rop, Fe — Fr[l].

Proof. The first part of the argument is similar to the proof of [Gro85, Theorem IV.1.1.5]. We have to
show that the diagram:

Fx —2— Rp.Fy

.

i,Fz —£% i.Rpp,Fe

is homotopy cartesian in D? (Xnis). To this end, it suffices to show that the following maps are isomor-

phisms:
PE : Fz — pE.Fe, (3.1.1)
p" i Fx - p.Fy, (3.1.2)
it RIp.Fy — i.RIpp.Fe, j=>1. (3.1.3)

The map (3.1.1) is an isomorphism by Corollary 2.19, since E is a projective bundle over Z. The question
for the other two isomorphisms is Nisnevich local. Since Z and D intersect transversally, we can assume
that X = (A", 0) ® Z with Z = (Z, Dz) € MCor and that X isthe blow up of X = A" x Z at {0} x Z
(cf. the proof of Lemma 2.14). Write A" = P" \ L, and let Y be the blow-up of 0 € P" and denote by
E the exceptional divisor. Note that L is embedded isomorphically into Y, not intersecting Ej.

We obtain the diagram:

EoxZ —Es¥YxZ 15 EyxZ

A

Z Leprxz = Z,

where 7 : Z = {0} X Z — P" X Z is the closed immersion, p is the base change of the blow-up, 7
and pg are the projections and ¢ is as in Lemma 2.17. It remains to show that the following maps are
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isomorphisms:

P Fpn oz = p+Fy,1)ez, (3.1.4)
iy  RIp.Fy 1oz = LR pp.Frez, j 2 1. (3.1.5)

Indeed, the restriction of these two isomorphisms to A”, = P”, \ Lz yields the isomorphisms (3.1.2) and
(3.1.3).

The map (3.1.4) is an isomorphism away from 0 X Z. Since source and target of R, (3.1.4) are both
isomorphic to Fz by Theorem 2.18 and Lemma 2.17, (3.1.4) is an isomorphism everywhere. Similarly,
(3.1.5) is an isomorphism if R, (3.1.5) is. To show the latter, first observe that we have:

Rm.RYp.(Fy 1)oz) =0, fora #0. (3.1.6)

Indeed, if b > 1, then Rhﬁ*F(y’L)®Z has support in 0 X Z; if b = 0, the cohomology for a > 1 vanishes
by (3.1.4) and Theorem 2.18. Now Rm.(3.1.5) is equal to the composition:

nR'p.Fy 1)ez = R pE.Rq.Fiy 1oz = R/ pp.Frez,

where the first isomorphism follows from (3.1.6) and the Leray spectral sequence and the second
isomorphism holds by Lemma 2.17. This completes the proof. O

4. Twists
4.1. A tensor formula for homotopy invariant sheaves

Lemma 4.1 (Bloch-Gieseker). Assume k infinite of exponential characteristic p > 1. Let X be an integral
quasi-projective k-scheme and D a Cartier divisor on X. Let n > 1 be an integer with (n, p) = 1. Then
there exists a finite and surjective morphism n : Y — X and a Cartier divisor E on Y, such that the
following properties hold:

(1) Yis integral, normal and n~" (Xsm) is a smooth open subscheme of Y, where X, is the smooth locus
of X;

) n*D =nkE;

(3) deg(n) divides a power of n;

(4) if D is effective, then so is E.

Proof. The proof is a slight modification of [BG71, Lemma 2.1]. First note that (4) follows from (2)
and (1). Also, it suffices to prove the statement for D as a very ample divisor. Leti : X < PV := P be
an immersion, such that O(D) = i*Op(1). By Bertini’s theorem (see, e.g. [Jou83, Chapter I, Corollary
6.11]), we find hyperplanes Hy,...,Hy C P, such that all the intersections H;, N ... N H; and
H;, N ...N H; N Xy are transversal (or empty), for all {ip,...,i,} € {0,...,N}andall0 <r < N.
Let ¥; be a linear polynomial defining H;, so that P = Proj k[Yp,...,Yn]. Let IT : P — P be the k-
morphism defined by ¥; — Yl.”, i =0,...,N. Note that IT is finite of degree n™V and it is étale over
P\ U;H;. Form the cartesian diagram:

X—"5p.

Then X’ Xx Xym is smooth: this can be checked after base change to the algebraic closure of k, and
then the argument is the same as in the second and third paragraph in the proof of [BG71, Lemma 2.1]
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(the choice of the H; is crucial here). Let X"’ ¢ X’ be an irreducible component (with reduced scheme
structure), and denote by Y the normalisation of X"’ and by 7 : ¥ — X the composition:

Y 5 X" s x x
and by E = Op(1)y the pullback of Op(1) along:
Y > X" X L) P.
Then 7 : Y — X and E satisfy the conditions of the statement. O
Lemma 4.2. Let F,G € PST. Let:
w'F ®mpstT 0'G — " (F ®pst G) 4.2.1)
be the morphism in MPST, which is induced by adjunction from the isomorphism:
w, (0" F @wpst 0 G) = (0,w'F) ®pst (0,0"G) = F ®psT G.
Then we obtain a surjection in MNST:
s ((4.2.1)) = ay (@' F @mpst @'G) — ay; (@ (F @pst G)).
Proof. Denote by H; (respectively, H, ) the source (respectively, target) of (4.2.1), and take X = (X, D) €
MCor. By definition, ®wpst (respectively, ®pst) is the Day convolution of the tensor product on MCor

(respectively, on Cor), so that we have the following presentations (which also hold for general (X, D),
cf. [SV00, §2)):

H(X.D)=| P FO°) 82G(2°) & MCor(X,V® 2)|/Ri,
YV, ZeMCor

where for Y = (7, Y.), we set VO = Y \ Y, and where R; is the subgroup generated by the elements:

ffa®g'b®h-a®b® (f®g)oh,
where V,)’, Z, 2" € MCor, a € F(Y°), b € G(Z°), f € MCor()’,)), g € MCor(Z’, Z) and
h € MCor(X,)Y’ ® Z’). Similarly,

H,(X,D) = @ F(Y) ®2 G(Z) ®z Cor(X \ D,Y x Z)|/R,,

Y,ZeSm
where R, is the subgroup generated by:

ffa®g'b®h—-—a®b® (fxg)oh,
where Y, Y, Z,Z’ € Sm,a € F(Y), b € G(Z), f € Cor(Y',Y), g € Cor(Z’,Z) and h € Cor(X \
D,Y'xXZ').

Let >;a; ® b; ® y; € H.(X,D), where a; € F(Y;), b; € G(Y;) and y; € Cor(X \ D,Y; X Z;).
By [KMSY21a, Theorem 1.6.2], we find a proper morphism p : X’ — X inducing an isomorphism
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X'\ |p*D| 5 X \ |D|, such that the closure of any irreducible component of y; in X’ X ¥; X Z; is finite
over X', for all i. By (1.2.4) and Lemma 1.3, we are reduced to show the following:

Claim 4.2.1. Assume X is henselian local of geometric type (i.e. X = Spec(@ﬁ‘(,x) for X integral quasi-
projective k-scheme). Let V € Cor(X \ D,Y X Z) be a prime correspondence, such that the closure

of V.C X XY X Z of V is finite over X, and let a € F(Y), b € G(Z). Then the class of a® b ® V in
4.2.1
H,. (X, D) lies in the image of H;(X, D) (———)—> H,.(X, D).

Let V be as above. Since the closure V ©€ X xY x Z of V is integral and finite over X, it is local.
Denote by v € V the closed point and by y € Y, z € Z the images of v, respectively. We get induced
maps Oy , — I'(V, Oy;) and Oz ; — I'(V, Oy;). Hence:

V c (X\D)xU x U,

where j; : Uy — Y and j, : U, < Z are open affines containing y and z, respectively. Denote by
V’ € Cor(X \ D, U, x U,) the induced prime correspondence. Then V = (j; X j») o V', and, thus:

a®b®V=ja®j;beV" inH.(X,D).

Hence, Claim 4.2.1 follows from the following:

Claim 4.2.2. Let (X, D) € MCeor, let Y,Z be smooth quasi-projective k-schemes, let V € Cor(X \
D,Y X Z) be a prime correspondence anda € F(Y), b € G(Z). Then the class of a®b®V in H,. (X, D)
lies in the image of Hj(X, D) ISELN H,(X, D).

We prove the claim. First we reduce to k infinite by a standard trick: If k is finite, denote by k(¢)
a Z¢-Galois extension of k for a prime ¢; by a trace argument, the (diagonal) pullback H, (X, D) —
Hr(Xk([), Dk(g)) X Hr(Xk(g/), Dk([r)) is injective for £ # £’.

In the following, we assume k infinite. By assumption, we find proper modulus pairs Y = (¥, Vo)
and Z = (Z, Z), such that Y and Z are projective and Y =Y \ |Yso| and Z = Z \ | Z|. Since V is closed
in X \ |[D| xY x Z, we find an integer n, such that V € MCor((X, noD),) ® Z). Choose n > ng with
(n,p) = 1. By Lemma 4.1, we find a modulus pair )’ = (7,, Y.)) together with a finite and surjective
morphism 7y , : ¥ — Y, such that deg 7y, divides a power of n and 7y ,(Yeo) = nY., similarly for Z.
Denote by 7y , : Y’ — Y the induced finite and surjective morphism in Sm and by ﬂ;’n € Cor(Y,Y’)
the correspondence induced by the transpose of the graph. In H, (X, D), we obtain:

deg(ny ) deg(nz.n) - (a®b®V) =1y numty ,a ® 1z punty ,b @V
= (ny )7y ,a® (2 )1y bV
=y ,a®ny b ® (1, , X1y, )oV.

Observe that the components of (7}, , x 75, ) oV € Cor(X \ D,Y’ x Z') are the irreducible
components of:

V xyxz (Y xZ') = (idx\|p| X Ty X 7tn,z) " (V).

Let W be such a component, it comes with a finite and surjective map W — V. Denote by V ¢ X xY x Z
and W ¢ X xY x Z the closure of V and W, respectively, and denote by V.— V and W — W the
normalisations. Since W is contained in V Xy (7’ X 7), the natural maps from W to Y and Z factor
via a morphism W — V. We obtain:

xZ

_ ’ ’
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where the second inequality follows from V € MCor((X,n9D),Y ® Z). Hence:
(n} X7y ,) oV e MCor((X,D),V' ® Z').

It follows that 6§, - (a ® b ® V) lies in the image of H;(X,D) — H,(X,D), where 6, :=
deg(ny ) deg(nz.,). Choose r > ng with (r,p) = 1 = (r,n). Since §, divides a power of n and
o, divides a power of r, we find integers s, t with:

a®b®V =56, (a®@b®V)+1td,- (a®b®V).

This proves Claim 4.2.2, and, hence, also the lemma. m]

Proposition 4.3. For Fi, ..., F, € Hlnjs, consider the map:
W Fi @wpsT - - - ®MpsT W Fy = " (Fi ®pst - - - ®pst F) — 0" (Fi ®HIy, - ®HIy Fn),  (4.3.1)

where the first map is induced by (4.2.1) and the associativity of ®upst and ®pst and the second map
is induced by the natural surjective map (cf. (1.6.2)):

AI
Fy ®pst - ®psT Fin = hiy i (F1 ®psT - ®PST Fir) 1= F1 @Ml * * * @My Fs

where we use the notation from 1.4 and ®wuyy,, denotes the monoidal structure on Hlyis defined by
Voevodsky. Then, (4.3.1) induces an isomorphism:

hoae (' Fy ®upst ++ @Mpst @' Fy) — ” (Fi ®py, - @y, Fa).- (43.2)
Proof. We begin by recalling from [MS20, Proposition 3.2] that for F,G € CI{;", the formula
F ®CIT sp G =Ty hg ;IIT (7*F ®@mpst 7" G) defines a symmetric monoidal structure on CI p . Next, note

that w “H e CI{;?” for H € Hly;s by [KSY22, Lemma 2.3.1] and [KMSY21b, Proposmon 6.2.1b)].
Moreover:

hy o (@ Fy ®vpst w*F) = VI;S(T!w*Fl ®mpst T1w" F)
= T|h ’SP (a)*Fl ®MpsT W F>)
= T|hD 5P (T (w'F1) @mpst T (W' F2)) = W' F) ®CIT”’ w'F,

for every Fi, F, € Hly;s. Here, the isomorphisms follow from (1.1.3) and the exactness of 1.
We now observe that the functor w* is lax monoidal from PST to MPST (this follows from the fact

that w* is right adjoint to w,, which is strict monoidal by construction). By applying hD °p  to (4.3.1),
we obtain the functorial map (4.3.2), which we can rewrite for n = 2 as:

W F) ®CI;;:P w'F, - w*(Fi ®HIy;, F2)- “4.3.3)

In particular, w* restricts to a lax symmetric monoidal functor from Hly;s to CI;I}‘:” , and the statement
of the proposition is equivalent to the fact w* is in fact (strictly) monoidal, that is, that the map (4.3.3)
is an isomorphism (note that the identity for the tensor product is simply the constant sheaf Z and that
w*Z = 7). Since the tensor products in CI;’ijp and Hly;s are, in particular, associative, it is enough to
prove the claim when n = 2.
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By Lemma 4.2, the map (4.3.3) (or, equivalently, (4.3.2)) is surjective. On the other hand, we have:

ho] le(w Fi ®mpst @' F>) = ¥, w 1 (0" F) ®wpst 0" F>)™®
= aNis‘E!ﬁoT!(w Fi ®mpsT w*F>)
= Y@ Tihg (W Fi @vpst " F2)
= ayw hG (w* F) @ypst 0" F),

where the first equality follows from the definition of hg ;}; (cf. (1.4.2)) and w,ay;, = I‘\Illsa), (cf.

(1.2.2)), the second holds by the fact w,A® = w,A for A € MPST and w* = nyw" (cf. (1.1.3)) and the

monoidality of 1, the third follows from Qg(TgB) = 11hg (B) for B € MPST, where hg(B) € MPST
is the maximal cube invariant quotient of B defined by the same way as (1.4.3) and the last holds
by w7y = wy (cf. (1.1.3)). Thus, w, (4.3.2) is an isomorphism by [RSY22, Theorem 5.3], in view of
w*F = F (see [RSY22, (3.14.5)]) by [KSY22, Lemma 2.3.1]. Since both sides of (4.3.2) are semipure,
the map (4.3.2) is injective as well. O

4.2. Definition and basic properties of twists
Definition 4.4 (see [MS20, §2]). Let F € CI;;:” . We define " F and F(n), n > 0, recursively by:

YF:=F, y'F:=yF:= HomMPST(g*Gm,F), Y'F = y(y"'F)
and:
F(0):=F, F(1):=h3® (Fompst @ Gm). F(n) = F(n-1)(1).

0,Nis

Corollary 4.5. Let F € CI;I;‘:". Then y"F, F(n) € CI;’i‘;p,for all n > 0. Furthermore,

V'F = HomMPST((Dr(elg)%PSM’F) = HO—mMPST(Q*KrIzVI’F)’ 4.5.1)
and:
F(n) = hg,’;ﬁs(F ®MPST (Dred)®w“n) hy] I\ES(F ®mpst W KM), 4.5.2)
where:
felﬁ = Coker(Zy({1}) = Zy(P',0+ «)) € MPST" (4.5.3)

and KM is the improved Milnor K-theory from [Ker10] (there denoted by 13,1:/[ ).

Proof. For a proper modulus pair X', we have 717 Z(X) = Z(X). It follows that El e MPST". By

a,sp (E(l)) = w*Gy,. Thus:

Lemma 2.4, we have hO,Nis red

yF = Homyper (T, F). (4.5.4)

red’
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Indeed (we drop the index MPST from Hom and Hom):
Hom (5, F)(X) = Hom(Zy(X) ® G}, F)

= Hom(E:el(;, Hom(Z(X), F))

= Hom (/g 3b (B4;), Hom(Zy (X), F)

B —(1
= Hom(h{ (BL). F)(X)

=yF(X),

where the third equality holds by Lemma 1.5(1), (2). This implies the first equality in (4.5.1) and also
that y"F € CIg;}”, for all n > 0 (by Lemma 1.5(1)). For the second equality in (4.5.1), first note that it
follows from [Ker10] and results by Voevodsky (see [RSY?22, 5.5]), that we have:

KM = Go™" ¢ Hiy, . (4.5.5)
Hence, by Proposition 4.3 and [MS20, Lemma 1.14(iii)], we obtain:

WK = B3R (@G o) = D (B ). 45.6)

Thus, the second equality in (4.5.1) follows from the adjunction (1.4.2). The equalities in (4.5.2) follow
similarly. O

Remark 4.6. By Corollary 4.5, the twist y" F (respectively, F(n)) agrees with the definition in [MS20,
(2.3)] (respectively, [MS20, after Proposition 3.2]).

Remark 4.7. Let F € CI{;}” and X € MCor,,. By (4.5.4) and [Sai20a, Lemma 5.9], we have:

F((P',0+e0)®X) F((A',0)®X)

1 _
VE) s Pl er) C FATeX)

4.8. For later use in section 8, we define certain maps induced by adjunction. Let F' € CI;I’i‘;p .Forn >0,
we have an adjunction map:

F — Homypper (0K F ®vpst 0K ), 4.8.1)
which sends a € F(X') to (we drop the subscript MPST):
a ®id € Hom(Zy(X) ® w' KM, F @ w*'kM),

where we identify an element a € F(X) with the map a : Zy(X) — F. Composing (4.8.1) with the

g”iﬁs(F ® w*kKM), Corollary 4.5 yields a map:

map induced by the natural map F ® w*KM — h
kn: F — y"(F(n)) = y"F(n), (4.8.2)

which by Remark 4.6, coincides with the morphism [MS20, (3.5)]. Note that k¢ is the identity and that
for m,n > 0 the following diagram commutes:

F fin Y™ (F (m +n)) (4.8.3)

Kml
m

y™(F(m)) ——— y™y"(F (m)(n)).
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5. Cup product with Chow cycles with support
5.1. Milnor K-theory and intersection theory with supports
Everything in this subsection is well-known, however, we give some explanations for lack of reference.

5.1. Recall that a family of supports on a scheme X is a nonempty collection @ of closed subsets of X
which is stable under taking finite unions and closed subsets. The main examples are the family ®~,
for a closed subset Z C X, which consists of all the closed subsets in Z, the family ®=¢ of all closed
subsets of codimension > ¢ and the family <I>l;(r(/)g, for a morphism X — S, which consists of all closed
subsets in X which are proper over S. If F is a sheaf on X and @ is a family of support, then:

To(X,F) = {s € F(X) | supp(s) € ®} = lim I'z(X, F),
Zed

and L, (F)(U) = I'onu (U, F), for an open U C X. For a morphism f : ¥ — X, we denote by flo
the smallest family with supports on Y containing all closed subsets of the form f~'(Z), Z € ®.

Let X be k-scheme. We denote by CH;(X) the Chow group of i-dimensional cycles on X. If X is
equidimensional of dimension d, we denote by CH! (X) the Chow group of i-codimensional cycles on
X, that is, CH*(X) = CHy_;(X). If ® is a family of supports on X, we set:

CHL(X) = lim CHy-i(Z), (5.1.1)
Zecd

where the transition maps in the directed limit are given by pushforward along closed immersions. Note
that for a closed subset Z c X, we have:

CHY (X) := CH}, (X) = CHy-(2),

in particular, CHé( (X) = CH!(X). The notation CHiZ (X) is not superfluous, since if Z is singular, the
pullback along the refined Gysin homomorphism as in [Ful98, §6] relies on the embedding Z — X.

5.2. We recall some facts on the relation between Milnor K-theory and intersection theory. Let K ZM be
the improved Milnor K-sheaf from [Ker10]. Its restriction to Sm is homotopy invariant, and, hence, for
X € Sm its restriction to (ét/X) is a Nisnevich sheaf denoted by K %f and we have:

Re. KM = . KM, (5.2.1)

where € : XnNis — Xzar denotes the canonical morphism of sites (see [VoeOOb, Theorem 3.1.12]. If Z
is a finite-type k-scheme, we denote by C.(i)(Z) the degree i (homological) Gersten complex of K fj’z
(e.g. [Ros96, Section 5]), that is:

C(D(2) = P KN,

2€Z(n)

and the differentials are induced by the tame symbol (for the tame symbol, we use the sign convention
from [Ros96, p.328]). Recall that the formation Z +— C.(i)(Z) is covariant functorial with respect to
proper maps and contravariant functorial with respect to quasi-finite flat maps (see [Ros96, Proposition
(4.6)]. The assignment U — C, (i) (U) defines a complex of sheaves on Zy;s which we denote by C, 7 (7).
If Z is equidimensional of dimension e, then we define:

CL(i) = Conz(i—e) (5.2.2)

and obtain the cohomological degree i Gersten complex C?, (i), the global sections of which we also
denote by C*(i)(Z).
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In the following, we assume X € Sm is equidimensional. By [Ker10, Proposition 10(8)], the Gersten
complex is a resolution on the Nisnevich site for the sheaf K %( that is:
KM S5 Cx (i) in D(Xni)-

Note that C%, (7) sits in cohomological degree [0, i]. By (5.2.1) and since &.C% (i) is a flasque resolution

of e.K %(, we can use Cy (i) to compute Nisnevich cohomology with supports of K. lMX IfdmX =d

and : Z — X is a closed immersion, then:
T,Cx(i) =1.Cqopn,z(i = d).
This gives rise to Bloch’s formula (with support):
CHY(X) = Hy 7, (X, KM) = Hy, i (X KM) = Hy (X, KM), (5.2.3)
where @ is a family of supports on X.

Lemma 5.3. Let f : Y — X be a morphism between equidimensional smooth schemes, and let @ be a
family of supports on X. The following diagram commutes:

2

HE(x, kM)~ i (x) (5.3.1)
f*l lf"

i My 523
i kM) P el ),

where the pullback on the right is induced by the refined Gysin homomorphism in [Ful98, 6.6] (see also
[CRI1, 1.1.30]) and the pullback on the left is induced from the sheaf structure of K lM on the category
of schemes.

Proof. In [Ros96, p. 12], a morphism of complexes:
I(f): C*()(X) - C*()(Y) (5.3.2)

is defined, depending on the choice of a coordination of the tangent bundle 7X of X (see [Ros96, §9]
for the definition of a coordination).

Itis compatible with the pullback f* : KM (X) — K lM (Y) (by [Ros96, Proposition 12.3 and Corollary
12.4]. Furthermore, if u : U — X is étale, a coordination of 7X induces by pullback a coordination of
TU, and, hence, it is direct to check that we have:

uy o I(f) =I(fu) ou™ : C*()(X) — C*()(Yu),

where uy : Yy — Y is the base change of u along f and fi; : Yy — U is the base change of f along
u. It follows that the choice of a coordination on 7'X allows one to promote (5.3.2) to a morphism of
complexes of sheaves on Xnjs:

Z(f): C*()x — f.C*(i)y, (5.3.3)

which is compatible with the pullback f* : K ["’; — fiK lMY In view of 5.2, taking sections with support
I's (X, —) and then cohomology, gives a map:

H'(To(X.Z(f))): Ho(X. K}) = Hi (Y. K})
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that we identify with the left vertical map in (5.3.1). Consider the following diagram of solid arrows:
C'()(X) =<——Ca-i(i — d)(Z) ——= CHu—i(2) (5.3.4)

ll(f) jlz(f) lf’
Y
Ci(i)(Y) <—Cei(i — €)(f~1(Z)) — CH._i(f'(2)),

where Z € ®, d = dim X, e = dimY and f' is the refined Gysin map from [Ful98, 6.6]. It remains to
show that there exists a dotted arrow Iz (f) making the diagram commute. Since the pushforward on
C*(i) is compatible with the one on Chow groups, we can assume that Z is integral with dimZ = d — 1,
that is, C4_;(i — d)(Z) = Z - [Z]. By definition of I(f) and £, it suffices to consider the case where
f =1i:Y — X is a regular closed immersion defined by a coherent ideal sheaf J. Denote by
Ny,x = Spec(®,0J"/J n+1) the normal bundle over Y, and fix a coordination 7 of Ny /x in the sense
of [Ros96, Section 9, p.371]. Set Z" := Z xx Y and N := Ny,x Xy Z’; the pullback of 7 along Z' — Y
induces a coordination 7’ of N. Denote by Cz/,z the normal cone of Z" < Z and by v : Cz/;z — N
the closed immersion induced by J ®o, Oz —» JOz. Note that Cz/,z has pure dimension d — i (see
[Ful98, B 6.6], and, thus:

Ca-i(i—d)(Czyz) = @ Z.

2€(Czryz)®
With the notation from [Ros96, 9, 11.], we define Iz (f) to be the composition:

L(f) : Caili - d)(Z) 2220 Casili = d)(Crrrz)

25 Cacili = dY(N) 255 Coi(i - €)(2).

LetD(Z,Z2') — Al = Spec k[¢] be the deformation scheme from [Ros96, 10], so that D(Z, Z’)|A1\{0} =
Z x (A" \ {0}) and D(Z, Z")jo = Cz/z. Then by definition (see [Ros96, 11]):

J(Z,Z)([Z]) = divp(z,2/) (e, = [C2y2].

where [Cz+/~] denotes the cycle associated to the scheme C/z, [Ful98, Chapter 1, paragraph 5]. Thus,
the map J(Z’, Z) corresponds to the specialisation map o : CHy—-;(Z) — CHg4-;(Cz//z) from [Ful98,
5.2]. Therefore, the above definition of Iz ( f) makes the square on the right in (5.3.4) commutative (by
the alternative description of i* on the Chow side in [Ful98, 6.2, 2nd paragraph on p.98]). We subdivide
the left square as follows:

Caili—d)(Z) L 22 cyili- d)(N) 2% Cuii = e)(2)) (5.3.5)

Ci(i)(X) — 50 i) (Ny jx) — 2 Ci i) (1),

\_/

1(f)

the vertical maps are all induced by pushforward along the respective closed immersion. It fol-
lows directly from the definition of the maps r(7) and r(7’) in [Ros96, (9.1)—(9.4)] that the right
square of (5.3.5) commutes. For the left square, note that D(Z,Z’) is an integral and closed
subscheme of D(X,Y), hence, it is the closure of Z x (A! \ {0}) in D(X,Y); furthermore,
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D(Z,Z')N Ny;x = D(Z,Z') "N = Cz/z. Thus, by definition:
J(X.V)([Z]) = [Czz] in C(i)(Ny/x)-
This yields the commutativity of the left square in (5.3.5). O
5.4. In [Ros96, 14.1], a cross product:
CP()(X)xCL(j)(Y) > CP*(i+ j)(X xY), (a,b)—>axb
is defined by sending (ay, by), where a, € Kl?\fp (x),x € XP) and by € Kj."fq (y),y € YD to:

69ze(x><y)(0>lz ax|z - by|z 54.1)

where x X y denotes the fibre product of k-schemes, I, denotes the length of the local ring of x X y at
zand ay|, € K{‘j’p (z) denotes the pullback of ay to z and similarly with b, ,. Note that z € (x X y)©

implies z € (X x Y)(P*9) By [Ros96, (14.4)], we have:

d(a x b) = (da) x b+ (=1)""P (a x db), (5.4.2)
where d denotes the differential of the Gersten complex (there seems to be a typo in the formula in loc.
cit.: the (—1)™ in that formula should be a (—1)"*? as follows from what is said in the proof and [Ros96,
R3f and R3d]; this formula is for the homological notation, if one translates to the cohomological
notation via (5.2.2), one obtains (5.4.2)). We have to modify the cross product to obtain a morphism of

complexes (with the usual sign convention for a tensor product of complexes). For a € CP (i)(X) and
b e Ci(j)(Y), we set:

arb:=(-1)"4*Dgxp. (5.4.3)
Then, we obtain:
darb)=(da)r b+ (-1)P ardb.
Thus, ® induces a morphism of complexes:
® : tot(C*(I)(X) ®z C*(j)(Y)) » C°(i + j)(X xXY), (54.4)
which, via the augmentation from Milnor K-theory, is compatible with:
KM (X) @z KV (Y) » KM (X xY), a®bw nya-nyb, (5.4.5)

with mx : X XY — X the projection. In degree i + j, the map (5.4.4) is given by:

(Pzoe(Pzn-> P z-=

xeXx @ yeYy () zeX XY (i+))
R TR
z€(xxy)® z€(xxy)©
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Hence, for families of support @ on X and ¥ on Y, the following diagram commutes:

CH, (X) x CHJ,(Y) —2—= CH, (X x Y) (5.4.6)

~l 0

HL (X, KM) x Hy, (Y, K3) —= = Hy (X XY, KM,

where the upper horizontal map is the exterior product of cycles (see [Ful98, 1.10]) and ® x ¥ denotes
the smallest family of supports containing Z; X Z,, for all Z; € ® and Z, € V. We note that if
T7:X XY — Y X X is the switching morphism, then:

7.(a®b) = (-1)*P9(bra), aeCP>)(X),beCI()Y), (5.4.7)

as follows directly from (5.4.1) and (5.4.3). The above and Lemma 5.3 imply that the intersection product
with support:
A" om: CHy,(X) x CHY,(X) — CHY ,(X) (5.4.8)

from [Ful98, 8] corresponds via Bloch’s formula to:

A" om: Hy (X, KM) x Hy, (X, KM) — Hy? (X KM)), (5.4.9)
where ®NY = {Zl NZ, | VARKONANS lP}
5.2. Cupping

5.5. Let F,G € MNST, and let X be a k-scheme and D and E effective Cartier divisors on it, such that
(X, D), (X,E) € MCor. We recall that there is a natural morphism of Nisnevich sheaves on X:

Fix.p) ®z G(x.gy = (F ®unst G)(x.p+E)> (5.5.1)

which is defined as follows: For U — X, we have a surjection (see the proof of Lemma 4.2):

. D F)ezG(2) e MCor((U,(D+E)),Y & Z)
Y,ZeMCor

—» (F ®mpst G)(U, (D + E)y).
Composition with 7 gives then a morphism:
F(U,Dy)® G(U,Ey) — (F ®west G)(U, (D + E)y), (5.5.2)
a®b— n(a®bAy),
where Ay € MCor((U, (D + E)y), (U,Dy) ® (U, Ey)) is the diagonal (note that it is indeed an
admissible correspondence). If we now compose (5.5.2) with the value on (U, (D + E)y ) of the natural
map (the sheafification):

(F ®mpst G) — ay; (F ®vpst G) = F @wnst G,

we get the desired map (5.5.1).
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Lemma 5.6. Let F € CI;’izp and X, D, E as in 5.5. Assume X is connected. Consider the map:
(y'F(X,D)) ® Gn(X \ E) = F(X,D +E) (5.6.1)

defined as composition:

(Y'F(X. D)) ®2 G (X \ E) “2 (4'F @yinst 0" Gu) (X, D + E)

dj.
X F(X,D +E),

where the morphism ‘adj.’ is induced by the counit of the adjunction (—) ®mpst WG, A
Homy,por (@* Gy, —). Then the precomposition of (5.6.1) with the natural map:

F@" ® (X,D)) 82 Ze([@")(X,E) = y'F(X, D) ® Gm(X \ E),
stemming from (4.5.4) and Lemma 2.4, is given by:
F@" ® (X,D)) 82 Z«(@")(X,E) - F(X,D +E),
a® f > Ay ((f —deg(f)-s1) ®idx,p))’a,

where s| € MCor((X,E),ﬁ(l)) is the graph of X — Speck = {1} — P! and Ax € MCor((X,D +
E),(X,E) ® (X, D)) is the graph of the diagonal.

Proof. Note that under the identification Ztr(ﬁ(l) ) = ﬁgj ® Z (see (4.5.3)), the projection to the first
factor is given by:

2@ V) (X, E) 5 f > (f - deg(f) - s1) € B (X, E).

red

Since by Lemma 2.4 we have hENiS(Er(elg) = w*G,,, the statement of the lemma is direct from the

explicit description of (5.5.1) in 5.5. O

Lemma 5.7. Let X be a scheme and Z C X a closed subset X. Let A, B € D(Xnis), and assume that the
cohomology sheaves H' (B) have support in Z, for all i € Z. Then the natural map:

RC,(A®LB) > AL B
is an isomorphism. In particular, for any C € D(Xnis), we obtain the canonical morphism:
A®% RT,C = RT,(A®% R[,C) > R[,(A®% C). (5.7.1)
Proof. Denote by j : U = X \ Z — X the open immersion. By assumption, H'(By) = H'(B)y =0,

thatis, B|y = 0in D (Xnis). Therefore, the statement follows from the distinguished triangle (see [Stal9,
Tag 09XP]):

RL,(A®L B) > Agl B— Rj.(AgL By >

and the isomorphism (A ®% B)jy = Ay ®% Bjy. o

5.8. Let F € CI{;}”. Let X = (X, D) € MCor with X € Sm, ® be a family of supports on X and
a € CHQ)(X) (see 5.1). We define the morphism:

cq: (Y'F)x[~i] = RCyFx in D(Xnis) (5.8.1)
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as follows: choose a representative @ € CH"Z (X), Z € @, of a; by the identification:
CHL,(X) = H, (X, KM) = Exty_ (Zx.RL, KM,
the cycle @ induces a morphism in D (Xy;s) (again, denoted by &):
@: Zx[-i] = RU, K}y = RU, (w'K}")x.0)-
We define ¢, as the composition in D (Xnis):
(' Fal=il =25 (' F)x ©F RL, K

(5.7.1) .
— R, ((y'F)x ®f K%)
els

— RLg((y'Fx ®F K%)

14

— RLy (' F)x 2 (0 KM)(x.0))

(5.5.1) , i}
——5 RL4(¥'F ®wnst 0" KM )x

adj
=5 RCyFx,

where the map els is the enlarge-support map, the fourth map is induced by the quotient map A ® B —
Hy(A ®" B) = A ® B and adj is induced by adjunction via Corollary 4.5. It is direct to check that the
definition of ¢, does not depend on the choice of &.

The morphism ¢, satisfies the following functorial properties.

Lemma 5.9. Let F € CI;’izp. Let X = (X, D) € MCor with X € Sm, and let ® be a family of supports
on X.

(1) We have cqip = coq +cp, fora, B € CHéI)(X).

(2) Let ¥ be another family of supports containing ®. Denote by the same letter 1 the natural maps
CHo — CHy and RL'y, — RLy,. Thenicq = C,q, for any a € CHfD(X).

(3) Let Y = (Y,E) € MCeor. Let f : Y — X be a morphism in Sm, such that E > f*D, and let
a € CHiD(X). Consider the pullback cycle f*a € CH}_I(D(Y) (see Lemma 5.3). The following
diagram commutes:

Ca

(Y F)x[~i] RLgFx

| ‘|

: Cf*a
Rf.(y'F)y[-i] == Rf.RT;_,Fy = RC4Rf.Fy.

4) Fora € CHfD(X), B e CHQ(X) denote by a - B € CH;’;\P(X) the intersection product of « and B
(see (5.4.8)). The following diagram commutes:

Y F)xl=i1[-j1 < Ry (7 F) e [-)]

Cor4.5 lcﬁ

(Y F)x[-(i+j)] —— Rl yFx.

Cap

Proof. (1) and (2) are immediate to check. For (3), we may assume ® = &, for some closed subset
Z € X. It suffices to show the commutativity of the adjoint square, which we can decompose into the
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following two diagrams (we write G := y'F):

FGal-i1 2% Gy @ fT'RL, KM — f'RL,(Gx ® KM,

| o | e |

Gyl-i] “aera” OV ®" RL -1 ,K}Y, ——RL,.1,(Gy ®K[),

and:

dj.
FIRL, (G ® KM) 2L IR, (G @ 0 KMy —%> f7IRT, Fy

l ® l @ l
* M
REf“Z(Gy® Y) G50 —]Z(G ®Q Ki )y?REf_lsz»

where the vertical maps are induced by pullback along f : ) — X and, for the first diagram, we use
the canonical identification f~'A ® f~'B = f~!(A ®L B). The identity R fiRC;.1, = RL,Rf. and
the natural map id — Rf.f! yield by adjunction a natural transformation f~'R[, — RC,..,f -1
using this, the commutativity of square 2 is direct to check; furthermore, the proof of the commutativity
of squares 3 and 4 reduces to the case without support (i.e. Z = X), which is immediate to check. The
commutativity of square 1 follows from Lemma 5.3. For (4), we may assume ® = &z and ¥ = ® .
Consider the following diagram:

A . @i
(Y'Y F&"Kiz)[-j] —— V'V F & K)[-jlz ———=¥/F[-jlz
ideps ides ideg

o o @i :
Yy F@'Ki 7z @ K; 77— (Y'Y F®K;) ®" K; 2)7 — = (Y F ®" K