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Revisiting Tietze–Nakajima: Local and
Global Convexity for Maps

Christina Bjorndahl∗ and Yael Karshon

Abstract. A theorem of Tietze and Nakajima, from 1928, asserts that if a subset X of R
n is closed,

connected, and locally convex, then it is convex. We give an analogous “local to global convexity”

theorem when the inclusion map of X to R
n is replaced by a map from a topological space X to R

n that

satisfies certain local properties. Our motivation comes from the Condevaux–Dazord–Molino proof

of the Atiyah–Guillemin–Sternberg convexity theorem in symplectic geometry.

1 Introduction

A theorem of Tietze and Nakajima from 1928 asserts that if a subset X of R
n is closed,

connected, and locally convex, then it is convex [Ti, N]. There are many generaliza-

tions of this “local to global convexity” phenomenon in the literature; a partial list is

[BF, C, Ka, KW, Kl, SSV, S, Ta].

This paper contains an analogous “local to global convexity” theorem when the

inclusion map of X to R
n is replaced by a map from a topological space X to R

n that

satisfies certain local properties. We define a map Ψ : X → R
n to be convex if any two

points in X can be connected by a path γ whose composition with Ψ parametrizes a

straight line segment in R
n and this parametrization is monotone along the segment.

See Definition 7. We show that, if X is connected and Hausdorff, Ψ is proper, and

each point has a neighbourhood U such that Ψ|U is convex and open as a map to its

image, then Ψ is convex and open as a map to its image. We deduce that the image

of Ψ is convex and the level sets of Ψ are connected. See Theorems 15 and 10.

Our motivation comes from the Condevaux–Dazord–Molino proof [CDM,HNP]

of the Atiyah–Guillemin–Sternberg convexity theorem in symplectic geometry [At,

GS1]. See Section 7. A similar notion of convexity of momentum maps was studied

in [Kn].

This paper is the result of an undergraduate research project that spanned the

years 2004–2006. The senior author takes the blame for the delay in publication

after posting our arXiv eprint. While preparing this paper we learned of the paper

[BOR1] by Birtea, Ortega, and Ratiu, which achieves similar goals. In Section 8 we

discuss relationships between our results and theirs. After [BOR1], our results are

not essentially new, but the notion of “convex map” gives elegant statements, and

our proofs are so elementary that they are accessible to undergraduate students with

a basic topology background.
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2 The Tietze–Nakajima Theorem

Let B(x, r) [B(x, r)] denote the open [closed] ball in R
n of radius r, centered at x. A

closed subset X of R
n is locally convex if for every x ∈ X there exists δx > 0 such

that B(x, δx) ∩ X is convex. The Tietze–Nakajima theorem [Ti, N] asserts that “local

convexity implies global convexity”:

1 Theorem (Tietze–Nakajima) Let X be a closed, connected, and locally convex subset

of R
n. Then X is convex.

2 Example A disjoint union of two closed balls is closed and locally convex but

is not connected. A punctured disk is connected and satisfies the locally convexity

condition, but it is not closed.

A closed subset X ⊂ R
n is uniformly locally convex on a subset A ⊂ X if there exists

δ > 0 such that B(x, δ) ∩ X is convex for all x ∈ A.

3 Lemma (Uniform local convexity on compact sets) Let X be a closed subset of R
n.

If X is locally convex and A ⊂ X is compact, then X is uniformly locally convex on A.

Proof Since X is locally convex, for every x ∈ X there exists a δx > 0 such that

B(x, δx) ∩ X is convex. By compactness there exist points x1, . . . , xn such that A ⊂
⋃n

i=1 B(xi ,
1
2
δxi

). Let δ = min{ 1
2
δxi

}. Then for every x ∈ A there exists i such that

B(x, δ) ⊂ B(xi , δxi
). It follows that B(x, δ) ∩ X is convex.

4 Definition Let X be a closed, connected, locally convex subset of R
n. For two

points x0 and x1 in X, their distance in X, denoted dX(x0, x1), is

dX(x0, x1) = inf{l(γ) | γ : [0, 1] → X, γ(0) = x0, γ(1) = x1},

where l(γ) is the length of the path γ.

In this definition it does not matter if we take the infimum over continuous paths

or polygonal paths: let γ : [0, 1] → X be a continuous path in X. Let δ be the radius

associated with uniform local convexity on the compact set {γ(t), 0 ≤ t ≤ 1}. By

uniform continuity of γ on the compact interval [0, 1], there exist 0 = t0 < t1 <
· · · < tk = 1 such that ‖γ(ti−1) − γ(ti)‖ < δ for i = 1, . . . , k. The polygonal path

through the points γ(t0), . . . , γ(tk) is contained in X and has length ≤ l(γ).

Also note that dX(x0, x1) ≥ ‖x1 − x0‖, with equality if and only if the segment

[x0, x1] is contained in X.

5 Lemma (Existence of a midpoint) Let X be a closed, connected, and locally convex

subset of R
n. Let x0 and x1 be in X. Then there exists a point x1/2 in X such that

(2.1) dX(x0, x1/2) = dX(x1/2, x1) =
1
2
dX(x0, x1).

Proof Let γ j be paths in X connecting x0 and x1 such that {l(γ j)} converges to

dX(x0, x1). Let t j ∈ [0, 1] be such that γ j(t j) is the midpoint of the path γ j :

l(γ j |[0,t j]) = l(γ j |[t j ,1]) =
1
2
l(γ j).
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Since the sequence of midpoints {γ j(t j)} is bounded and X is closed, this sequence

has an accumulation point x1/2 ∈ X. We will show that the point x1/2 satisfies equa-

tion (2.1).

We first show that for every ε > 0 there exists a path γ connecting x0 and x 1
2

such

that l(γ) < 1
2
dX(x0, x1) + ε.

Let δ > 0 be such that B(x 1
2
, δ) ∩ X is convex. Let j be such that ‖γ j(t j) − x 1

2
‖ <

min(δ, ε
2
) and such that l(γ j) < dX(x0, x1) + ε. The segment [γ j(t j), x 1

2
] is contained

in X. Let γ be the concatenation of γ j |[0,t j ] with this segment. Then γ is a path in X

that connects x0 and x 1
2
, and l(γ) < 1

2
dX(x0, x1) + ε.

Thus, dX(x0, x 1
2
) ≤ 1

2
dX(x0, x1). By the same argument, dX(x 1

2
, x1) ≤ 1

2
dX(x0, x1).

If either of these were a strict inequality, then it would be possible to construct a

path in X from x0 to x1 whose length is less than dX(x0, x1), which contradicts the

definition of dX(x0, x1).

Proof of the Tietze-Nakajima theorem Fix x0 and x1 in X.

By Lemma 5, there exists a point x1/2 such that

dX(x0, x1/2) = dX(x1/2, x1) =
1

2
dX(x0, x1).

Likewise, there exists a point x1/4 that satisfies

dX(x0, x1/4) = dX(x1/4, x1/2) =
1

2
dX(x0, x1/2).

By iteration, we get a map j
2m 7→ x j

2m
, for nonnegative integers j and m where 0 ≤

j ≤ 2m, such that

(2.2) dX(x j−1
2m

, x j
2m

) = dX(x j
2m

, x j+1
2m

) =
1

2
dX(x j−1

2m
, x j+1

2m
).

Let r > dX(x0, x1). For all 0 ≤ j ≤ 2m,

‖x j
2m

− x0‖ ≤ dX(x j
2m

, x0) ≤
j

∑

i=1

dX(x i−1
2m

, x i
2m

) =
j

2m
dX(x0, x1) < r.

Thus, x j
2m

belongs to the compact set B(x0, r) ∩ X. Let δ denote the radius asso-

ciated with uniform local convexity on this compact set. Choose m large enough

such that 1
2m dX(x0, x1) < δ. Since the intersection B(x j

2m
, δ) ∩ X is convex and

x j−1
2m

∈ B(x j
2m

, δ) ∩ X,

(2.3)
[

x j−1
2m

, x j
2m

]

⊂ X for each 1 ≤ j ≤ 2m.

Since also x j+1
2m

∈ B(x j
2m

, δ),

[

x j−1
2m

, x j+1
2m

]

⊂ X for each 1 ≤ j < 2m.
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It follows that

dX(x j−1
2m

, x j
2m

) = ‖x j−1
2m

− x j
2m
‖ and dX(x j−1

2m
, x j+1

2m
) = ‖x j−1

2m
− x j+1

2m
‖.

Thus, equation (2.2) can be rewritten as

‖x j−1
2m

− x j
2m
‖ = ‖x j

2m
− x j+1

2m
‖ =

1

2
‖x j−1

2m
− x j+1

2m
‖,

which implies, by the triangle inequality, that the points x j−1
2m

, x j
2m

, x j+1
2m

are collinear.

This and (2.3) imply that [x0, x1] ⊂ X.

3 Local and Global Convexity of Maps

The Tietze–Nakajima theorem involves subsets of R
n. We will now consider spaces

with maps to R
n that are not necessarily inclusion maps.

Consider a continuous path γ : [0, 1] → R
n. Its length, which is denoted l(γ), is

the supremum, over all natural numbers N and all partitions 0 = t0 < t1 < · · · <
tN = 1, of

∑N
i=1 ‖γ(ti) − γ(ti−1)‖. We have l(γ) ≥ ‖γ(1) − γ(0)‖ with equality if

and only if one of two cases occurs:

(i) the path γ is constant;

(ii) the image of γ is the segment [γ(0), γ(1)], and γ is a weakly monotone param-

etrization of this segment: if 0 ≤ t1 < t2 < t3 ≤ 1, then the point γ(t2) lies on

the segment [γ(t1), γ(t3)].

6 Definition The path γ : [0, 1] → R
n is monotone straight if it satisfies (i) or (ii).

7 Definition Let X be a Hausdorff topological space. A continuous map Ψ from X

to R
n, or to a subset of R

n, is called convex if every two points x0 and x1 in X can be

connected by a continuous path γ : [0, 1] → X such that

(3.1) γ(0) = x0, γ(1) = x1, and Ψ ◦ γ is monotone straight.

Warning For a function ψ from R to R, the condition in Definition 7 is equivalent

to ψ : R → R being weakly monotone. This is different from the usual notion of a

convex function (that ψ(ta + (1 − t)b) ≤ tψ(a) + (1 − t)ψ(b) for all a, b and for

all 0 ≤ t ≤ 1). In the usual notion of a convex function, the domain X must be an

affine space, and the target space must be R. In Definition 7, the domain X is only

a topological space, and the target space can be R
n. In this paper, “convex map” is

always in the sense of Definition 7.

8 Remark If Ψ(x0) = Ψ(x1), condition (3.1) means that the path γ lies entirely

within a level set of Ψ. If Ψ(x0) 6= Ψ(x1), the condition implies that the image of

Ψ ◦ γ is the segment [Ψ(x0),Ψ(x1)].

9 Example Consider the two-sphere S2
= {x ∈ R

3 | ‖x‖2
= 1}. The height func-

tion Ψ : S2 → R, given by (x1, x2, x3) 7→ x3, is convex. The projection Ψ : S2 → R
2,

given by (x1, x2, x3) 7→ (x1, x2), is not convex.
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We shall prove the following generalization of the Tietze–Nakajima theorem:

10 Theorem Let X be a connected Hausdorff topological space, let T ⊂ R
n be a convex

subset, and let Ψ : X → T be a continuous and proper map. Suppose that for every point

x ∈ X there exists an open neighbourhood U ⊂ X of x such that the map Ψ|U : U →
Ψ(U ) is convex and open. Then

(i) the image of Ψ is convex;

(ii) the level sets of Ψ are connected;

(iii) the map Ψ : X → Ψ(X) is open.

11 Remark The Tietze–Nakajima theorem is the special case of Theorem 10 in

which T = R
n, the space X is a subset of R

n, and the map Ψ : X → R
n is the in-

clusion map.

The convexity of a map has the following immediate consequences.

12 Lemma If Ψ : X → R
n is a convex map, then, for any convex subset A ⊂ R

n, the

restriction of Ψ to the preimage Ψ
−1(A) is also a convex map.

Proof Let A ⊂ R
n be convex, and let x0, x1 ∈ Ψ

−1(A). Let γ : [0, 1] → X be a

path from x0 to x1 whose composition with Ψ is monotone straight. The image of

Ψ ◦ γ is the (possibly degenerate) segment [Ψ(x0),Ψ(x1)]. Because A is convex and

contains the endpoints of this segment, it contains the entire segment, so γ is a path

in Ψ
−1(A). Thus, x0 and x1 are connected by a path in Ψ

−1(A) whose composition

with Ψ is monotone straight.

13 Lemma (Global properties imply convexity) If Ψ : X → R
n is a convex map, then

its image, Ψ(X), is convex, and its level sets, Ψ−1(w), for w ∈ Ψ(X), are connected.

Proof Take any two points in Ψ(X); write them as Ψ(x0) and Ψ(x1) where x0 and x1

are in X. Because the map Ψ is convex, there exists a path γ in X that connects x0 and

x1 and such that the image of Ψ ◦ γ is the segment [Ψ(x0),Ψ(x1)]. In particular, the

segment [Ψ(x0),Ψ(x1)] is contained in the image of Ψ. This shows that the image of

Ψ is convex.

Now let x0 and x1 be any two points in Ψ
−1(w). Because the map Ψ is convex,

there exists a path γ that connects x0 and x1 and such that the curve Ψ◦γ is constant.

Thus, this curve is entirely contained in the level set Ψ
−1(w). This shows that the

level set Ψ
−1(w) is connected.

14 Remark Suppose that the map Ψ : X → R
n has the path lifting property, i.e.,

for every path γ : [0, 1] → R
n and every point x ∈ Ψ

−1(γ(0)) there exists a path

γ : [0, 1] → X such that γ(0) = x and Ψ ◦ γ = γ. Then the converse of Lemma 13

holds: if the image Ψ(X) is convex and the level sets Ψ
−1(w), w ∈ Ψ(X), are path

connected, then the map Ψ : X → R
n is convex.

The main ingredient in the proof of Theorem 10 is the following theorem, which

we shall prove in Section 6.
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15 Theorem (Local convexity and openness imply global convexity and openness)

Let X be a connected Hausdorff topological space, let T be a convex subset of R
n, and let

Ψ : X → T be a continuous proper map. Suppose that for every point x ∈ X there exists

an open neighbourhood U of x such that the map Ψ|U : U → Ψ(U ) is convex and open.

Then the map Ψ : X → Ψ(X) is convex and open.

Following [HNP], one may call Theorem 15 a Lokal-Global-Prinzip.

16 Remark In Theorem 15, we assume that each point is contained in an open set

on which the map is convex and is open as a map to its image, but we do not insist

that these open sets form a basis of the topology. This requirement would be too

restrictive, as is illustrated in the following two examples.

(i) Consider the map (x, y) 7→ −y +
√

x2 + y2 from R
2 to R. One level set is

the nonnegative y-axis {(0, y) | y ≥ 0}; the other level sets are the parabolas

y =
1

2α x2 − α
2

for α > 0. This map is convex, but its restrictions to small neigh-

bourhoods of individual points on the positive y-axis are not convex. (These

restrictions have disconnected fibres.)

(ii) Consider the map (t, eiθ) 7→ teiθ from R × S1 to C ∼= R
2. This map is convex,

but its restrictions to small neighbourhoods of individual points on the zero

section {0} × S1 are not convex. (These restrictions have a nonconvex image.)

Proof of Theorem 10, assuming Theorem 15 By Theorem 15, the map Ψ is convex,

and it is open as a map to its image. By Lemma 13, the level sets of Ψ are connected

and the image of Ψ is convex.

The bulk of this paper is devoted to proving Theorem 15.

4 Convexity for Components of Preimages of Neighbourhoods

We first set some notation.

Let X be a Hausdorff topological space and Ψ : X → R
n a continuous map. For

x ∈ X with Ψ(x) = w, we denote by [x] the path connected component of x in

Ψ
−1(w), and, for ε > 0, we denote by U[x],ε the path connected component of x in

Ψ
−1(B(w, ε)). Note that U[x],ε does not depend on the particular choice of x in [x].

Remark Suppose that every point in X has an open neighbourhood U on which

the restriction Ψ|U is convex. Then, in the definitions of [x] and U[x],ε, the term

path connected component can be replaced by connected component. Indeed, let Y =

Ψ
−1(B(w, ε)) or Y = Ψ

−1(w). If Ψ|U is convex, so is Ψ|U∩Y ; in particular, U ∩ Y

is path connected. Thus, every point in Y has a path connected open neighbour-

hood with respect to the relative topology on Y . So the connected components of Y

coincide with its path connected components.

A crucial step in the proof of Theorem 15 is that the neighbourhoods U such

that Ψ|U : U → Ψ(U ) is convex and open can be taken to be the entire connected

components U[x],ε.
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17 Proposition (Properties for connected components) Let X be a Hausdorff topo-

logical space, T ⊂ R
n a convex subset, and Ψ : X → T a continuous proper map.

Suppose that for every point x ∈ X there exists an open neighbourhood U of x such that

the map Ψ|U : U → Ψ(U ) is convex and open.

Then for every point x ∈ X there exists an ε > 0 such that the map Ψ|U[x],ε
: U[x],ε →

Ψ(U[x],ε) is convex and open.

We digress to recall standard consequences of the properness of a map.

18 Lemma Let X be a Hausdorff topological space, T ⊂ R
n a subset, and Ψ : X → T

a continuous proper map. Let w0 ∈ T.

(i) Let U be an open subset of X that contains the level set Ψ
−1(w0). Then there exists

ε > 0 such that the preimage Ψ
−1(B(w0, ε)) is contained in U .

(ii) Suppose that every point of Ψ
−1(w0) has a connected open neighbourhood in

Ψ
−1(w0) with respect to the relative topology. Then there exists ε > 0 such that,

whenever [x] and [y] are distinct connected components of Ψ−1(w0), the sets U[x],ε

and U[y],ε are disjoint.

Proof of part (i) Suppose otherwise. Then for every ε > 0 there exists xε ∈ X r U

such that ‖Ψ(xε) − w0‖ < ε.

Let ε j be a sequence such that ε j → 0 as j → ∞. Then xε j
∈ X r U for all j, and

Ψ(xε j
) → w0 as j → ∞.

The set {Ψ(xε j
)}∞j=1 ∪ {w0} is compact. By properness, its preimage,

∞
⋃

j=1

Ψ
−1(Ψ(xε j

)) ∪ Ψ
−1(w0),

is compact. The sequence {xε j
}∞j=1 is in this preimage. So there exists a point x∞

such that every neighbourhood of x∞ contains xε j
for infinitely many values of j.

By continuity, Ψ(x∞) = w0. Since U contains Ψ
−1(w0) and is open, U is a neigh-

bourhood of x∞, so there exist arbitrarily large values of j such that xε j
∈ U . This

contradicts the assumption xε j
∈ X r U .

Proof of part (ii) Because Ψ is proper, the level set Ψ
−1(w0) is compact. Because

Ψ
−1(w0) is compact and is covered by connected open subsets with respect to the

relative topology, it has only finitely many components [x]. Because these compo-

nents are compact and disjoint and X is Hausdorff, there exist open subsets O[x] in X

such that [x] ⊂ O[x] for each component [x] of Ψ
−1(w0) and such that for [x] and

[y] in Ψ
−1(w0), if [x] 6= [y] then O[x] ∩ O[y] = ∅. The union of the sets O[x] is an

open subset of X that contains the fibre Ψ
−1(w0). By part (i), this open subset con-

tains Ψ
−1(B(w0, ε)) for every sufficiently small ε. For such an ε, because each U[x],ε

is contained in O[x] and the sets O[x] are disjoint, the sets U[x],ε are disjoint.

We now prepare for the proof of Proposition 17. In the remainder of this section,

let X be a Hausdorff topological space, T ⊂ R
n a subset, and Ψ : X → T a continuous

map. Fix a point w0 ∈ T. Let {Ui} be a collection of open subsets of X whose union

contains Ψ
−1(w0).
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19 Lemma Let [x] be a connected component of Ψ
−1(w0). If Uk ∩ [x] 6= ∅ and

Ul ∩ [x] 6= ∅, then there exists a sequence k = i0, i1, . . . , is = l such that

(4.1) Uiq−1
∩Uiq

∩ [x] 6= ∅ for q = 1, . . . , s.

Proof Let Ik denote the set of indices j for which one can get from Uk to U j through

a sequence of sets Ui0
,Ui1

, . . . ,Uis
with the property (4.1). If j ∈ Ik and j ′ 6∈ Ik, then

U j ∩ [x] and U j ′ ∩ [x] are disjoint. Thus,

[x] =

(

⋃

j∈Ik

U j ∩ [x]
)

∪
(

⋃

j ′ 6∈Ik

U j ′ ∩ [x]
)

expresses [x] as the union of two disjoint open subsets, of which the first is nonempty.

Because [x] is connected, the second set in this union must be empty. So Ul∩[x] 6= ∅

implies l ∈ Ik.

Now assume, additionally, that the covering {Ui} is finite and that, for each i, the

map Ψ|Ui
: Ui → Ψ(Ui) is open. Let

(4.2) Wi := Ψ(Ui).

20 Lemma Let [x] be a connected component of Ψ
−1(w0). For sufficiently small ε >

0, the following is true.

(i) For any i and j, if Ui ∩U j ∩ [x] 6= ∅, then

Wi ∩ B(w0, ε) = Ψ(Ui ∩U j) ∩ B(w0, ε).

(ii) For any k and l, if Uk ∩ [x] and Ul ∩ [x] are nonempty, then

Wk ∩ B(w0, ε) = Wl ∩ B(w0, ε).

Proof Suppose that Ui ∩U j ∩ [x] 6= ∅. Then the set Ψ(Ui ∩U j) contains w0. Since

Ui ∩U j is open in Ui , and since the restriction of Ψ to Ui is an open map to its image,

the set Ψ(Ui ∩U j) is open in Wi . Let εi j > 0 be such that the set Ψ(Ui ∩U j) contains

Wi ∩ B(w0, εi j). Because we also have Ψ(Ui ∩U j) ⊂ Ψ(Ui) = Wi ,

Wi ∩ B(w0, εi j) = Ψ(Ui ∩U j) ∩ B(w0, εi j).

Let ε be any positive number that is smaller than or equal to εi j for all the pairs

Ui , U j for which Ui ∩U j ∩ [x] 6= ∅. Then, for every such pair Ui , U j ,

Wi ∩ B(w0, ε) = Ψ(Ui ∩U j) ∩ B(w0, ε).

This proves (i).

Now suppose that Uk∩[x] 6= ∅ and Ul∩[x] 6= ∅. By Lemma 19, one can get from

Uk to Ul by a sequence of sets Uk = Ui0
, . . . ,Uis

= Ul such that Uiq−1
∩Uiq

∩[x] 6= ∅

for q = 1, . . . , s. Part (i) then implies that the intersections Wiq
∩ B(w0, ε) are the

same for all the elements in the sequence. Because the sequence begins with Uk and

ends with Ul, it follows that

Wk ∩ B(w0, ε) = Wl ∩ B(w0, ε).

This proves (ii).

https://doi.org/10.4153/CJM-2010-052-5 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-2010-052-5


Revisiting Tietze–Nakajima: Local and Global Convexity for Maps 983

Let [x] be a connected component of Ψ
−1(w0). Fix an ε > 0 that satisfies the

conditions of Lemma 20. Let

(4.3) W[x],ε := Wi ∩ B(w0, ε) when Ui ∩ [x] 6= ∅.

By part (ii) of Lemma 20, this is independent of the choice of such i. Also, define

(4.4) Ũ[x],ε :=
⋃

Ui∩[x] 6=∅

Ui ∩ Ψ
−1(B(w0, ε)).

We have

(4.5)

Ψ(Ũ[x],ε) =

⋃

Ui∩[x] 6=∅

Ψ(Ui) ∩ B(w0, ε) by (4.4)

= W[x],ε by (4.2) and (4.3).

21 Lemma Suppose that, for each i, the level sets of Ψ|Ui
: Ui → Wi are path con-

nected. Then the level sets of Ψ|Ũ[x],ε
: Ũ[x],ε → W[x],ε are path connected.

Proof Let w ∈ W[x],ε and let x0, x1 ∈ Ũ[x],ε ∩ Ψ
−1(w). By (4.4) there exist i and k

such that x0 ∈ Ui , x1 ∈ Uk, Ui ∩ [x] 6= ∅, and Uk ∩ [x] 6= ∅. Fix such i and k. By

Lemma 19, there exists a sequence i = i0, i1, . . . , is = k such that Uil−1
∩Uil

∩[x] 6= ∅

for l = 1, . . . , s. Part (i) of Lemma 20 and the definition (4.3) of W[x],ε imply that

Ψ(Uil−1
∩ Uil

) ∩ B(w0, ε) = W[x],ε, and thus Uil−1
∩ Uil

∩ Ψ
−1(w) is nonempty for

each 1 ≤ l ≤ s. Since each Uil
∩ Ψ

−1(w) is path connected, this implies that x0 and

x1 can be connected by a path in Ũ[x],ε ∩ Ψ
−1(w).

22 Lemma Suppose that, for each i, the restriction of Ψ to Ui is a convex map. Then

the map

(4.6) Ψ|Ũ[x],ε
: Ũ[x],ε → Ψ(Ũ[x],ε)

is convex and open.

Proof Let x0 and x1 be in Ũ[x],ε. Let i be such that x0 ∈ Ui and Ui ∩ [x] 6= ∅. By

(4.5), Ψ(x1) ∈ W[x],ε. By (4.3) and (4.2), there exists y ∈ Ui such that Ψ(y) = Ψ(x1).

By assumption, the restriction of Ψ to Ui is a convex map. By Lemma 12, the

restriction of Ψ to Ui ∩ Ψ
−1(B(w0, ε)) is also convex. Let γ ′ be a path in Ui ∩

Ψ
−1(B(w0, ε)) from x0 to y such that ψ ◦ γ ′ is monotone straight. By Lemma 21

there exists a path γ ′ ′ in Ũ[x],ε from y to x1 whose composition with Ψ is constant.

Let γ be the concatenation of γ ′ with γ ′ ′; then γ is a path from x0 to x1 and Ψ ◦ γ is

monotone straight.

Thus, the map (4.6) is convex. To show that this map is open, we want to show

that given any open set Ω ⊂ Ũ[x],ε, its image Ψ(Ω) is open in W[x],ε. By (4.4), Ψ(Ω) =

∪iΨ(Ω∩Ui) for i such that Ui∩[x] 6= ∅, and each Ψ(Ω∩Ui) is contained in B(w0, ε).

Since Ψ|Ui
: Ui → Wi is open, Ψ(Ω ∩Ui) is open in Wi . By (4.3), each Ψ(Ω ∩Ui) is

open in W[x],ε.
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Proof of Proposition 17 Let w0 = Ψ(x). For each x ′ ∈ Ψ
−1(w0), let Ux ′ be an open

neighbourhood of x ′ such that the map Ψ|Ux ′
: Ux ′ → Ψ(Ux ′) is convex and open.

The sets Ux ′ , for x ′ ∈ Ψ
−1(w0), cover Ψ

−1(w0). Because Ψ
−1(w0) is compact, there

exists a finite subcovering; let {Ui}
n
i=1 be a finite subcovering.

Because Ψ
−1(w0) is compact and each point has a connected neighbourhood with

respect to the relative topology, Ψ−1(w0) has only finitely many components [x]. Let

ε > 0 satisfy the conditions of Lemma 20 for all these components. By Lemma 18, af-

ter possibly shrinking ε, we may assume that Ψ
−1(B(w0, ε)) ⊂ ∪iUi and that, when-

ever [x] and [y] are distinct connected components of Ψ
−1(w0), the sets U[x],ε and

U[y],ε are disjoint.

Let Ũ[x],ε and W[x],ε be the sets defined in (4.4) and (4.3). Then the preimage

Ψ
−1(B(w0, ε)) is the union of the sets Ũ[x],ε, for components [x] of Ψ

−1(w0). Because

each Ũ[x],ε is connected and contains [x], it is contained in the connected component

U[x],ε of x in Ψ
−1(B(w0, ε)). Because the sets U[x],ε are disjoint and the union of the

sets Ũ[x],ε is the entire preimage Ψ
−1(B(w0, ε)), each Ũ[x],ε is equal to U[x],ε. This and

Lemma 22 give Proposition 17.

5 Distance with Respect to a Locally Convex Map

Let X be a Hausdorff topological space and Ψ : X → R
n a continuous map. Let x0

and x1 be two points in X. We define their Ψ-distance to be

dΨ(x0, x1) = inf{l(Ψ ◦ γ) | γ : [0, 1] → X, γ(0) = x0, γ(1) = x1}.

Note that the Ψ-distance can take any value in [0,∞]. Also note that dΨ(x0, x1) = 0

if and only if x0 and x1 are in the same path-component of a level set of Ψ.

Remark In practice, we will work with a space X that is connected and in which

each point has a neighbourhood U such that the restriction of Ψ to U is a convex

map. For such a space, in the above definition of Ψ-distance we may take the infimum

to be over the set of paths γ such that Ψ ◦ γ is polygonal:

Indeed, let γ : [0, 1] → X be any path such that γ(0) = x0 and γ(1) = x1. By our

assumption on X, for every τ ∈ [0, 1] there exists an open interval Jτ containing τ
and an open subset Uτ ⊂ X such that the restriction of Ψ to Uτ is a convex map and

such that γ( Jτ ∩ [0, 1]) ⊂ Uτ .

The open intervals { Jτ} form an open covering of [0, 1]. Because the interval

[0, 1] is compact, there exists a finite subcovering; denote it J1, . . . , Js. Let

ε = min{ length( Ji ∩ Jk)| i, k ∈ {1, . . . , s} and Ji ∩ Jk 6= ∅}.

Any subinterval [α, β] ⊂ [0, 1] of length < ε is contained in one of the Jis. In-

deed, given such a subinterval [α, β], consider those intervals of J1, . . . , Js that con-

tain α; let Ji be the one whose upper bound is maximal; then Ji also contains β.

Thus, for any subinterval [α, β] ⊂ [0, 1] of length < ε there exists an open subset

U ⊂ X such that the restriction of Ψ to U is a convex map and such that γ(α) and

γ(β) are both contained in U .
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Partition [0, 1] into m intervals 0 = t0 < · · · < tm = 1 such that |t j − t j−1| < ε
for each j. By the previous paragraph, for every 1 ≤ j ≤ m there exists U ⊂ X

such that the restriction of Ψ to U is a convex map and such that γ(t j−1) and γ(t j)

are both contained in U . Because the restriction of Ψ to U is convex, there exists a

path γ j in X connecting γ(t j−1) and γ(t j) such that the image of Ψ ◦ γ is a (possibly

degenerate) segment with a weakly monotone parametrization. The path γ ′ that is

formed by concatenating γ1, . . . , γm has the following properties: it connects x0 and

x1, the composition Ψ ◦ γ ′ is polygonal, and l(Ψ ◦ γ ′) ≤ l(Ψ ◦ γ).

6 Proof that Local Convexity and Openness Imply Global Convexity
and Openness

23 Lemma (Existence of midpoints) Let X be a compact, connected, Hausdorff topo-

logical space and Ψ : X → R
n a continuous map. Suppose that for every point x ∈ X

there exists an open neighbourhood U such that the restriction of Ψ to U is a convex

map.

Let x0 and x1 be in X. Then there exists a point x1/2 ∈ X such that

(6.1) dΨ(x0, x1/2) = dΨ(x1/2, x1) =
1
2
dΨ(x0, x1).

Proof Choose paths γn connecting x0 and x1 such that the sequence {l(Ψ ◦ γn)}
converges to dΨ(x0, x1).

Let t j ∈ [0, 1] be such that γ j(t j) is the midpoint of the path γ j :

l(Ψ ◦ γ j |[0,t j]) = l(Ψ ◦ γ j |[t j ,1]) =
1
2
l(Ψ ◦ γ j).

Because X is compact, there exists a point x1/2 such that every neighbourhood of

x1/2 contains γ j(t j) for infinitely many values of j. We will show that the point x1/2

satisfies equation (6.1).

We first show that dΨ(x0, x 1
2
) ≤ 1

2
dΨ(x0, x1), or, equivalently, that for every ε > 0

there exists a path γ connecting x0 and x 1
2

such that l(Ψ ◦ γ) < 1
2
dΨ(x0, x1) + ε.

Let U be a neighbourhood of x1/2 such that the restriction of Ψ to U is a convex

map. Let j be such that the following facts are true:

(i) γ j(t j) ∈ U and ‖Ψ(γ j(t j)) − Ψ(x1/2)‖ < ε
2
.

(ii) l(Ψ ◦ γ j) < dΨ(x0, x1) + ε.

By (i) and since Ψ|U is a convex map, there exists a path µ connecting γ j(t j) and

x1/2 such that l(Ψ ◦ µ) < ε
2
. Let γ be the concatenation of γ j |[0,t j ] and µ. Then γ is a

path connecting x0 and x1/2, and l(Ψ ◦ γ) < 1
2
dΨ(x0, x1) + ε.

Thus, dΨ(x0, x1/2) ≤ 1
2
dΨ(x0, x1). Likewise, dΨ(x1/2, x1) ≤ 1

2
dΨ(x0, x1). If either

of these were a strict inequality, then it would be possible to construct a path from x0

to x1 whose image has length less than dΨ(x0, x1), which contradicts the definition of

dψ(x0, x1). Thus, dΨ(x0, x1/2) = dΨ(x1/2, x1) =
1
2
dΨ(x0, x1).

To prove Theorem 15, we need to have some uniform control on the sizes of ε such

that the restrictions of Ψ to the connected components U[x],ε of Ψ
−1(B(w0, ε)) are

convex. The precise result that we will use is established in the following proposition:
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24 Proposition Let X be a Hausdorff topological space and let Ψ : X → R
n be a

continuous map. Suppose that for each x ∈ X there exists an ε > 0 such that the

restriction of Ψ to the set U[x],ε is a convex map.

Then for every compact subset A ⊂ X there exists ε > 0 such that for every x ∈ A

and x ′ ∈ X, if dΨ(x, x ′) < ε, then there exists a path γ : [0, 1] → X such that γ(0) = x,

γ(1) = x ′, and Ψ ◦ γ is monotone straight.

Proof For each x ∈ X, let εx > 0 be such that the restriction of Ψ to the set U[x],εx

is a convex map. The sets U[x],εx/2, for x ∈ A, form an open covering of the compact

set A. Choose a finite subcovering: let x1, . . . , xk be points of A and ε1, . . . , εk be

positive numbers such that, for each 1 ≤ i ≤ k, the restriction of Ψ to the set U[xi ],εi

is a convex map, and such that the sets U[xi ],εi/2 cover A.

Let

ε = min
1≤i≤k

εi

2
.

Let x ∈ A, and let 1 ≤ i ≤ k be such that x ∈ U[xi ],εi/2.

Because U[xi ],εi/2, by its definition, is contained in Ψ
−1(B(Ψ(xi), εi/2)), we have

‖Ψ(x) − Ψ(xi)‖ < εi/2.

Because x and xi are also contained in the larger set U[xi ],εi
, and the restriction of

Ψ to this set is a convex map, there exists a path γ ′ from xi to x such that Ψ ◦ γ ′ is

monotone straight; in particular, l(Ψ ◦ γ ′) = ‖Ψ(x) − Ψ(xi)‖, so l(Ψ ◦ γ ′) < εi/2.

Let x ′ ∈ X be such that dΨ(x, x ′) < ε. Then, by the definition of dΨ, there exists a

path γ ′ ′ from x to x ′ such that l(Ψ ◦ γ ′ ′) < ε.

Let γ̂ be the concatenation of γ ′ and γ ′ ′. Then γ̂ is a path from xi to x ′, and

l(Ψ ◦ γ̂) ≤ l(Ψ ◦ γ ′) + l(Ψ ◦ γ ′ ′) < εi/2 + ε ≤ εi . Therefore, Ψ ◦ γ̂ ⊂ B(Ψ(xi), εi).

Thus, x ′ and xi are in the same connected component of Ψ
−1(B(Ψ(xi), εi)); that is,

x ′ is in the set U[xi ],εi
. Because x is also in the set U[xi ],εi

, and because the restriction

of Ψ to this set is a convex map, there exists a path γ from x to x ′ such that Ψ ◦ γ is

monotone straight.

25 Proposition Let X be a compact, connected, Hausdorff topological space, and let

Ψ : X → R
n be a continuous map. Suppose that there exists ε > 0 such that, for every x

and x ′ in X, if dΨ(x, x ′) < ε, then there exists a path γ : [0, 1] → X such that γ(0) = x,

γ(1) = x ′, and Ψ ◦ γ is monotone straight.

Then Ψ : X → R
n is a convex map.

Proof Fix x0 and x1 in X.

By Lemma 23, there exists a point x1/2 such that

dΨ(x0, x1/2) = dΨ(x1/2, x1) =
1

2
dΨ(x0, x1).

Likewise, there exists a point x1/4 that satisfies

dΨ(x0, x1/4) = dΨ(x1/4, x1/2) =
1

2
dΨ(x0, x1/2).
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By iteration, we get a map j
2m 7→ x j

2m
, for nonnegative integers j and m with

0 ≤ j ≤ 2m, such that

(6.2) dΨ(x j−1
2m

, x j
2m

) = dΨ(x j
2m

, x j+1
2m

) =
1

2
dΨ(x j−1

2m
, x j+1

2m
).

Let ε > 0 be as in the assumption of the proposition.

Choose m large enough such that for every 1 ≤ j ≤ 2m,

dΨ(x j−1
2m

, x j
2m

) <
ε

2
.

By the assumption, there exists a path γ j from x( j−1)/2m to x j/2m such that Ψ ◦ γ j

is monotone straight. Thus,

dΨ(x j−1
2m

, x j
2m

) = ‖Ψ(x j−1
2m

) − Ψ(x j
2m

)‖ for each 1 ≤ j ≤ 2m.

Similarly,

dΨ(x j−1
2m

, x j+1
2m

) = ‖Ψ(x j−1
2m

) − Ψ(x j+1
2m

)‖ for each 1 ≤ j < 2m.

Thus, equation (6.2) can be rewritten as

‖Ψ(x j−1
2m

) − Ψ(x j
2m

)‖ = ‖Ψ(x j
2m

) − Ψ(x j+1
2m

)‖ =
1

2
‖Ψ(x j−1

2m
) − Ψ(x j+1

2m
)‖,

which implies, by the triangle inequality, that the points

Ψ(x j−1
2m

), Ψ(x j
2m

), Ψ(x j+1
2m

)

are collinear. The concatenation of the paths γ j , for 1 ≤ j ≤ 2m, is a path from x0 to

x1 whose composition with Ψ is monotone straight.

26 Corollary Let X be a compact Hausdorff topological space and Ψ : X → R
n a

continuous map. Suppose that for every point x ∈ X there exists an open neighbourhood

U such that the map Ψ|U : U → Ψ(U ) is convex and open. Then the map Ψ : X → R
n

is convex.

Proof By Proposition 17, for every point x ∈ X there exists an ε > 0 such that the

map

Ψ|U[x],ε
: U[x],ε → Ψ(U[x],ε)

is convex and open.

By Proposition 24, there exists ε > 0 such that for every x and x ′ in X, if

dΨ(x, x ′) < ε, then there exists a path γ : [0, 1] → X such that γ(0) = x, γ(1) = x ′,

and Ψ ◦ γ is monotone straight.

By Proposition 25, the map Ψ : X → R
n is convex.
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Proof of Theorem 15 Let X be a connected Hausdorff topological space, T ⊂ R
n a

convex subset, and Ψ : X → T a continuous proper map. Suppose that for every

point x ∈ X there exists an open neighbourhood U such that the map Ψ|U : U →
Ψ(U ) is convex and open.

Fix any two points x0, x1 ∈ X. Let γ ′ be a path in X connecting x0 to x1; let

K = conv(image(Ψ ◦ γ ′)) be the convex hull of its image in R
n. Then K is a compact

subset of T. Let A be the component of Ψ
−1(K) that contains the point x0. Then A

also contains x1, and A is compact and connected.

For every x ∈ A, if U is a neighbourhood of x in X such that Ψ|U : U → Ψ(U )

is convex and open, then U ∩ Ψ
−1(K) is a neighbourhood of x in Ψ

−1(K) such that

Ψ|U∩Ψ−1(K) : U∩Ψ
−1(K) → Ψ(U )∩K is convex and open. In particular, U∩Ψ

−1(K)

is connected, so it is contained in A. So Ψ|A : A → R
n satisfies the assumptions of

Corollary 26. By this corollary, Ψ|A : A → R
n is convex.

So there exists a path γ : [0, 1] → X such that γ(0) = x0, γ(1) = x1, and Ψ ◦ γ
is monotone straight. Because x0, x1 ∈ X were chosen arbitrarily, this shows that

Ψ : X → R
n is convex.

To show that the map Ψ : X → Ψ(X) is open, it is enough to show that for each

w0 ∈ R
n there exists ε > 0 such that the restriction of Ψ to Ψ

−1(B(w0, ε)) is open as

a map to its image.

Fix w0 ∈ R
n.

Because the map Ψ : X → R
n is convex, the level set Ψ

−1(w0) is connected. Thus,

this level set consists of a single connected component, [x].

By Proposition 17, for sufficiently small ε, the restriction of Ψ to the set U[x],ε

is open as a map to its image. The set U[x],ε is an open set that contains Ψ
−1(w0).

Because Ψ is proper, there exists an ε ′ > 0 such that the set U[x],ε contains the

preimage Ψ
−1(B(w0, ε

′)); see Lemma 18. Thus, the restriction of Ψ to the preim-

age Ψ
−1(B(w0, ε

′)) is open as a map to its image.

7 Applications to Moment Maps

27 Example The map from C
n to R

n given by

(7.1) (z1, . . . , zn) 7→ (|z1|
2, . . . , |zn|

2)

is convex, and it is open as a map from C
n to the positive orthant R

n
+.

Moreover, the restriction of the map (7.1) to any ball Bρ = {z ∈ C
n | ‖z‖ < ρ} is

convex, and it is open as a map to its image.

Proof Consider the following commuting diagram of continuous maps:

R
n
+ × (S1)n

projection

**T

T

T

T

T

T

T

T

T

T

T

T

T

T

T

T

T

T

T

T

T

(s1,...,sn,e
iθ1 ,...,eiθn ) 7→(s

1/2
1 eiθ1 ,...,s1/2

n eiθn )

²²

C
n

(z1,...,zn) 7→(|z1|
2,...,|zn|

2)

// R
n
+.
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Because the projection map is convex and open and the map on the left is onto, the

bottom map is convex and open.

Because the ball Bρ is the preimage of a convex set (namely, it is the preimage of

the set {(s1, . . . , sn) | s1 + . . . + sn < ρ2}), the restriction of the map (7.1) to Bρ is also

convex and open as a map to its image.

28 Example Let α1, . . . , αn be any vectors. Then the map

(7.2) ΦH : (z1, . . . , zn) 7→
n

∑

j=1

|z j |
2α j

is convex, and it is open as a map to its image.

Moreover, the restriction of ΦH to any ball Bρ = {z ∈ C
n | ‖z‖ < ρ} is convex,

and it is open as a map to its image.

Proof Because the map (7.1) is convex, so is its composition with the linear map

(s1, . . . , sn) 7→ (s1α1 + · · · + snαn). Because the restriction of a linear map to the

positive orthant R
n
+ is open as a map to its image1, so is this composition. Because

the map (7.2) is open as a map to its image, so is its restriction to the open ball Bρ.

Because this restriction is the composition of a convex map with a linear projection,

it is convex.

We proceed with applications to symplectic geometry. Relevant definitions can be

found, for example, in the original paper [GS1] of Guillemin and Sternberg. We first

describe local models for Hamiltonian torus actions.

Let T ∼= (S1)k be a torus, t ∼= R
k its Lie algebra, and t∗ ∼= R

k the dual space.

Let H ⊂ T be a closed subgroup, h ⊂ t its Lie algebra, and h0 ⊂ t∗ the anni-

hilator of h in t∗. Let H act on C
n through a group homomorphism H → (S1)n

followed by coordinatewise multiplication. The corresponding quadratic moment

map, ΦH : C
n → h∗, has the form z 7→

∑n
j=1 |z j |

2α j , where α1, . . . , αn are elements

of h∗ (namely, they are the weights of the H action on C
n, times 1

2
).

Consider the model

Y = T ×H C
n × h0;

its elements are represented by triples [a, z, ν] with a ∈ T, z ∈ C
n, and ν ∈ h0, with

[ab, z, ν] = [a, b · z, ν] for all b ∈ H. Fix a splitting t∗ = h∗ ⊕ h0, and consider the

map

(7.3) ΦY : T ×H C
n × h0 → t∗, [a, z, ν] 7→ ΦH(z) + ν.

1 This is a consequence of the following lemma: For any vectors α1, . . . , αn ∈ R
ℓ there exists ε > 0

such that for every β =
P

s jα j with all s j ≥ 0, if ‖β‖ < ε then there exists s′ = (s′1, . . . , s′n) such
that β =

P

s′jα j and ‖s′‖ < 1. Proof: Let β =
P

s jα j with all s j ≥ 0. Then there exist s′j such

that β =
P

s′jα j , all s′j ≥ 0, and the vectors {α j | s′j 6= 0} are linearly independent; cf. Carathéodory’s
theorem in convex geometry. Let J = { j | s′j 6= 0}. The map s 7→

P

s jα j from R
J to span{α j | j ∈ J} is

a linear isomorphism; denote its inverse by L J . Then s′ = L J(β), so ‖s′‖ ≤ ‖L J‖‖β‖ where ‖L J‖ is the
operator norm. The lemma holds with any ε < min J {

1
‖L J‖

} where J runs over the subsets of {1, . . . , n}
for which {α j | j ∈ J} are linearly independent.
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The map ΦY is convex and is open as a map to its image. This follows from the

commuting diagram

T × C
n × h0

²²

(a,z,ν) 7→(ΦH (z),ν)
// h∗ × h0

∼=
²²

T ×H C
n×

ΦY

// t∗

because the top map is convex and is open as a map to its image, the map on the left

is onto, and the map on the right is a linear isomorphism.

Similarly, if D ⊂ C
n and D ′ ⊂ h0 are disks centered at the origin, the restriction

of ΦY to the subset T ×H D × D ′ of T ×H C
n × h0 is convex and is open as a map to

its image. This follows from the following diagram:

T × D × D ′

²²

(a,z,ν) 7→(ΦH (z),ν)
// h∗ × h0

∼=

²²

T ×H D × D ′
ΦY

// t∗

29 Proposition Let T act on a symplectic manifold with a moment map Φ : M → t∗.

Then each point of M is contained in an open set U ⊂ M such that the restriction of Φ

to U is convex and is open as a map to its image, Φ(U ).

Proof Fix a point x ∈ M.

There exists a T-invariant neighbourhood U of x and an equivariant diffeomor-

phism f : U → T ×H D × D ′ that carries Φ|U to a map that differs from ΦY by a

constant in t∗, where the model T ×H D × D ′ and the map ΦY are as in (7.3). This

follows from the local normal form theorem for Hamiltonian torus actions [GS2].

Because the restriction of ΦY to T ×H D × D ′ is convex and is open as a map to its

image, so is Φ|U .

We can now recover the convexity theorem of Atiyah, Guillemin, and Sternberg

along the lines given by Condevaux, Dazord, and Molino.

30 Theorem Let M be a manifold equipped with a symplectic form and a torus action,

and let Φ : M → t∗ be a corresponding moment map. Suppose that Φ is proper as a map

to some convex subset of t∗. Then the image of Φ is convex, its level sets are connected,

and the moment map is open as a map to its image.

Proof By Proposition 29, every point in M is contained in an open set U such that

the map Φ|U is convex and is open as a map to its image, Φ(U ). The conclusion then

follows from Theorem 10.
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8 The Results of Birtea, Ortega, and Ratiu

The paper [BOR1] of Birtea, Ortega, and Ratiu contains results that are similar to

ours. For the benefit of the reader, we present their results here.

31 Theorem ([BOR1, Thm. 2.28]) Let X be a topological space that is connected,

locally connected, first countable, and normal. Let V be a finite dimensional vector

space. Let f : X → V be a map that satisfies the following conditions.

(i) The map f is continuous and is closed.

(ii) The map f has local convexity data: for each x ∈ X and each sufficiently small

neighbourhood U of x there exist a convex cone C ⊂ V with vertex at f (x) such

that the restriction f |U : U → C is an open map with respect to the subset topology

on C ⊂ V .

(iii) The map f is locally fiber connected: for each x ∈ X, any open neighbourhood of x

contains a neighbourhood U of x that does not intersect two connected components

of the fiber f −1( f (x ′)) for any x ′ ∈ U .

Then the fibers of f are connected, the map f is open onto its image, and the image f (X)

is a closed convex set.

32 Remark The paper [BOR2] contains a more general convexity result; in par-

ticular, it contains a more liberal definition of having local convexity data: for each

x ∈ X, there exist arbitrarily small neighbourhoods U of x such that f (U ) is convex

[BOR2, Def. 2.8]. Here, openness of the maps f |U : U → f (U ) is not part of the

definition of “local convexity data”, but it is assumed separately.

Birtea, Ortega, and Ratiu also sketch a proof of the following infinite dimensional

version:

33 Theorem ([BOR1, Thm. 2.31]) Let X be a topological space that is connected,

locally connected, first countable, and normal. Let (V, ‖ ‖) be a Banach space that is

the dual of another Banach space. Let f : X → V be a map that satisfies the following

conditions.

(i) The map f is continuous with respect to the norm topology on V and is closed with

respect to the weak-star topology on V .

(ii) The map f has local convexity data (see above).

(iii) The map f is locally fiber connected (see above).

Then the fibers of f are connected, the map f is open onto its image with respect to the

weak-star topology, and the image f (X) ⊂ V is convex and is closed in the weak-star

topology.

34 Remark

• We work with a convex subset of V ; they similarly note that their theorem remains

true when V is replaced by a convex subset of V [BOR1, Rem. 2.29].
• In [BOR2] they allow more general target spaces, which are not vector spaces.
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• We assume that the domain is Hausdorff and the map is proper (in the sense

that the preimage of a compact set is compact); they assume that the domain is

first countable and normal and that the map is closed. We are not aware of non-

artificial examples where one of these assumptions holds and the other does not.
• We assume that each point is contained in an open set on which the map is a convex

map, a condition that we define in Definition 7. They assume that the map has lo-

cal convexity data (defined in [BOR1, Def. 2.7] and re-defined in [BOR2, Def. 2.8])

and satisfies the locally fiber connected condition (defined in [BOR1, Def. 2.15] as

a slight generalization of [Be, § 3.4, after Def. 3.6]).

Example The inclusion map of a closed ball into R
n is a convex map in our

sense. It does not have local convexity data in the sense of [BOR1], but it does

have local convexity data in the sense of [BOR2].

• If a map is convex, then it has local convexity data (in the broader sense of [BOR2])

and it is locally fiber connected. Thus, our “convexity/connectedness” assump-

tions are stricter than those of [BOR1], but our conclusion is stronger.
• Both we and [BOR1] allow a broad interpretation of “local”:

– In [BOR1], the “locally fiber connected condition” on a subset A of X with

respect to a map f : X → V depends not only on the restriction of the map f to

the set A but also on which points in A belong to the same fiber in X. (This is

where the definition of [BOR1] differs from that of Benoist.)

– In our paper, we assume that each point is contained in an open set on which

the map is convex and is open as a map to its image, but we do not insist that

these open sets form a basis to the topology (cf. Remark 16).
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[Ti] H. Tietze, Über Konvexheit im kleinen und im großen und über gewisse den Punkter einer Menge
zugeordete Dimensionszahlen. Math. Z. 28(1928), no. 1, 697–707. doi:10.1007/BF01181191

Department of Mathematics, University of Toronto, Toronto, ON M5S 2E4, CANADA
e-mail: karshon@math.toronto.edu

cjm295@cornell.edu

https://doi.org/10.4153/CJM-2010-052-5 Published online by Cambridge University Press

http://dx.doi.org/10.1215/S0012-7094-51-01835-2
http://dx.doi.org/10.1112/jlms/s1-36.1.52
http://dx.doi.org/10.1090/S0002-9904-1942-07693-2
http://dx.doi.org/10.1007/BF01181191
https://doi.org/10.4153/CJM-2010-052-5

